Ejemplo n.º 1
0
def run(opts):
    arg_perm_start = int(opts.range[0])
    arg_perm_stop = int(opts.range[1]) + 1
    medtype = str(opts.medtype[0])
    surface = str(opts.surface[0])

    #load variables
    y = np.load("python_temp_med_%s/merge_y.npy" % (surface))
    num_vertex = np.load("python_temp_med_%s/num_vertex.npy" % (surface))
    num_vertex_lh = np.load("python_temp_med_%s/num_vertex_lh.npy" % (surface))
    bin_mask_lh = np.load("python_temp_med_%s/bin_mask_lh.npy" % (surface))
    bin_mask_rh = np.load("python_temp_med_%s/bin_mask_rh.npy" % (surface))
    n = np.load("python_temp_med_%s/num_subjects.npy" % (surface))
    pred_x = np.load("python_temp_med_%s/pred_x.npy" % (surface))
    depend_y = np.load("python_temp_med_%s/depend_y.npy" % (surface))
    adjac_lh = np.load("python_temp_med_%s/adjac_lh.npy" % (surface))
    adjac_rh = np.load("python_temp_med_%s/adjac_rh.npy" % (surface))
    all_vertex = np.load("python_temp_med_%s/all_vertex.npy" % (surface))
    optstfce = np.load('python_temp_med_%s/optstfce.npy' % (surface))
    vdensity_lh = np.load('python_temp_med_%s/vdensity_lh.npy' % (surface))
    vdensity_rh = np.load('python_temp_med_%s/vdensity_rh.npy' % (surface))

    #load TFCE fucntion
    calcTFCE_lh = CreateAdjSet(float(optstfce[0]), float(optstfce[1]),
                               adjac_lh)  # H=2, E=1
    calcTFCE_rh = CreateAdjSet(float(optstfce[0]), float(optstfce[1]),
                               adjac_rh)  # H=2, E=1

    #permute Sobel Z
    if not os.path.exists("output_med_%s/perm_SobelZ_%s" % (surface, medtype)):
        os.mkdir("output_med_%s/perm_SobelZ_%s" % (surface, medtype))
    os.chdir("output_med_%s/perm_SobelZ_%s" % (surface, medtype))

    for iter_perm in range(arg_perm_start, arg_perm_stop):
        np.random.seed(int(iter_perm * 1000 + time()))
        print("Iteration number : %d" % (iter_perm))
        indices_perm = np.random.permutation(list(range(n)))
        if (medtype == 'M') or (medtype == 'I'):
            pathA_nx = pred_x[indices_perm]
            pathB_nx = depend_y
            SobelZ = calc_sobelz(medtype, pathA_nx, pathB_nx, y, n, num_vertex)
        else:
            pathA_nx = pred_x[indices_perm]
            pathB_nx = depend_y[indices_perm]
            SobelZ = calc_sobelz(medtype, pathA_nx, pathB_nx, y, n, num_vertex)
        write_perm_maxTFCE_vertex("Zstat_%s" % medtype, SobelZ, num_vertex_lh,
                                  bin_mask_lh, bin_mask_rh, calcTFCE_lh,
                                  calcTFCE_rh, vdensity_lh, vdensity_rh)
    print(
        ("Finished. Randomization took %.1f seconds" % (time() - start_time)))
def run(opts):
    arg_predictor = opts.input[0]
    arg_depend = opts.input[1]
    medtype = opts.medtype[0]

    if not os.path.exists("python_temp"):
        print("python_temp missing!")

    #load variables
    raw_nonzero = np.load('python_temp/raw_nonzero.npy')
    n = raw_nonzero.shape[1]
    affine_mask = np.load('python_temp/affine_mask.npy')
    data_mask = np.load('python_temp/data_mask.npy')
    data_index = data_mask > 0.99
    num_voxel = np.load('python_temp/num_voxel.npy')
    pred_x = np.genfromtxt(arg_predictor, delimiter=",")
    depend_y = np.genfromtxt(arg_depend, delimiter=",")

    imgext = '.nii.gz'  #default save type is nii.gz
    #	if not os.path.isfile('python_temp/imgext.npy'): # to maintain compability
    #		imgext = '.nii.gz'
    #	else:
    #		imgext = np.load('python_temp/imgext.npy')

    #TFCE
    adjac = create_adjac_voxel(data_index,
                               data_mask,
                               num_voxel,
                               dirtype=opts.tfce[2])
    calcTFCE = CreateAdjSet(
        float(opts.tfce[0]), float(opts.tfce[1]),
        adjac)  # i.e. default: H=2, E=2, 26 neighbour connectivity

