Ejemplo n.º 1
0
def _analytic_valuation(expiries, floating_leg_start_times,
                        floating_leg_end_times, fixed_leg_payment_times,
                        fixed_leg_daycount_fractions, fixed_leg_coupon,
                        reference_rate_fn, dim, mean_reversion, volatility,
                        notional, is_payer_swaption, output_shape,
                        dtype, name):
  """Helper function for analytic valuation."""
  # The below inputs are needed for midcurve swaptions
  del floating_leg_start_times, floating_leg_end_times
  with tf.name_scope(name):
    is_call_options = tf.where(is_payer_swaption,
                               tf.convert_to_tensor(False, dtype=tf.bool),
                               tf.convert_to_tensor(True, dtype=tf.bool))

    model = vector_hull_white.VectorHullWhiteModel(
        dim,
        mean_reversion,
        volatility,
        initial_discount_rate_fn=reference_rate_fn,
        dtype=dtype)
    coefficients = fixed_leg_daycount_fractions * fixed_leg_coupon
    jamshidian_coefficients = tf.concat([
        -coefficients[..., :-1],
        tf.expand_dims(-1.0 - coefficients[..., -1], axis=-1)], axis=-1)

    breakeven_bond_option_strikes = _jamshidian_decomposition(
        model, expiries,
        fixed_leg_payment_times, jamshidian_coefficients, dtype,
        name=name + '_jamshidian_decomposition')

    bond_strike_rank = breakeven_bond_option_strikes.shape.rank
    perm = [bond_strike_rank-1] + [x for x in range(0, bond_strike_rank - 1)]
    breakeven_bond_option_strikes = tf.transpose(
        breakeven_bond_option_strikes, perm=perm)
    bond_option_prices = zcb.bond_option_price(
        strikes=breakeven_bond_option_strikes,
        expiries=expiries,
        maturities=fixed_leg_payment_times,
        discount_rate_fn=reference_rate_fn,
        dim=dim,
        mean_reversion=mean_reversion,
        volatility=volatility,
        is_call_options=is_call_options,
        use_analytic_pricing=True,
        dtype=dtype,
        name=name + '_bond_option')

    # Now compute P(T0, TN) + sum_i (c_i * tau_i * P(T0, Ti))
    # bond_option_prices.shape = [dim] + batch_shape + [m] + [dim], where `m`
    # denotes the number of fixed payments for the underlying swaps.
    swaption_values = (
        tf.reduce_sum(
            bond_option_prices * tf.expand_dims(coefficients, axis=-1),
            axis=-2) + bond_option_prices[..., -1, :])
    swaption_shape = swaption_values.shape
    gather_index = _prepare_swaption_indices(swaption_shape.as_list())
    swaption_values = tf.reshape(
        tf.gather_nd(swaption_values, gather_index), output_shape)
    return notional * swaption_values
def bond_option_price(
        *,
        strikes,
        expiries,
        maturities,
        discount_rate_fn,
        dim,
        mean_reversion,
        volatility,
        # TODO(b/159040541) Add correlation as an input.
        is_call_options=True,
        use_analytic_pricing=True,
        num_samples=1,
        random_type=None,
        seed=None,
        skip=0,
        time_step=None,
        dtype=None,
        name=None):
    """Calculates European bond option prices using the Hull-White model.

  Bond options are fixed income securities which give the holder a right to
  exchange at a future date (the option expiry) a zero coupon bond for a fixed
  price (the strike of the option). The maturity date of the bond is after the
  the expiry of the option. If `P(t,T)` denotes the price at time `t` of a zero
  coupon bond with maturity `T`, then the payoff from the option at option
  expiry, `T0`, is given by:

  ```None
  payoff = max(P(T0, T) - X, 0)
  ```
  where `X` is the strike price of the option.

  #### Example

  ````python
  import numpy as np
  import tensorflow.compat.v2 as tf
  import tf_quant_finance as tff

  dtype = tf.float64

  discount_rate_fn = lambda x: 0.01 * tf.ones_like(x, dtype=dtype)
  expiries = np.array([1.0])
  maturities = np.array([5.0])
  strikes = np.exp(-0.01 * maturities) / np.exp(-0.01 * expiries)
  price = tff.models.hull_white.bond_option_price(
      strikes=strikes,
      expiries=expiries,
      maturities=maturities,
      dim=1,
      mean_reversion=[0.03],
      volatility=[0.02],
      discount_rate_fn=discount_rate_fn,
      use_analytic_pricing=True,
      dtype=dtype)
  # Expected value: [[0.02817777]]
  ````

