Ejemplo n.º 1
0
    def test_matmul(self, run_eagerly):
        a = np.array([[5, 5], [5, 5]]).astype(np.int32)
        b = np.array([[6, 6], [6, 6]]).astype(np.int32)
        expected = a.dot(b)

        context = tf_execution_context(run_eagerly)
        with context.scope():

            a_var = big_import(a)
            b_var = big_import(b)
            c_var = big_matmul(a_var, b_var)
            c_str = big_export(c_var, tf.int32)

        np.testing.assert_equal(context.evaluate(c_str), expected)
Ejemplo n.º 2
0
    def test_add(self, run_eagerly):
        a = "5453452435245245245242534"
        b = "1424132412341234123412341234134"
        expected = int(a) + int(b)

        context = tf_execution_context(run_eagerly)
        with context.scope():

            a_var = big_import([[a]])
            b_var = big_import([[b]])
            c_var = big_add(a_var, b_var)
            c_str = big_export(c_var, tf.string)

        np.testing.assert_equal(int(context.evaluate(c_str)), expected)
Ejemplo n.º 3
0
    def test_mod(self, run_eagerly):
        x = np.array([[123, 234], [345, 456]]).astype(np.int32)
        n = np.array([[37]]).astype(np.int32)
        expected = x % n

        context = tf_execution_context(run_eagerly)
        with context.scope():

            x_big = big_import(x)
            n_big = big_import(n)
            y_big = big_mod(x_big, n_big)
            y_str = big_export(y_big, tf.int32)

        np.testing.assert_equal(context.evaluate(y_str), expected)
Ejemplo n.º 4
0
    def test_pow(self, run_eagerly, secure):
        base = "54"
        exp = "3434"
        modulus = "35"
        expected = pow(54, 3434, 35)

        context = tf_execution_context(run_eagerly)
        with context.scope():

            base_var = big_import([[base]])
            exp_var = big_import([[exp]])
            mod_var = big_import([[modulus]])
            out = big_pow(base_var, exp_var, mod_var, secure=secure)
            out_str = big_export(out, tf.string)

        np.testing.assert_equal(int(context.evaluate(out_str)), expected)
Ejemplo n.º 5
0
def _import_tensor_tensorflow(tensor):
    if tensor.dtype in [tf.int64]:
        tensor = tf.as_string(tensor)
    elif tensor.dtype not in [tf.uint8, tf.int32, tf.string]:
        raise ValueError("Unsupported dtype '{}'".format(tensor.dtype))

    if len(tensor.shape) != 2:
        raise ValueError("Tensor must have rank 2.")

    return Tensor(ops.big_import(tensor))
Ejemplo n.º 6
0
def _import_tensor_numpy(tensor):
    tensor = _convert_to_numpy_tensor(tensor)

    if np.issubdtype(tensor.dtype, np.int64) or np.issubdtype(tensor.dtype, np.object_):
        tensor = tensor.astype(np.string_)
    elif not (
        np.issubdtype(tensor.dtype, np.int32)
        or np.issubdtype(tensor.dtype, np.string_)
        or np.issubdtype(tensor.dtype, np.unicode_)
    ):
        raise ValueError("Unsupported dtype '{}'.".format(tensor.dtype))

    if len(tensor.shape) != 2:
        raise ValueError("Tensors must have rank 2.")

    return Tensor(ops.big_import(tensor))
Ejemplo n.º 7
0
 def test_import_export(self, run_eagerly, raw, dtype):
     context = tf_execution_context(run_eagerly)
     with context.scope():
         variant = big_import(raw)
         output = big_export(variant, dtype)
     assert context.evaluate(output) == raw