Ejemplo n.º 1
0
def secure_mean(collected_inputs):
    """ securely calculates the mean of the collected_inputs """

    with tf.name_scope('secure_mean'):

        aggr_inputs = [
            tfe.add_n(inputs) / len(inputs) for inputs in collected_inputs
        ]

        # Reveal aggregated values & cast to native tf.float32
        aggr_inputs = [
            tf.cast(inp.reveal().to_native(), tf.float32)
            for inp in aggr_inputs
        ]

        return aggr_inputs
Ejemplo n.º 2
0
    def fit(self, training_players, summary=0, validation_split=None):
        """Trains the linear regressor.

    Arguments:
      training_players: Data owners used for joint training. Must implement the
          compute_estimators as a tfe.local_computation.
      summary: Controls what kind of summary statistics are generated after the
          linear regression fit.
      validation_split: Mimics the behavior of the Keras validation_split kwarg.
    """
        if validation_split is not None:
            raise NotImplementedError()

        partial_estimators = [
            player.compute_estimators(self.estimator_fn)
            for player in training_players
        ]

        for attr, partial_estimator in zip(self.components,
                                           zip(*partial_estimators)):
            setattr(self, attr, tfe.add_n(partial_estimator))

        with tfe.Session() as sess:
            for k in self.components:
                op = getattr(self, k)
                setattr(self, k, sess.run(op.reveal()))

        tf_graph = tf.Graph()
        with tf_graph.as_default():
            self._inverted_covariate_square = tf.linalg.inv(
                self.covariate_square)
            self.coefficients = tf.matmul(self._inverted_covariate_square,
                                          self.covariate_label_product)

        with tf.Session(graph=tf_graph) as sess:
            for k in ["_inverted_covariate_square", "coefficients"]:
                setattr(self, k, sess.run(getattr(self, k)))

        if not summary:
            return self

        return self.summarize(summary_level=summary)
Ejemplo n.º 3
0

def provide_input() -> tf.Tensor:
    # pick random tensor to be averaged
    return tf.random_normal(shape=(10, ))


if __name__ == '__main__':
    # get input from inputters as private values
    inputs = [
        tfe.define_private_input('inputter-0', provide_input),
        tfe.define_private_input('inputter-1', provide_input),
        tfe.define_private_input('inputter-2', provide_input),
        tfe.define_private_input('inputter-3', provide_input),
        tfe.define_private_input('inputter-4', provide_input),
    ]

    # sum all inputs and divide by count
    result = tfe.add_n(inputs) / len(inputs)

    def receive_output(average: tf.Tensor) -> tf.Operation:
        # simply print average
        return tf.print("Average:", average)

    # send result to receiver
    result_op = tfe.define_output('result-receiver', result, receive_output)

    # run a few times
    with tfe.Session() as sess:
        sess.run(result_op, tag='average')
Ejemplo n.º 4
0
      DataOwner("data-owner-0", "./data/train.tfrecord",
                model_owner.build_update_step),
      DataOwner("data-owner-1", "./data/train.tfrecord",
                model_owner.build_update_step),
      DataOwner("data-owner-2", "./data/train.tfrecord",
                model_owner.build_update_step),
  ]

  model_grads = zip(*(
      data_owner.compute_gradient()
      for data_owner in data_owners
  ))

  with tf.name_scope('secure_aggregation'):
    aggregated_model_grads = [
        tfe.add_n(grads) / len(grads)
        for grads in model_grads
    ]

  iteration_op = model_owner.update_model(*aggregated_model_grads)

  with tfe.Session(target=session_target) as sess:
    sess.run(tf.global_variables_initializer(), tag='init')

    for i in range(model_owner.ITERATIONS):
      if i % 100 == 0:
        print("Iteration {}".format(i))
        sess.run(iteration_op, tag='iteration')
      else:
        sess.run(iteration_op)
Ejemplo n.º 5
0
    data_owners = [
        DataOwner("data-owner-0", "./data/train.tfrecord",
                  model_owner.build_update_step),
        DataOwner("data-owner-1", "./data/train.tfrecord",
                  model_owner.build_update_step),
        DataOwner("data-owner-2", "./data/train.tfrecord",
                  model_owner.build_update_step),
    ]

    model_grads = zip(*(tfe.define_private_input(data_owner.player_name,
                                                 data_owner.compute_gradient)
                        for data_owner in data_owners))

    with tf.name_scope('secure_aggregation'):
        aggregated_model_grads = [
            tfe.add_n(grads) / len(grads) for grads in model_grads
        ]

    iteration_op = tfe.define_output(model_owner.player_name,
                                     aggregated_model_grads,
                                     model_owner.update_model)

    with tfe.Session(target=session_target) as sess:
        sess.run(tf.global_variables_initializer(), tag='init')

        for i in range(model_owner.ITERATIONS):
            if i % 100 == 0:
                print("Iteration {}".format(i))
                sess.run(iteration_op, tag='iteration')
            else:
                sess.run(iteration_op)