  Args:
    strikes: A real `Tensor` of any shape and dtype. The strike price of the
      options. The shape of this input determines the number (and shape) of the
      options to be priced and the output.
    expiries: A real `Tensor` of the same dtype and compatible shape as
      `strikes`.  The time to expiry of each bond option.
    maturities: A real `Tensor` of the same dtype and compatible shape as
      `strikes`.  The time to maturity of the underlying zero coupon bonds.
    discount_rate_fn: A Python callable that accepts expiry time as a real
      `Tensor` and returns a `Tensor` of shape `input_shape + dim`. Computes
      the zero coupon bond yield at the present time for the input expiry time.
    dim: A Python scalar which corresponds to the number of Hull-White Models
      to be used for pricing.
    mean_reversion: A real positive `Tensor` of shape `[dim]` or a Python
      callable. The callable can be one of the following:
      (a) A left-continuous piecewise constant object (e.g.,
      `tff.math.piecewise.PiecewiseConstantFunc`) that has a property
      `is_piecewise_constant` set to `True`. In this case the object should
      have a method `jump_locations(self)` that returns a `Tensor` of shape
      `[dim, num_jumps]` or `[num_jumps]`. In the first case,
      `mean_reversion(t)` should return a `Tensor` of shape `[dim] + t.shape`,
      and in the second, `t.shape + [dim]`, where `t` is a rank 1 `Tensor` of
      the same `dtype` as the output. See example in the class docstring.
      (b) A callable that accepts scalars (stands for time `t`) and returns a
      `Tensor` of shape `[dim]`.
      Corresponds to the mean reversion rate.
    volatility: A real positive `Tensor` of the same `dtype` as
      `mean_reversion` or a callable with the same specs as above.
      Corresponds to the lond run price variance.
    is_call_options: A boolean `Tensor` of a shape compatible with
      `strikes`. Indicates whether the option is a call (if True) or a put
      (if False). If not supplied, call options are assumed.
    use_analytic_pricing: A Python boolean specifying if analytic valuation
      should be performed. Analytic valuation is only supported for constant
      `mean_reversion` and piecewise constant `volatility`. If the input is
      `False`, then valuation using Monte-Carlo simulations is performed.
    num_samples: Positive scalar `int32` `Tensor`. The number of simulation
      paths during Monte-Carlo valuation. This input is ignored during analytic
      valuation.
      Default value: The default value is 1.
    random_type: Enum value of `RandomType`. The type of (quasi)-random
      number generator to use to generate the simulation paths. This input is
      relevant only for Monte-Carlo valuation and ignored during analytic
      valuation.
      Default value: `None` which maps to the standard pseudo-random numbers.
    seed: Seed for the random number generator. The seed is only relevant if
      `random_type` is one of
      `[STATELESS, PSEUDO, HALTON_RANDOMIZED, PSEUDO_ANTITHETIC,
        STATELESS_ANTITHETIC]`. For `PSEUDO`, `PSEUDO_ANTITHETIC` and
      `HALTON_RANDOMIZED` the seed should be an Python integer. For
      `STATELESS` and  `STATELESS_ANTITHETIC `must be supplied as an integer
      `Tensor` of shape `[2]`. This input is relevant only for Monte-Carlo
      valuation and ignored during analytic valuation.
      Default value: `None` which means no seed is set.
    skip: `int32` 0-d `Tensor`. The number of initial points of the Sobol or
      Halton sequence to skip. Used only when `random_type` is 'SOBOL',
      'HALTON', or 'HALTON_RANDOMIZED', otherwise ignored.
      Default value: `0`.
    time_step: Scalar real `Tensor`. Maximal distance between time grid points
      in Euler scheme. Relevant when Euler scheme is used for simulation. This
      input is ignored during analytic valuation.
      Default value: `None`.
    dtype: The default dtype to use when converting values to `Tensor`s.
      Default value: `None` which means that default dtypes inferred by
      TensorFlow are used.
    name: Python string. The name to give to the ops created by this class.
      Default value: `None` which maps to the default name
      `hw_bond_option_price`.

  Returns:
    A `Tensor` of real dtype and shape  `strikes.shape + [dim]` containing the
    computed option prices.
  """
    name = name or 'hw_bond_option_price'
    if dtype is None:
        dtype = tf.convert_to_tensor([0.0]).dtype
    with tf.name_scope(name):
        strikes = tf.convert_to_tensor(strikes, dtype=dtype, name='strikes')
        expiries = tf.convert_to_tensor(expiries, dtype=dtype, name='expiries')
        maturities = tf.convert_to_tensor(maturities,
                                          dtype=dtype,
                                          name='maturities')
        is_call_options = tf.convert_to_tensor(is_call_options,
                                               dtype=tf.bool,
                                               name='is_call_options')
        model = vector_hull_white.VectorHullWhiteModel(
            dim,
            mean_reversion=mean_reversion,
            volatility=volatility,
            initial_discount_rate_fn=discount_rate_fn,
            dtype=dtype)

        if use_analytic_pricing:
            return _analytic_valuation(discount_rate_fn, model, strikes,
                                       expiries, maturities, dim,
                                       is_call_options)

        if time_step is None:
            raise ValueError('`time_step` must be provided for simulation '
                             'based bond option valuation.')

        sim_times, _ = tf.unique(tf.reshape(expiries, shape=[-1]))
        longest_expiry = tf.reduce_max(sim_times)
        sim_times, _ = tf.unique(
            tf.concat(
                [sim_times,
                 tf.range(time_step, longest_expiry, time_step)],
                axis=0))
        sim_times = tf.sort(sim_times, name='sort_sim_times')
        tau = maturities - expiries
        curve_times_builder, _ = tf.unique(tf.reshape(tau, shape=[-1]))
        curve_times = tf.sort(curve_times_builder, name='sort_curve_times')

        p_t_tau, r_t = model.sample_discount_curve_paths(
            times=sim_times,
            curve_times=curve_times,
            num_samples=num_samples,
            random_type=random_type,
            seed=seed,
            skip=skip)

        dt_builder = tf.concat([
            tf.convert_to_tensor([0.0], dtype=dtype),
            sim_times[1:] - sim_times[:-1]
        ],
                               axis=0)
        dt = tf.expand_dims(tf.expand_dims(dt_builder, axis=-1), axis=0)
        discount_factors_builder = tf.math.exp(-r_t * dt)
        # Transpose before (and after) because we want the cumprod along axis=1
        # and `matvec` operates on the last axis. The shape before and after would
        # be `(num_samples, len(times), dim)`
        discount_factors_builder = tf.transpose(
            _cumprod_using_matvec(
                tf.transpose(discount_factors_builder, [0, 2, 1])), [0, 2, 1])

        # make discount factors the same shape as `p_t_tau`. This involves adding
        # an extra dimenstion (corresponding to `curve_times`).
        discount_factors_builder = tf.expand_dims(discount_factors_builder,
                                                  axis=1)
        discount_factors_simulated = tf.repeat(discount_factors_builder,
                                               p_t_tau.shape.as_list()[1],
                                               axis=1)

        # `sim_times` and `curve_times` are sorted for simulation. We need to
        # select the indices corresponding to our input.
        sim_time_index = tf.searchsorted(sim_times, tf.reshape(expiries, [-1]))
        curve_time_index = tf.searchsorted(curve_times, tf.reshape(tau, [-1]))

        gather_index = _prepare_indices(tf.range(0, num_samples),
                                        curve_time_index, sim_time_index,
                                        tf.range(0, dim))