    #step1
    if opts.covariates:
        arg_covars = opts.covariates[0]
        covars = np.genfromtxt(arg_covars, delimiter=",")
        x_covars = np.column_stack([np.ones(n), covars])
        y = resid_covars(x_covars, raw_nonzero)
    else:
        y = raw_nonzero.T

    #save
    np.save('python_temp/pred_x', pred_x)
    np.save('python_temp/depend_y', depend_y)
    np.save('python_temp/adjac', adjac)
    np.save('python_temp/medtype', medtype)
    np.save('python_temp/optstfce', opts.tfce)
    np.save('python_temp/raw_nonzero_corr', y.T.astype(np.float32, order="C"))

    #step2 mediation
    SobelZ = calc_sobelz(medtype, pred_x, depend_y, y, n, num_voxel)

    #write TFCE images
    if not os.path.exists("output_med_%s" % medtype):
        os.mkdir("output_med_%s" % medtype)
    os.chdir("output_med_%s" % medtype)
    write_voxelStat_img('SobelZ_%s' % medtype, SobelZ, data_mask, data_index,
                        affine_mask, calcTFCE, imgext)
Ejemplo n.º 3
0
def run(opts):
    arg_perm_start = int(opts.range[0])
    arg_perm_stop = int(opts.range[1]) + 1
    medtype = str(opts.medtype[0])

    #load variables
    num_voxel = np.load('python_temp/num_voxel.npy')
    n = np.load('python_temp/num_subjects.npy')
    ny = np.load('python_temp/raw_nonzero_corr.npy').T
    pred_x = np.load('python_temp/pred_x.npy')
    depend_y = np.load("python_temp/depend_y.npy")
    adjac = np.load('python_temp/adjac.npy')
    optstfce = np.load('python_temp/optstfce.npy')

    #load TFCE fucntion
    calcTFCE = CreateAdjSet(float(optstfce[0]), float(optstfce[1]),
                            adjac)  # H=2, E=2, 26 neighbour connectivity

    #permute Sobel Z values and write max TFCE values
    if not os.path.exists("output_med_%s/perm_SobelZ" % medtype):
        os.mkdir("output_med_%s/perm_SobelZ" % medtype)
    os.chdir("output_med_%s/perm_SobelZ" % medtype)

    for iter_perm in xrange(arg_perm_start, arg_perm_stop):
        np.random.seed(int(iter_perm * 1000 + time()))
        print "Iteration number : %d" % (iter_perm)
        indices_perm = np.random.permutation(range(n))
        if (medtype == 'M') or (medtype == 'I'):
            pathA_nx = pred_x[indices_perm]
            pathB_nx = depend_y
            SobelZ = calc_sobelz(medtype, pathA_nx, pathB_nx, ny, n, num_voxel)
        else:
            pathA_nx = pred_x[indices_perm]
            pathB_nx = depend_y[indices_perm]
            SobelZ = calc_sobelz(medtype, pathA_nx, pathB_nx, ny, n, num_voxel)
        write_perm_maxTFCE_voxel('Zstat_%s' % medtype, SobelZ, calcTFCE)
    print("Finished. Randomization took %.1f seconds" % (time() - start_time))
def run(opts):

    scriptwd = os.path.dirname(os.path.dirname(os.path.realpath(__file__)))
    surface = opts.surface[0]
    FWHM = opts.fwhm[0]

