def _define_step():
        """Request actions from the algorithm and apply them to the environments.

    Increments the lengths of all episodes and increases their scores by the
    current reward. After stepping the environments, provides the full
    transition tuple to the algorithm.

    Returns:
      Summary tensor.
    """
        prevob = batch_env.observ + 0  # Ensure a copy of the variable value.
        agent_indices = tf.range(len(batch_env))
        action, step_summary = algo.perform(agent_indices, prevob)
        action.set_shape(batch_env.action.shape)
        with tf.control_dependencies([batch_env.simulate(action)]):
            add_score = score.assign_add(batch_env.reward)
            inc_length = length.assign_add(tf.ones(len(batch_env), tf.int32))
        with tf.control_dependencies([add_score, inc_length]):
            agent_indices = tf.range(len(batch_env))
            experience_summary = algo.experience(agent_indices, prevob,
                                                 batch_env.action,
                                                 batch_env.reward,
                                                 batch_env.done,
                                                 batch_env.observ)
        return tf.summary.merge([step_summary, experience_summary])
Ejemplo n.º 2
0
  def _restore_policy(self, network, policy_layers, value_layers, action_size, checkpoint):
    """Restore the PPO policy from a TensorFlow checkpoint.

    Args:
      network: The neural network definition.
      policy_layers: A tuple specify the number of layers and number of neurons
        of each layer for the policy network.
      value_layers: A tuple specify the number of layers and number of neurons
        of each layer for the value network.
      action_size: The dimension of the action space.
      checkpoint: The checkpoint path.
    """
    observ = self._observ_filter.transform(self.observation_placeholder)
    with tf.variable_scope("network/rnn"):
      self.network = network(policy_layers=policy_layers,
                             value_layers=value_layers,
                             action_size=action_size)

    with tf.variable_scope("temporary"):
      self.last_state = tf.Variable(self.network.zero_state(1, tf.float32), False)
      self.sess.run(self.last_state.initializer)

    with tf.variable_scope("network"):
      (mean_action, _, _), new_state = tf.nn.dynamic_rnn(self.network,
                                                         observ[:, None],
                                                         tf.ones(1),
                                                         self.last_state,
                                                         tf.float32,
                                                         swap_memory=True)
      self.mean_action = mean_action
      self.update_state = self.last_state.assign(new_state)

    saver = utility.define_saver(exclude=(r"temporary/.*",))
    saver.restore(self.sess, checkpoint)
Ejemplo n.º 3
0
    def perform(self, observ):
        """Compute batch of actions and a summary for a batch of observation.

    Args:
      observ: Tensor of a batch of observations for all algorithms.

    Returns:
      Tuple of action batch tensor and summary tensor.
    """
        with tf.name_scope('perform/'):
            observ = self._observ_filter.transform(observ)
            network = self._network(observ[:, None], tf.ones(observ.shape[0]),
                                    self._last_state)
            action = tf.cond(self._is_training, network.policy.sample,
                             lambda: network.mean)
            logprob = network.policy.log_prob(action)[:, 0]
            # pylint: disable=g-long-lambda
            summary = tf.cond(
                self._should_log, lambda: tf.summary.merge([
                    tf.summary.histogram('mean', network.mean[:, 0]),
                    tf.summary.histogram('std', tf.exp(network.logstd[:, 0])),
                    tf.summary.histogram('action', action[:, 0]),
                    tf.summary.histogram('logprob', logprob)
                ]), str)
            # Remember current policy to append to memory in the experience callback.
            with tf.control_dependencies([
                    utility.assign_nested_vars(self._last_state,
                                               network.state),
                    self._last_action.assign(action[:, 0]),
                    self._last_mean.assign(network.mean[:, 0]),
                    self._last_logstd.assign(network.logstd[:, 0])
            ]):
                return tf.check_numerics(action[:, 0],
                                         'action'), tf.identity(summary)
Ejemplo n.º 4
0
    def __init__(self, batch_env):
        """Batch of environments inside the TensorFlow graph.

    Args:
      batch_env: Batch environment.
    """
        self._batch_env = batch_env
        observ_shape = self._parse_shape(self._batch_env.observation_space)
        observ_dtype = self._parse_dtype(self._batch_env.observation_space)
        action_shape = self._parse_shape(self._batch_env.action_space)
        action_dtype = self._parse_dtype(self._batch_env.action_space)
        with tf.variable_scope('env_temporary'):
            self._observ = tf.Variable(tf.zeros(
                (len(self._batch_env), ) + observ_shape, observ_dtype),
                                       name='observ',
                                       trainable=False)
            self._action = tf.Variable(tf.zeros(
                (len(self._batch_env), ) + action_shape, action_dtype),
                                       name='action',
                                       trainable=False)
            self._reward = tf.Variable(tf.zeros((len(self._batch_env), ),
                                                tf.float32),
                                       name='reward',
                                       trainable=False)
            self._done = tf.Variable(tf.cast(tf.ones((len(self._batch_env), )),
                                             tf.bool),
                                     name='done',
                                     trainable=False)
Ejemplo n.º 5
0
    def _build_nets(self, json_data):
        assert self.ACTOR_NET_KEY in json_data
        assert self.CRITIC_NET_KEY in json_data

        actor_net_name = json_data[self.ACTOR_NET_KEY]
        critic_net_name = json_data[self.CRITIC_NET_KEY]
        actor_init_output_scale = 1 if (
            self.ACTOR_INIT_OUTPUT_SCALE_KEY
            not in json_data) else json_data[self.ACTOR_INIT_OUTPUT_SCALE_KEY]

        s_size = self.get_state_size()
        g_size = self.get_goal_size()
        a_size = self.get_action_size()