        # The shape after `gather_nd` would be (num_samples*num_strikes*dim,)
        payoff_discount_factors_builder = tf.gather_nd(
            discount_factors_simulated, gather_index)
        # Reshape to `[num_samples] + strikes.shape + [dim]`
        payoff_discount_factors = tf.reshape(payoff_discount_factors_builder,
                                             [num_samples] + strikes.shape +
                                             [dim])
        payoff_bond_price_builder = tf.gather_nd(p_t_tau, gather_index)
        payoff_bond_price = tf.reshape(payoff_bond_price_builder,
                                       [num_samples] + strikes.shape + [dim])

        is_call_options = tf.reshape(
            tf.broadcast_to(is_call_options, strikes.shape),
            [1] + strikes.shape + [1])

        strikes = tf.reshape(strikes, [1] + strikes.shape + [1])
        payoff = tf.where(is_call_options,
                          tf.math.maximum(payoff_bond_price - strikes, 0.0),
                          tf.math.maximum(strikes - payoff_bond_price, 0.0))
        option_value = tf.math.reduce_mean(payoff_discount_factors * payoff,
                                           axis=0)

        return option_value
Ejemplo n.º 3
0
def bermudan_swaption_price(*,
                            exercise_times,
                            floating_leg_start_times,
                            floating_leg_end_times,
                            fixed_leg_payment_times,
                            floating_leg_daycount_fractions,
                            fixed_leg_daycount_fractions,
                            fixed_leg_coupon,
                            reference_rate_fn,
                            dim,
                            mean_reversion,
                            volatility,
                            notional=None,
                            is_payer_swaption=None,
                            lsm_basis=None,
                            num_samples=100,
                            random_type=None,
                            seed=None,
                            skip=0,
                            time_step=None,
                            dtype=None,
                            name=None):
  """Calculates the price of Bermudan Swaptions using the Hull-White model.

  A Bermudan Swaption is a contract that gives the holder an option to enter a
  swap contract on a set of future exercise dates. The exercise dates are
  typically the fixing dates (or a subset thereof) of the underlying swap. If
  `T_N` denotes the final payoff date and `T_i, i = {1,...,n}` denote the set
  of exercise dates, then if the option is exercised at `T_i`, the holder is
  left with a swap with first fixing date equal to `T_i` and maturity `T_N`.

  Simulation based pricing of Bermudan swaptions is performed using the least
  squares Monte-carlo approach [1].

  #### References:
    [1]: D. Brigo, F. Mercurio. Interest Rate Models-Theory and Practice.
    Second Edition. 2007.

  #### Example
  The example shows how value a batch of 5-no-call-1 and 5-no-call-2
  swaptions using the Hull-White model.

  ````python
  import numpy as np
  import tensorflow.compat.v2 as tf
  import tf_quant_finance as tff

  dtype = tf.float64

  exercise_swaption_1 = [1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5]
  exercise_swaption_2 = [2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.0]
  exercise_times = [exercise_swaption_1, exercise_swaption_2]

  float_leg_start_times_1y = [1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5]
  float_leg_start_times_18m = [1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0]
  float_leg_start_times_2y = [2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.0]
  float_leg_start_times_30m = [2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.0, 5.0]
  float_leg_start_times_3y = [3.0, 3.5, 4.0, 4.5, 5.0, 5.0, 5.0, 5.0]
  float_leg_start_times_42m = [3.5, 4.0, 4.5, 5.0, 5.0, 5.0, 5.0, 5.0]
  float_leg_start_times_4y = [4.0, 4.5, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0]
  float_leg_start_times_54m = [4.5, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0]
  float_leg_start_times_5y = [5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0]

  float_leg_start_times_swaption_1 = [float_leg_start_times_1y,
                                      float_leg_start_times_18m,
                                      float_leg_start_times_2y,
                                      float_leg_start_times_30m,
                                      float_leg_start_times_3y,
                                      float_leg_start_times_42m,
                                      float_leg_start_times_4y,
                                      float_leg_start_times_54m]

  float_leg_start_times_swaption_2 = [float_leg_start_times_2y,
                                      float_leg_start_times_30m,
                                      float_leg_start_times_3y,
                                      float_leg_start_times_42m,
                                      float_leg_start_times_4y,
                                      float_leg_start_times_54m,
                                      float_leg_start_times_5y,
                                      float_leg_start_times_5y]
  float_leg_start_times = [float_leg_start_times_swaption_1,
                         float_leg_start_times_swaption_2]

  float_leg_end_times = np.clip(np.array(float_leg_start_times) + 0.5, 0.0, 5.0)

  fixed_leg_payment_times = float_leg_end_times
  float_leg_daycount_fractions = (np.array(float_leg_end_times) -
                                  np.array(float_leg_start_times))
  fixed_leg_daycount_fractions = float_leg_daycount_fractions
  fixed_leg_coupon = 0.011 * np.ones_like(fixed_leg_payment_times)
  zero_rate_fn = lambda x: 0.01 * tf.ones_like(x, dtype=dtype)
  price = bermudan_swaption_price(
      exercise_times=exercise_times,
      floating_leg_start_times=float_leg_start_times,
      floating_leg_end_times=float_leg_end_times,
      fixed_leg_payment_times=fixed_leg_payment_times,
      floating_leg_daycount_fractions=float_leg_daycount_fractions,
      fixed_leg_daycount_fractions=fixed_leg_daycount_fractions,
      fixed_leg_coupon=fixed_leg_coupon,
      reference_rate_fn=zero_rate_fn,
      notional=100.,
      dim=1,
      mean_reversion=[0.03],
      volatility=[0.01],
      num_samples=1000000,
      time_step=0.1,
      random_type=tff.math.random.RandomType.PSEUDO_ANTITHETIC,
      seed=0,
      dtype=dtype)
  # Expected value: [1.8913050118443016, 1.6618681421434984] # shape = (2,)
  ````