    #load surface data
    img_data_lh = nib.freesurfer.mghformat.load("lh.all.%s.%s.mgh" %
                                                (surface, FWHM))
    data_full_lh = img_data_lh.get_data()
    data_lh = np.squeeze(data_full_lh)
    affine_mask_lh = img_data_lh.get_affine()
    n = data_lh.shape[1]  # num_subjects
    outdata_mask_lh = np.zeros_like(data_full_lh[:, :, :, 1])
    img_data_rh = nib.freesurfer.mghformat.load("rh.all.%s.%s.mgh" %
                                                (surface, FWHM))
    data_full_rh = img_data_rh.get_data()
    data_rh = np.squeeze(data_full_rh)
    affine_mask_rh = img_data_rh.get_affine()
    outdata_mask_rh = np.zeros_like(data_full_rh[:, :, :, 1])
    if not os.path.exists("lh.mean.%s.%s.mgh" % (surface, FWHM)):
        mean_lh = np.sum(data_lh, axis=1) / data_lh.shape[1]
        outmean_lh = np.zeros_like(data_full_lh[:, :, :, 1])
        outmean_lh[:, 0, 0] = mean_lh
        nib.save(nib.freesurfer.mghformat.MGHImage(outmean_lh, affine_mask_lh),
                 "lh.mean.%s.%s.mgh" % (surface, FWHM))
        mean_rh = np.sum(data_rh, axis=1) / data_rh.shape[1]
        outmean_rh = np.zeros_like(data_full_rh[:, :, :, 1])
        outmean_rh[:, 0, 0] = mean_rh
        nib.save(nib.freesurfer.mghformat.MGHImage(outmean_rh, affine_mask_rh),
                 "rh.mean.%s.%s.mgh" % (surface, FWHM))
    else:
        img_mean_lh = nib.freesurfer.mghformat.load("lh.mean.%s.%s.mgh" %
                                                    (surface, FWHM))
        mean_full_lh = img_mean_lh.get_data()
        mean_lh = np.squeeze(mean_full_lh)
        img_mean_rh = nib.freesurfer.mghformat.load("rh.mean.%s.%s.mgh" %
                                                    (surface, FWHM))
        mean_full_rh = img_mean_rh.get_data()
        mean_rh = np.squeeze(mean_full_rh)

    #TFCE
    if opts.triangularmesh:
        print("Creating adjacency set")
        if opts.inputsurfs:
            # 3 Neighbour vertex connectity
            v_lh, faces_lh = nib.freesurfer.read_geometry(opts.inputsurfs[0])
            v_rh, faces_rh = nib.freesurfer.read_geometry(opts.inputsurfs[1])
        else:
            v_lh, faces_lh = nib.freesurfer.read_geometry(
                "%s/fsaverage/surf/lh.sphere" % os.environ["SUBJECTS_DIR"])
            v_rh, faces_rh = nib.freesurfer.read_geometry(
                "%s/fsaverage/surf/rh.sphere" % os.environ["SUBJECTS_DIR"])
        adjac_lh = create_adjac_vertex(v_lh, faces_lh)
        adjac_rh = create_adjac_vertex(v_rh, faces_rh)
    elif opts.adjfiles:
        print("Loading prior adjacency set")
        arg_adjac_lh = opts.adjfiles[0]
        arg_adjac_rh = opts.adjfiles[1]
        adjac_lh = np.load(arg_adjac_lh)
        adjac_rh = np.load(arg_adjac_rh)
    elif opts.dist:
        print("Loading prior adjacency set for %s mm" % opts.dist[0])
        adjac_lh = np.load("%s/adjacency_sets/lh_adjacency_dist_%s.0_mm.npy" %
                           (scriptwd, str(opts.dist[0])))
        adjac_rh = np.load("%s/adjacency_sets/rh_adjacency_dist_%s.0_mm.npy" %
                           (scriptwd, str(opts.dist[0])))
    else:
        print("Error")
    if opts.noweight or opts.triangularmesh:
        vdensity_lh = 1
        vdensity_rh = 1
    else:
        # correction for vertex density
        vdensity_lh = np.zeros((adjac_lh.shape[0]))
        vdensity_rh = np.zeros((adjac_rh.shape[0]))
        for i in range(adjac_lh.shape[0]):
            vdensity_lh[i] = len(adjac_lh[i])
        for j in range(adjac_rh.shape[0]):
            vdensity_rh[j] = len(adjac_rh[j])
        vdensity_lh = np.array((1 - (vdensity_lh / vdensity_lh.max()) +
                                (vdensity_lh.mean() / vdensity_lh.max())),
                               dtype=np.float32)
        vdensity_rh = np.array((1 - (vdensity_rh / vdensity_rh.max()) +
                                (vdensity_rh.mean() / vdensity_rh.max())),
                               dtype=np.float32)
    calcTFCE_lh = CreateAdjSet(float(opts.tfce[0]), float(opts.tfce[1]),
                               adjac_lh)
    calcTFCE_rh = CreateAdjSet(float(opts.tfce[0]), float(opts.tfce[1]),
                               adjac_rh)