        # setup input tensors
        self.s_tf = tf.placeholder(tf.float32, shape=[None, s_size], name="s")
        self.a_tf = tf.placeholder(tf.float32, shape=[None, a_size], name="a")
        self.tar_val_tf = tf.placeholder(tf.float32,
                                         shape=[None],
                                         name="tar_val")
        self.adv_tf = tf.placeholder(tf.float32, shape=[None], name="adv")
        self.g_tf = tf.placeholder(
            tf.float32,
            shape=([None, g_size] if self.has_goal() else None),
            name="g")
        self.old_logp_tf = tf.placeholder(tf.float32,
                                          shape=[None],
                                          name="old_logp")
        self.exp_mask_tf = tf.placeholder(tf.float32,
                                          shape=[None],
                                          name="exp_mask")

        with tf.variable_scope('main'):
            with tf.variable_scope('actor'):
                self.a_mean_tf = self._build_net_actor(
                    actor_net_name, actor_init_output_scale)
            with tf.variable_scope('critic'):
                self.critic_tf = self._build_net_critic(critic_net_name)

        if (self.a_mean_tf != None):
            Logger.print2('Built actor net: ' + actor_net_name)

        if (self.critic_tf != None):
            Logger.print2('Built critic net: ' + critic_net_name)

        self.norm_a_std_tf = self.exp_params_curr.noise * tf.ones(a_size)
        norm_a_noise_tf = self.norm_a_std_tf * tf.random_normal(
            shape=tf.shape(self.a_mean_tf))
        norm_a_noise_tf *= tf.expand_dims(self.exp_mask_tf, axis=-1)
        self.sample_a_tf = self.a_mean_tf + norm_a_noise_tf * self.a_norm.std_tf
        self.sample_a_logp_tf = TFUtil.calc_logp_gaussian(
            x_tf=norm_a_noise_tf, mean_tf=None, std_tf=self.norm_a_std_tf)

        return
    def perform(self, agent_indices, observ):
        """Compute batch of actions and a summary for a batch of observation.

    Args:
      agent_indices: Tensor containing current batch indices.
      observ: Tensor of a batch of observations for all agents.

    Returns:
      Tuple of action batch tensor and summary tensor.
    """
        with tf.name_scope('perform/'):
            observ = self._observ_filter.transform(observ)
            if self._last_state is None:
                state = None
            else:
                state = tf.contrib.framework.nest.map_structure(
                    lambda x: tf.gather(x, agent_indices), self._last_state)
            output = self._network(observ[:, None], tf.ones(observ.shape[0]),
                                   state)
            action = tf.cond(self._is_training, output.policy.sample,
                             lambda: output.mean)
            logprob = output.policy.log_prob(action)[:, 0]
            # pylint: disable=g-long-lambda
            summary = tf.cond(
                self._should_log, lambda: tf.summary.merge([
                    tf.summary.histogram('mean', output.mean[:, 0]),
                    tf.summary.histogram('std', tf.exp(output.logstd[:, 0])),
                    tf.summary.histogram('action', action[:, 0]),
                    tf.summary.histogram('logprob', logprob)
                ]), str)
            # Remember current policy to append to memory in the experience callback.
            if self._last_state is None:
                assign_state = tf.no_op()
            else:
                assign_state = utility.assign_nested_vars(
                    self._last_state, output.state, agent_indices)
            with tf.control_dependencies([
                    assign_state,
                    tf.scatter_update(self._last_action, agent_indices,
                                      action[:, 0]),
                    tf.scatter_update(self._last_mean, agent_indices,
                                      output.mean[:, 0]),
                    tf.scatter_update(self._last_logstd, agent_indices,
                                      output.logstd[:, 0])
            ]):
                return tf.check_numerics(action[:, 0],
                                         'action'), tf.identity(summary)
    def __init__(self, batch_env, step, is_training, should_log, config):
        """Create an instance of the PPO algorithm.