  Args:
    exercise_times: A real `Tensor` of any shape `batch_shape + [num_exercise]`
      `and real dtype. The times corresponding to exercise dates of the
      swaptions. `num_exercise` corresponds to the number of exercise dates for
      the Bermudan swaption. The shape of this input determines the number (and
      shape) of Bermudan swaptions to be priced and the shape of the output.
    floating_leg_start_times: A real `Tensor` of the same dtype as
      `exercise_times`. The times when accrual begins for each payment in the
      floating leg upon exercise of the option. The shape of this input should
      be `exercise_times.shape + [m]` where `m` denotes the number of floating
      payments in each leg of the underlying swap until the swap maturity.
    floating_leg_end_times: A real `Tensor` of the same dtype as
      `exercise_times`. The times when accrual ends for each payment in the
      floating leg upon exercise of the option. The shape of this input should
      be `exercise_times.shape + [m]` where `m` denotes the number of floating
      payments in each leg of the underlying swap until the swap maturity.
    fixed_leg_payment_times: A real `Tensor` of the same dtype as
      `exercise_times`. The payment times for each payment in the fixed leg.
      The shape of this input should be `exercise_times.shape + [n]` where `n`
      denotes the number of fixed payments in each leg of the underlying swap
      until the swap maturity.
    floating_leg_daycount_fractions: A real `Tensor` of the same dtype and
      compatible shape as `floating_leg_start_times`. The daycount fractions
      for each payment in the floating leg.
    fixed_leg_daycount_fractions: A real `Tensor` of the same dtype and
      compatible shape as `fixed_leg_payment_times`. The daycount fractions
      for each payment in the fixed leg.
    fixed_leg_coupon: A real `Tensor` of the same dtype and compatible shape
      as `fixed_leg_payment_times`. The fixed rate for each payment in the
      fixed leg.
    reference_rate_fn: A Python callable that accepts expiry time as a real
      `Tensor` and returns a `Tensor` of shape `input_shape + [dim]`. Returns
      the continuously compounded zero rate at the present time for the input
      expiry time.
    dim: A Python scalar which corresponds to the number of Hull-White Models
      to be used for pricing.
    mean_reversion: A real positive `Tensor` of shape `[dim]` or a Python
      callable. The callable can be one of the following:
      (a) A left-continuous piecewise constant object (e.g.,
      `tff.math.piecewise.PiecewiseConstantFunc`) that has a property
      `is_piecewise_constant` set to `True`. In this case the object should
      have a method `jump_locations(self)` that returns a `Tensor` of shape
      `[dim, num_jumps]` or `[num_jumps]`. In the first case,
      `mean_reversion(t)` should return a `Tensor` of shape `[dim] + t.shape`,
      and in the second, `t.shape + [dim]`, where `t` is a rank 1 `Tensor` of
      the same `dtype` as the output. See example in the class docstring.
      (b) A callable that accepts scalars (stands for time `t`) and returns a
      `Tensor` of shape `[dim]`.
      Corresponds to the mean reversion rate.
    volatility: A real positive `Tensor` of the same `dtype` as
      `mean_reversion` or a callable with the same specs as above.
      Corresponds to the lond run price variance.
    notional: An optional `Tensor` of same dtype and compatible shape as
      `strikes`specifying the notional amount for the underlying swap.
       Default value: None in which case the notional is set to 1.
    is_payer_swaption: A boolean `Tensor` of a shape compatible with `expiries`.
      Indicates whether the swaption is a payer (if True) or a receiver
      (if False) swaption. If not supplied, payer swaptions are assumed.
    lsm_basis: A Python callable specifying the basis to be used in the LSM
      algorithm. The callable must accept a `Tensor`s of shape
      `[num_samples, dim]` and output `Tensor`s of shape `[m, num_samples]`
      where `m` is the nimber of basis functions used.
      Default value: `None`, in which case a polynomial basis of order 2 is
      used.
    num_samples: Positive scalar `int32` `Tensor`. The number of simulation
      paths during Monte-Carlo valuation. This input is ignored during analytic
      valuation.
      Default value: The default value is 100.
    random_type: Enum value of `RandomType`. The type of (quasi)-random
      number generator to use to generate the simulation paths.
      Default value: `None` which maps to the standard pseudo-random numbers.
    seed: Seed for the random number generator. The seed is only relevant if
      `random_type` is one of
      `[STATELESS, PSEUDO, HALTON_RANDOMIZED, PSEUDO_ANTITHETIC,
        STATELESS_ANTITHETIC]`. For `PSEUDO`, `PSEUDO_ANTITHETIC` and
      `HALTON_RANDOMIZED` the seed should be an Python integer. For
      `STATELESS` and  `STATELESS_ANTITHETIC `must be supplied as an integer
      `Tensor` of shape `[2]`.
      Default value: `None` which means no seed is set.
    skip: `int32` 0-d `Tensor`. The number of initial points of the Sobol or
      Halton sequence to skip. Used only when `random_type` is 'SOBOL',
      'HALTON', or 'HALTON_RANDOMIZED', otherwise ignored.
      Default value: `0`.
    time_step: Scalar real `Tensor`. Maximal distance between time grid points
      in Euler scheme. Relevant when Euler scheme is used for simulation.
      Default value: `None`.
    dtype: The default dtype to use when converting values to `Tensor`s.
      Default value: `None` which means that default dtypes inferred by
      TensorFlow are used.
    name: Python string. The name to give to the ops created by this function.
      Default value: `None` which maps to the default name
      `hw_bermudan_swaption_price`.

  Returns:
    A `Tensor` of real dtype and shape  batch_shape + [dim] containing the
    computed swaption prices.