    #create masks
    if opts.fmri:
        maskthresh = opts.fmri
        print(("fMRI threshold mask = %2.2f" % maskthresh))
        bin_mask_lh = np.logical_or(mean_lh > maskthresh, mean_lh <
                                    (-1 * maskthresh))
        bin_mask_rh = np.logical_or(mean_rh > maskthresh, mean_rh <
                                    (-1 * maskthresh))

    elif opts.fsmask:
        label = opts.fsmask
        print(("Loading fsaverage ?l.%s.label" % label))

        index_lh, _, _ = convert_fslabel("%s/fsaverage/label/lh.%s.label" %
                                         (os.environ["SUBJECTS_DIR"], label))
        index_rh, _, _ = convert_fslabel("%s/fsaverage/label/rh.%s.label" %
                                         (os.environ["SUBJECTS_DIR"], label))

        bin_mask_lh = np.zeros_like(mean_lh)
        bin_mask_lh[index_lh] = 1
        bin_mask_lh = bin_mask_lh.astype(bool)

        bin_mask_rh = np.zeros_like(mean_rh)
        bin_mask_rh[index_rh] = 1
        bin_mask_rh = bin_mask_rh.astype(bool)

    elif opts.label:
        label_lh = opts.label[0]
        label_rh = opts.label[1]

        index_lh, _, _ = convert_fslabel(label_lh)
        index_rh, _, _ = convert_fslabel(label_rh)

        bin_mask_lh = np.zeros_like(mean_lh)
        bin_mask_lh[index_lh] = 1
        bin_mask_lh = bin_mask_lh.astype(bool)

        bin_mask_rh = np.zeros_like(mean_rh)
        bin_mask_rh[index_rh] = 1
        bin_mask_rh = bin_mask_rh.astype(bool)
    elif opts.binmask:
        print("Loading masks")
        binmgh_lh = np.squeeze(
            nib.freesurfer.mghformat.load(opts.binmask[0]).get_data())
        binmgh_rh = np.squeeze(
            nib.freesurfer.mghformat.load(opts.binmask[1]).get_data())
        bin_mask_lh = binmgh_lh > .99
        bin_mask_rh = binmgh_rh > .99
    else:
        bin_mask_lh = mean_lh != 0
        bin_mask_rh = mean_rh != 0
    data_lh = data_lh[bin_mask_lh]
    num_vertex_lh = data_lh.shape[0]
    data_rh = data_rh[bin_mask_rh]
    num_vertex_rh = data_rh.shape[0]
    num_vertex = num_vertex_lh + num_vertex_rh
    all_vertex = data_full_lh.shape[0]

    if opts.input:
        #load variables
        arg_predictor = opts.input[0]
        arg_covars = opts.input[1]
        pred_x = np.genfromtxt(arg_predictor, delimiter=',')
        covars = np.genfromtxt(arg_covars, delimiter=',')
        #step1
        x_covars = np.column_stack([np.ones(n), covars])
        y_lh = resid_covars(x_covars, data_lh)
        y_rh = resid_covars(x_covars, data_rh)
        merge_y = np.hstack((y_lh, y_rh))
        del y_lh
        del y_rh
    if opts.regressors:
        arg_predictor = opts.regressors[0]
        pred_x = np.genfromtxt(arg_predictor, delimiter=',')
        merge_y = np.hstack((data_lh.T, data_rh.T))

    #save variables
    if not os.path.exists("python_temp_%s" % (surface)):
        os.mkdir("python_temp_%s" % (surface))

    np.save("python_temp_%s/pred_x" % (surface), pred_x)
    np.save("python_temp_%s/num_subjects" % (surface), n)
    np.save("python_temp_%s/all_vertex" % (surface), all_vertex)
    np.save("python_temp_%s/num_vertex" % (surface), num_vertex)
    np.save("python_temp_%s/num_vertex_lh" % (surface), num_vertex_lh)
    np.save("python_temp_%s/num_vertex_rh" % (surface), num_vertex_rh)
    np.save("python_temp_%s/bin_mask_lh" % (surface), bin_mask_lh)
    np.save("python_temp_%s/bin_mask_rh" % (surface), bin_mask_rh)
    np.save("python_temp_%s/affine_mask_lh" % (surface), affine_mask_lh)
    np.save("python_temp_%s/affine_mask_rh" % (surface), affine_mask_rh)
    np.save("python_temp_%s/adjac_lh" % (surface), adjac_lh)
    np.save("python_temp_%s/adjac_rh" % (surface), adjac_rh)
    np.save("python_temp_%s/merge_y" % (surface),
            merge_y.astype(np.float32, order="C"))
    np.save('python_temp_%s/optstfce' % (surface), opts.tfce)
    np.save('python_temp_%s/vdensity_lh' % (surface), vdensity_lh)
    np.save('python_temp_%s/vdensity_rh' % (surface), vdensity_rh)