    Args:
      batch_env: In-graph batch environment.
      step: Integer tensor holding the current training step.
      is_training: Boolean tensor for whether the algorithm should train.
      should_log: Boolean tensor for whether summaries should be returned.
      config: Object containing the agent configuration as attributes.
    """
        self._batch_env = batch_env
        self._step = step
        self._is_training = is_training
        self._should_log = should_log
        self._config = config
        self._observ_filter = normalize.StreamingNormalize(
            self._batch_env.observ[0],
            center=True,
            scale=True,
            clip=5,
            name='normalize_observ')
        self._reward_filter = normalize.StreamingNormalize(
            self._batch_env.reward[0],
            center=False,
            scale=True,
            clip=10,
            name='normalize_reward')
        # Memory stores tuple of observ, action, mean, logstd, reward.
        template = (self._batch_env.observ[0], self._batch_env.action[0],
                    self._batch_env.action[0], self._batch_env.action[0],
                    self._batch_env.reward[0])
        self._memory = memory.EpisodeMemory(template, config.update_every,
                                            config.max_length, 'memory')
        self._memory_index = tf.Variable(0, False)
        use_gpu = self._config.use_gpu and utility.available_gpus()
        with tf.device('/gpu:0' if use_gpu else '/cpu:0'):
            # Create network variables for later calls to reuse.
            action_size = self._batch_env.action.shape[1].value
            self._network = tf.make_template(
                'network',
                functools.partial(config.network, config, action_size))
            output = self._network(
                tf.zeros_like(self._batch_env.observ)[:, None],
                tf.ones(len(self._batch_env)))
            with tf.variable_scope('ppo_temporary'):
                self._episodes = memory.EpisodeMemory(template, len(batch_env),
                                                      config.max_length,
                                                      'episodes')
                if output.state is None:
                    self._last_state = None
                else:
                    # Ensure the batch dimension is set.
                    tf.contrib.framework.nest.map_structure(
                        lambda x: x.set_shape([len(batch_env)] + x.shape.
                                              as_list()[1:]), output.state)
                    # pylint: disable=undefined-variable
                    self._last_state = tf.contrib.framework.nest.map_structure(
                        lambda x: tf.Variable(lambda: tf.zeros_like(x), False),
                        output.state)
                self._last_action = tf.Variable(tf.zeros_like(
                    self._batch_env.action),
                                                False,
                                                name='last_action')
                self._last_mean = tf.Variable(tf.zeros_like(
                    self._batch_env.action),
                                              False,
                                              name='last_mean')
                self._last_logstd = tf.Variable(tf.zeros_like(
                    self._batch_env.action),
                                                False,
                                                name='last_logstd')
        self._penalty = tf.Variable(self._config.kl_init_penalty,
                                    False,
                                    dtype=tf.float32)
        self._optimizer = self._config.optimizer(self._config.learning_rate)
Ejemplo n.º 8
0
    def __init__(self, batch_env, step, is_training, should_log, config):
        """Create an instance of the PPO algorithm.

    Args:
      batch_env: In-graph batch environment.
      step: Integer tensor holding the current training step.
      is_training: Boolean tensor for whether the algorithm should train.
      should_log: Boolean tensor for whether summaries should be returned.
      config: Object containing the agents configuration as attributes.
    """
        self._batch_env = batch_env
        self._step = step
        self._is_training = is_training
        self._should_log = should_log
        self._config = config
        self._observ_filter = normalize.StreamingNormalize(
            self._batch_env.observ[0],
            center=True,
            scale=True,
            clip=5,
            name='normalize_observ')
        self._reward_filter = normalize.StreamingNormalize(
            self._batch_env.reward[0],
            center=False,
            scale=True,
            clip=10,
            name='normalize_reward')
        # Memory stores tuple of observ, action, mean, logstd, reward.
        template = (self._batch_env.observ[0], self._batch_env.action[0],
                    self._batch_env.action[0], self._batch_env.action[0],
                    self._batch_env.reward[0])
        self._memory = memory.EpisodeMemory(template, config.update_every,
                                            config.max_length, 'memory')
        self._memory_index = tf.Variable(0, False)
        use_gpu = self._config.use_gpu and utility.available_gpus()
        with tf.device('/gpu:0' if use_gpu else '/cpu:0'):
            # Create network variables for later calls to reuse.
            self._network(tf.zeros_like(self._batch_env.observ)[:, None],
                          tf.ones(len(self._batch_env)),
                          reuse=None)
            cell = self._config.network(self._batch_env.action.shape[1].value)
            with tf.variable_scope('ppo_temporary'):
                self._episodes = memory.EpisodeMemory(template, len(batch_env),
                                                      config.max_length,
                                                      'episodes')
                self._last_state = utility.create_nested_vars(
                    cell.zero_state(len(batch_env), tf.float32))
                self._last_action = tf.Variable(tf.zeros_like(
                    self._batch_env.action),
                                                False,
                                                name='last_action')
                self._last_mean = tf.Variable(tf.zeros_like(
                    self._batch_env.action),
                                              False,
                                              name='last_mean')
                self._last_logstd = tf.Variable(tf.zeros_like(
                    self._batch_env.action),
                                                False,
                                                name='last_logstd')
        self._penalty = tf.Variable(self._config.kl_init_penalty,
                                    False,
                                    dtype=tf.float32)
        self._policy_optimizer = self._config.policy_optimizer(
            self._config.policy_lr, name='policy_optimizer')
        self._value_optimizer = self._config.value_optimizer(
            self._config.value_lr, name='value_optimizer')