  Raises:
    (a) `ValueError` if exercise_times.rank is less than
    floating_leg_start_times.rank - 1, which would mean exercise times are not
    specified for all swaptions.
    (b) `ValueError` if `time_step` is not specified for Monte-Carlo
    simulations.
    (c) `ValueError` if `dim` > 1.
  """
  if dim > 1:
    raise ValueError('dim > 1 is currently not supported.')

  name = name or 'hw_bermudan_swaption_price'
  del floating_leg_daycount_fractions, floating_leg_start_times
  del floating_leg_end_times
  with tf.name_scope(name):
    exercise_times = tf.convert_to_tensor(
        exercise_times, dtype=dtype, name='exercise_times')
    dtype = dtype or exercise_times.dtype
    fixed_leg_payment_times = tf.convert_to_tensor(
        fixed_leg_payment_times, dtype=dtype, name='fixed_leg_payment_times')
    fixed_leg_daycount_fractions = tf.convert_to_tensor(
        fixed_leg_daycount_fractions, dtype=dtype,
        name='fixed_leg_daycount_fractions')
    fixed_leg_coupon = tf.convert_to_tensor(
        fixed_leg_coupon, dtype=dtype, name='fixed_leg_coupon')
    notional = tf.convert_to_tensor(notional, dtype=dtype, name='notional')
    if is_payer_swaption is None:
      is_payer_swaption = True
    is_payer_swaption = tf.convert_to_tensor(
        is_payer_swaption, dtype=tf.bool, name='is_payer_swaption')

    if lsm_basis is None:
      basis_fn = lsm_v2.make_polynomial_basis(2)
    else:
      basis_fn = lsm_basis

    batch_shape = exercise_times.shape.as_list()[:-1] or [1]
    unique_exercise_times, exercise_time_index = tf.unique(
        tf.reshape(exercise_times, shape=[-1]))
    exercise_time_index = tf.reshape(
        exercise_time_index, shape=exercise_times.shape)

    # Add a dimension corresponding to multiple cashflows in a swap
    if exercise_times.shape.rank == fixed_leg_payment_times.shape.rank - 1:
      exercise_times = tf.expand_dims(exercise_times, axis=-1)
    elif exercise_times.shape.rank < fixed_leg_payment_times.shape.rank - 1:
      raise ValueError('Swaption exercise times not specified for all '
                       'swaptions in the batch. Expected rank '
                       '{} but received {}.'.format(
                           fixed_leg_payment_times.shape.rank - 1,
                           exercise_times.shape.rank))

    exercise_times = tf.repeat(
        exercise_times, fixed_leg_payment_times.shape.as_list()[-1], axis=-1)

    # Monte-Carlo pricing
    model = vector_hull_white.VectorHullWhiteModel(
        dim,
        mean_reversion,
        volatility,
        initial_discount_rate_fn=reference_rate_fn,
        dtype=dtype)

    if time_step is None:
      raise ValueError('`time_step` must be provided for LSM valuation.')

    sim_times = unique_exercise_times
    longest_exercise_time = sim_times[-1]
    sim_times, _ = tf.unique(tf.concat([sim_times, tf.range(
        time_step, longest_exercise_time, time_step)], axis=0))
    sim_times = tf.sort(sim_times, name='sort_sim_times')

    maturities = fixed_leg_payment_times
    maturities_shape = maturities.shape
    tau = maturities - exercise_times

    curve_times_builder, _ = tf.unique(tf.reshape(tau, shape=[-1]))
    curve_times = tf.sort(curve_times_builder, name='sort_curve_times')

    # Simulate short rates and discount factors.
    p_t_tau, r_t = model.sample_discount_curve_paths(
        times=sim_times,
        curve_times=curve_times,
        num_samples=num_samples,
        random_type=random_type,
        seed=seed,
        skip=skip)

    dt = tf.concat(
        [tf.convert_to_tensor([0.0], dtype=dtype),
         sim_times[1:] - sim_times[:-1]], axis=0)
    dt = tf.expand_dims(tf.expand_dims(dt, axis=-1), axis=0)
    discount_factors_builder = tf.math.exp(-r_t * dt)
    # Transpose before (and after) because we want the cumprod along axis=1
    # and `matvec` operates on the last axis.
    discount_factors_builder = tf.transpose(
        utils.cumprod_using_matvec(
            tf.transpose(discount_factors_builder, [0, 2, 1])), [0, 2, 1])

    # make discount factors the same shape as `p_t_tau`. This involves adding
    # an extra dimenstion (corresponding to `curve_times`).
    discount_factors_builder = tf.expand_dims(
        discount_factors_builder,
        axis=1)
    # tf.repeat is needed because we will use gather_nd later on this tensor.
    discount_factors_simulated = tf.repeat(
        discount_factors_builder, p_t_tau.shape.as_list()[1], axis=1)

    # `sim_times` and `curve_times` are sorted for simulation. We need to
    # select the indices corresponding to our input.
    sim_time_index = tf.searchsorted(
        sim_times, tf.reshape(exercise_times, [-1]))
    curve_time_index = tf.searchsorted(curve_times, tf.reshape(tau, [-1]))

    gather_index = _prepare_indices(
        tf.range(0, num_samples), curve_time_index, sim_time_index,
        tf.range(0, dim))

    # TODO(b/167421126): Replace `tf.gather_nd` with `tf.gather`.
    payoff_bond_price_builder = tf.gather_nd(p_t_tau, gather_index)
    payoff_bond_price = tf.reshape(
        payoff_bond_price_builder, [num_samples] + maturities_shape + [dim])

    # Add an axis corresponding to `dim`
    fixed_leg_pv = tf.expand_dims(
        fixed_leg_coupon * fixed_leg_daycount_fractions,
        axis=-1) * payoff_bond_price
    # Sum fixed coupon payments within each swap to calculate the swap payoff
    # at each exercise time.
    fixed_leg_pv = tf.math.reduce_sum(fixed_leg_pv, axis=-2)
    float_leg_pv = 1.0 - payoff_bond_price[..., -1, :]
    payoff_swap = float_leg_pv - fixed_leg_pv
    payoff_swap = tf.where(is_payer_swaption, payoff_swap, -1.0 * payoff_swap)

    # Get the short rate simulations for the set of unique exercise times
    sim_time_index = tf.searchsorted(sim_times, unique_exercise_times)
    short_rate = tf.gather(r_t, sim_time_index, axis=1)

    # Currently the payoffs are computed on exercise times of each option.
    # They need to be mapped to the short rate simulation times, which is a
    # union of all exercise times.
    is_exercise_time, payoff_swap = _map_payoff_to_sim_times(
        exercise_time_index, payoff_swap, num_samples)

    # Transpose so that `time_index` is the leading dimension
    # (for XLA compatibility)
    perm = [is_exercise_time.shape.rank - 1] + list(
        range(is_exercise_time.shape.rank - 1))
    is_exercise_time = tf.transpose(is_exercise_time, perm=perm)
    payoff_swap = tf.transpose(payoff_swap, perm=perm)

    # Time to call LSM
    def _payoff_fn(rt, time_index):
      del rt
      result = tf.where(is_exercise_time[time_index] > 0,
                        tf.nn.relu(payoff_swap[time_index]), 0.0)
      return tf.reshape(result, shape=[num_samples] + batch_shape)

    discount_factors_simulated = tf.gather(
        discount_factors_simulated, sim_time_index, axis=2)

    option_value = lsm_v2.least_square_mc(
        short_rate, tf.range(0, tf.shape(short_rate)[1]),
        _payoff_fn,
        basis_fn,
        discount_factors=discount_factors_simulated[:, -1:, :, 0],
        dtype=dtype)

    return notional * option_value
Ejemplo n.º 4
0
def swaption_price(*,
                   expiries,
                   floating_leg_start_times,
                   floating_leg_end_times,
                   fixed_leg_payment_times,
                   floating_leg_daycount_fractions,
                   fixed_leg_daycount_fractions,
                   fixed_leg_coupon,
                   reference_rate_fn,
                   dim,
                   mean_reversion,
                   volatility,
                   notional=None,
                   is_payer_swaption=None,
                   use_analytic_pricing=True,
                   num_samples=1,
                   random_type=None,
                   seed=None,
                   skip=0,
                   time_step=None,
                   dtype=None,
                   name=None):
  """Calculates the price of European Swaptions using the Hull-White model.

  A European Swaption is a contract that gives the holder an option to enter a
  swap contract at a future date at a prespecified fixed rate. A swaption that
  grants the holder to pay fixed rate and receive floating rate is called a
  payer swaption while the swaption that grants the holder to receive fixed and
  pay floating payments is called the receiver swaption. Typically the start
  date (or the inception date) of the swap concides with the expiry of the
  swaption. Mid-curve swaptions are currently not supported (b/160061740).

  Analytic pricing of swaptions is performed using the Jamshidian decomposition
  [1].

  #### References:
    [1]: D. Brigo, F. Mercurio. Interest Rate Models-Theory and Practice.
    Second Edition. 2007.

  #### Example
  The example shows how value a batch of 1y x 1y and 1y x 2y swaptions using the
  Hull-White model.

  ````python
  import numpy as np
  import tensorflow.compat.v2 as tf
  import tf_quant_finance as tff

  dtype = tf.float64

  expiries = [1.0, 1.0]
  float_leg_start_times = [[1.0, 1.25, 1.5, 1.75, 2.0, 2.0, 2.0, 2.0],
                            [1.0, 1.25, 1.5, 1.75, 2.0, 2.25, 2.5, 2.75]]
  float_leg_end_times = [[1.25, 1.5, 1.75, 2.0, 2.0, 2.0, 2.0, 2.0],
                          [1.25, 1.5, 1.75, 2.0, 2.25, 2.5, 2.75, 3.0]]
  fixed_leg_payment_times = [[1.25, 1.5, 1.75, 2.0, 2.0, 2.0, 2.0, 2.0],
                          [1.25, 1.5, 1.75, 2.0, 2.25, 2.5, 2.75, 3.0]]
  float_leg_daycount_fractions = [[0.25, 0.25, 0.25, 0.25, 0.0, 0.0, 0.0, 0.0],
                              [0.25, 0.25, 0.25, 0.25, 0.25, 0.25, 0.25, 0.25]]
  fixed_leg_daycount_fractions = [[0.25, 0.25, 0.25, 0.25, 0.0, 0.0, 0.0, 0.0],
                              [0.25, 0.25, 0.25, 0.25, 0.25, 0.25, 0.25, 0.25]]
  fixed_leg_coupon = [[0.011, 0.011, 0.011, 0.011, 0.0, 0.0, 0.0, 0.0],
                      [0.011, 0.011, 0.011, 0.011, 0.011, 0.011, 0.011, 0.011]]
  zero_rate_fn = lambda x: 0.01 * tf.ones_like(x, dtype=dtype)
  price = tff.models.hull_white.swaption_price(
      expiries=expiries,
      floating_leg_start_times=float_leg_start_times,
      floating_leg_end_times=float_leg_end_times,
      fixed_leg_payment_times=fixed_leg_payment_times,
      floating_leg_daycount_fractions=float_leg_daycount_fractions,
      fixed_leg_daycount_fractions=fixed_leg_daycount_fractions,
      fixed_leg_coupon=fixed_leg_coupon,
      reference_rate_fn=zero_rate_fn,
      notional=100.,
      dim=1,
      mean_reversion=[0.03],
      volatility=[0.02],
      dtype=dtype)
  # Expected value: [[0.7163243383624043], [1.4031415262337608]] # shape = (2,1)
  ````

  Args:
    expiries: A real `Tensor` of any shape and dtype. The time to
      expiration of the swaptions. The shape of this input determines the number
      (and shape) of swaptions to be priced and the shape of the output.
    floating_leg_start_times: A real `Tensor` of the same dtype as `expiries`.
      The times when accrual begins for each payment in the floating leg. The
      shape of this input should be `expiries.shape + [m]` where `m` denotes
      the number of floating payments in each leg.
    floating_leg_end_times: A real `Tensor` of the same dtype as `expiries`.
      The times when accrual ends for each payment in the floating leg. The
      shape of this input should be `expiries.shape + [m]` where `m` denotes
      the number of floating payments in each leg.
    fixed_leg_payment_times: A real `Tensor` of the same dtype as `expiries`.
      The payment times for each payment in the fixed leg. The shape of this
      input should be `expiries.shape + [n]` where `n` denotes the number of
      fixed payments in each leg.
    floating_leg_daycount_fractions: A real `Tensor` of the same dtype and
      compatible shape as `floating_leg_start_times`. The daycount fractions
      for each payment in the floating leg.
    fixed_leg_daycount_fractions: A real `Tensor` of the same dtype and
      compatible shape as `fixed_leg_payment_times`. The daycount fractions
      for each payment in the fixed leg.
    fixed_leg_coupon: A real `Tensor` of the same dtype and compatible shape
      as `fixed_leg_payment_times`. The fixed rate for each payment in the
      fixed leg.
    reference_rate_fn: A Python callable that accepts expiry time as a real
      `Tensor` and returns a `Tensor` of shape `input_shape + [dim]`. Returns
      the continuously compounded zero rate at the present time for the input
      expiry time.
    dim: A Python scalar which corresponds to the number of Hull-White Models
      to be used for pricing.
    mean_reversion: A real positive `Tensor` of shape `[dim]` or a Python
      callable. The callable can be one of the following:
      (a) A left-continuous piecewise constant object (e.g.,
      `tff.math.piecewise.PiecewiseConstantFunc`) that has a property
      `is_piecewise_constant` set to `True`. In this case the object should
      have a method `jump_locations(self)` that returns a `Tensor` of shape
      `[dim, num_jumps]` or `[num_jumps]`. In the first case,
      `mean_reversion(t)` should return a `Tensor` of shape `[dim] + t.shape`,
      and in the second, `t.shape + [dim]`, where `t` is a rank 1 `Tensor` of
      the same `dtype` as the output. See example in the class docstring.
      (b) A callable that accepts scalars (stands for time `t`) and returns a
      `Tensor` of shape `[dim]`.
      Corresponds to the mean reversion rate.
    volatility: A real positive `Tensor` of the same `dtype` as
      `mean_reversion` or a callable with the same specs as above.
      Corresponds to the lond run price variance.
    notional: An optional `Tensor` of same dtype and compatible shape as
      `strikes`specifying the notional amount for the underlying swap.
       Default value: None in which case the notional is set to 1.
    is_payer_swaption: A boolean `Tensor` of a shape compatible with `expiries`.
      Indicates whether the swaption is a payer (if True) or a receiver
      (if False) swaption. If not supplied, payer swaptions are assumed.
    use_analytic_pricing: A Python boolean specifying if analytic valuation
      should be performed. Analytic valuation is only supported for constant
      `mean_reversion` and piecewise constant `volatility`. If the input is
      `False`, then valuation using Monte-Carlo simulations is performed.
      Default value: The default value is `True`.
    num_samples: Positive scalar `int32` `Tensor`. The number of simulation
      paths during Monte-Carlo valuation. This input is ignored during analytic
      valuation.
      Default value: The default value is 1.
    random_type: Enum value of `RandomType`. The type of (quasi)-random
      number generator to use to generate the simulation paths. This input is
      relevant only for Monte-Carlo valuation and ignored during analytic
      valuation.
      Default value: `None` which maps to the standard pseudo-random numbers.
    seed: Seed for the random number generator. The seed is only relevant if
      `random_type` is one of
      `[STATELESS, PSEUDO, HALTON_RANDOMIZED, PSEUDO_ANTITHETIC,
        STATELESS_ANTITHETIC]`. For `PSEUDO`, `PSEUDO_ANTITHETIC` and
      `HALTON_RANDOMIZED` the seed should be an Python integer. For
      `STATELESS` and  `STATELESS_ANTITHETIC `must be supplied as an integer
      `Tensor` of shape `[2]`. This input is relevant only for Monte-Carlo
      valuation and ignored during analytic valuation.
      Default value: `None` which means no seed is set.
    skip: `int32` 0-d `Tensor`. The number of initial points of the Sobol or
      Halton sequence to skip. Used only when `random_type` is 'SOBOL',
      'HALTON', or 'HALTON_RANDOMIZED', otherwise ignored.
      Default value: `0`.
    time_step: Scalar real `Tensor`. Maximal distance between time grid points
      in Euler scheme. Relevant when Euler scheme is used for simulation. This
      input is ignored during analytic valuation.
      Default value: `None`.
    dtype: The default dtype to use when converting values to `Tensor`s.
      Default value: `None` which means that default dtypes inferred by
      TensorFlow are used.
    name: Python string. The name to give to the ops created by this function.
      Default value: `None` which maps to the default name
      `hw_swaption_price`.

  Returns:
    A `Tensor` of real dtype and shape  expiries.shape + [dim] containing the
    computed swaption prices. For swaptions that have. reset in the past
    (expiries<0), the function sets the corresponding option prices to 0.0.
  """
  # TODO(b/160061740): Extend the functionality to support mid-curve swaptions.
  name = name or 'hw_swaption_price'
  del floating_leg_daycount_fractions
  with tf.name_scope(name):
    expiries = tf.convert_to_tensor(expiries, dtype=dtype, name='expiries')
    dtype = dtype or expiries.dtype
    float_leg_start_times = tf.convert_to_tensor(
        floating_leg_start_times, dtype=dtype, name='float_leg_start_times')
    float_leg_end_times = tf.convert_to_tensor(
        floating_leg_end_times, dtype=dtype, name='float_leg_end_times')
    fixed_leg_payment_times = tf.convert_to_tensor(
        fixed_leg_payment_times, dtype=dtype, name='fixed_leg_payment_times')
    fixed_leg_daycount_fractions = tf.convert_to_tensor(
        fixed_leg_daycount_fractions, dtype=dtype,
        name='fixed_leg_daycount_fractions')
    fixed_leg_coupon = tf.convert_to_tensor(
        fixed_leg_coupon, dtype=dtype, name='fixed_leg_coupon')
    notional = tf.convert_to_tensor(notional, dtype=dtype, name='notional')
    notional = tf.expand_dims(
        tf.broadcast_to(notional, expiries.shape), axis=-1)
    if is_payer_swaption is None:
      is_payer_swaption = True
    is_payer_swaption = tf.convert_to_tensor(
        is_payer_swaption, dtype=tf.bool, name='is_payer_swaption')

    output_shape = expiries.shape.as_list() + [dim]
    # Add a dimension corresponding to multiple cashflows in a swap
    if expiries.shape.rank == fixed_leg_payment_times.shape.rank - 1:
      expiries = tf.expand_dims(expiries, axis=-1)
    elif expiries.shape.rank < fixed_leg_payment_times.shape.rank - 1:
      raise ValueError('Swaption expiries not specified for all swaptions '
                       'in the batch. Expected rank {} but received {}.'.format(
                           fixed_leg_payment_times.shape.rank - 1,
                           expiries.shape.rank))

    # Expected shape: batch_shape + [m], same as fixed_leg_payment_times.shape
    # We need to explicitly use tf.repeat because we need to price
    # batch_shape + [m] bond options with different strikes along the last
    # dimension.
    expiries = tf.repeat(
        expiries, fixed_leg_payment_times.shape.as_list()[-1], axis=-1)

    if use_analytic_pricing:
      return _analytic_valuation(expiries, float_leg_start_times,
                                 float_leg_end_times, fixed_leg_payment_times,
                                 fixed_leg_daycount_fractions,
                                 fixed_leg_coupon, reference_rate_fn,
                                 dim, mean_reversion, volatility, notional,
                                 is_payer_swaption, output_shape, dtype,
                                 name + '_analytic_valyation')

    # Monte-Carlo pricing
    model = vector_hull_white.VectorHullWhiteModel(
        dim,
        mean_reversion,
        volatility,
        initial_discount_rate_fn=reference_rate_fn,
        dtype=dtype)

    if time_step is None:
      raise ValueError('`time_step` must be provided for simulation '
                       'based bond option valuation.')

    sim_times, _ = tf.unique(tf.reshape(expiries, shape=[-1]))
    longest_expiry = tf.reduce_max(sim_times)
    sim_times, _ = tf.unique(tf.concat([sim_times, tf.range(
        time_step, longest_expiry, time_step)], axis=0))
    sim_times = tf.sort(sim_times, name='sort_sim_times')

    maturities = fixed_leg_payment_times
    swaptionlet_shape = maturities.shape
    tau = maturities - expiries

    curve_times_builder, _ = tf.unique(tf.reshape(tau, shape=[-1]))
    curve_times = tf.sort(curve_times_builder, name='sort_curve_times')

    p_t_tau, r_t = model.sample_discount_curve_paths(
        times=sim_times,
        curve_times=curve_times,
        num_samples=num_samples,
        random_type=random_type,
        seed=seed,
        skip=skip)

    dt = tf.concat(
        [tf.convert_to_tensor([0.0], dtype=dtype),
         sim_times[1:] - sim_times[:-1]], axis=0)
    dt = tf.expand_dims(tf.expand_dims(dt, axis=-1), axis=0)
    discount_factors_builder = tf.math.exp(-r_t * dt)
    # Transpose before (and after) because we want the cumprod along axis=1
    # and `matvec` operates on the last axis.
    discount_factors_builder = tf.transpose(
        utils.cumprod_using_matvec(
            tf.transpose(discount_factors_builder, [0, 2, 1])), [0, 2, 1])

    # make discount factors the same shape as `p_t_tau`. This involves adding
    # an extra dimenstion (corresponding to `curve_times`).
    discount_factors_builder = tf.expand_dims(
        discount_factors_builder,
        axis=1)
    # tf.repeat is needed because we will use gather_nd later on this tensor.
    discount_factors_simulated = tf.repeat(
        discount_factors_builder, p_t_tau.shape.as_list()[1], axis=1)

    # `sim_times` and `curve_times` are sorted for simulation. We need to
    # select the indices corresponding to our input.
    sim_time_index = tf.searchsorted(sim_times, tf.reshape(expiries, [-1]))
    curve_time_index = tf.searchsorted(curve_times, tf.reshape(tau, [-1]))

    gather_index = _prepare_indices(
        tf.range(0, num_samples), curve_time_index, sim_time_index,
        tf.range(0, dim))

    # The shape after `gather_nd` will be `(num_samples*num_swaptionlets*dim,)`
    payoff_discount_factors_builder = tf.gather_nd(
        discount_factors_simulated, gather_index)
    # Reshape to `[num_samples] + swaptionlet.shape + [dim]`
    payoff_discount_factors = tf.reshape(
        payoff_discount_factors_builder,
        [num_samples] + swaptionlet_shape + [dim])
    payoff_bond_price_builder = tf.gather_nd(p_t_tau, gather_index)
    payoff_bond_price = tf.reshape(
        payoff_bond_price_builder, [num_samples] + swaptionlet_shape + [dim])

    # Add an axis corresponding to `dim`
    fixed_leg_pv = tf.expand_dims(
        fixed_leg_coupon * fixed_leg_daycount_fractions,
        axis=-1) * payoff_bond_price
    # Sum fixed coupon payments within each swap
    fixed_leg_pv = tf.math.reduce_sum(fixed_leg_pv, axis=-2)
    float_leg_pv = 1.0 - payoff_bond_price[..., -1, :]
    payoff_swap = payoff_discount_factors[..., -1, :] * (
        float_leg_pv - fixed_leg_pv)
    payoff_swap = tf.where(is_payer_swaption, payoff_swap, -1.0 * payoff_swap)
    payoff_swaption = tf.math.maximum(payoff_swap, 0.0)
    option_value = tf.reshape(
        tf.math.reduce_mean(payoff_swaption, axis=0), output_shape)

    return notional * option_value