    #write TFCE images
    if not os.path.exists("output_%s" % (surface)):
        os.mkdir("output_%s" % (surface))
    os.chdir("output_%s" % (surface))

    #step2
    X = np.column_stack([np.ones(n), pred_x])
    k = len(X.T)
    if opts.vertexregressor:
        img_x_lh = np.squeeze(
            nib.freesurfer.mghformat.load("../%s" %
                                          opts.vertexregressor[0]).get_data())
        img_x_rh = np.squeeze(
            nib.freesurfer.mghformat.load("../%s" %
                                          opts.vertexregressor[1]).get_data())
        img_x_lh = img_x_lh[bin_mask_lh]
        img_x_rh = img_x_rh[bin_mask_rh]
        img_x = np.hstack((img_x_lh.T, img_x_rh.T))
        img_x_lh = img_x_rh = None
        merge_y = np.hstack((data_lh.T, data_rh.T))
        tvals, timage = image_regression(merge_y.T.astype(np.float32),
                                         img_x.T.astype(np.float32), pred_x,
                                         covars)
        VIF = image_reg_VIF(merge_y, np.column_stack((pred_x, covars)))

        tvals = tvals.T
        timage = timage.T
        write_vertStat_img('tstat_imgcovar', timage[:num_vertex_lh],
                           outdata_mask_lh, affine_mask_lh, surface, 'lh',
                           bin_mask_lh, calcTFCE_lh, bin_mask_lh.shape[0],
                           vdensity_lh)
        write_vertStat_img('tstat_imgcovar', timage[num_vertex_lh:],
                           outdata_mask_rh, affine_mask_rh, surface, 'rh',
                           bin_mask_rh, calcTFCE_rh, bin_mask_rh.shape[0],
                           vdensity_rh)
        write_vertStat_img('negtstat_imgcovar', -timage[:num_vertex_lh],
                           outdata_mask_lh, affine_mask_lh, surface, 'lh',
                           bin_mask_lh, calcTFCE_lh, bin_mask_lh.shape[0],
                           vdensity_lh)
        write_vertStat_img('negtstat_imgcovar', -timage[num_vertex_lh:],
                           outdata_mask_rh, affine_mask_rh, surface, 'rh',
                           bin_mask_rh, calcTFCE_rh, bin_mask_rh.shape[0],
                           vdensity_rh)
        write_vertStat_img('VIF_imgcovar',
                           VIF[:num_vertex_lh],
                           outdata_mask_lh,
                           affine_mask_lh,
                           surface,
                           'lh',
                           bin_mask_lh,
                           calcTFCE_lh,
                           bin_mask_lh.shape[0],
                           vdensity_lh,
                           TFCE=False)
        write_vertStat_img('VIF_imgcovar',
                           VIF[num_vertex_lh:],
                           outdata_mask_rh,
                           affine_mask_rh,
                           surface,
                           'rh',
                           bin_mask_rh,
                           calcTFCE_rh,
                           bin_mask_rh.shape[0],
                           vdensity_rh,
                           TFCE=False)

    else:
        invXX = np.linalg.inv(np.dot(X.T, X))
        tvals = tval_int(X, invXX, merge_y, n, k, num_vertex)

    for j in range(k - 1):
        tnum = j + 1
        write_vertStat_img('tstat_con%d' % tnum, tvals[tnum, :num_vertex_lh],
                           outdata_mask_lh, affine_mask_lh, surface, 'lh',
                           bin_mask_lh, calcTFCE_lh, bin_mask_lh.shape[0],
                           vdensity_lh)
        write_vertStat_img('tstat_con%d' % tnum, tvals[tnum, num_vertex_lh:],
                           outdata_mask_rh, affine_mask_rh, surface, 'rh',
                           bin_mask_rh, calcTFCE_rh, bin_mask_rh.shape[0],
                           vdensity_rh)
        write_vertStat_img('negtstat_con%d' % tnum,
                           (tvals[tnum, :num_vertex_lh] * -1), outdata_mask_lh,
                           affine_mask_lh, surface, 'lh', bin_mask_lh,
                           calcTFCE_lh, bin_mask_lh.shape[0], vdensity_lh)
        write_vertStat_img('negtstat_con%d' % tnum,
                           (tvals[tnum, num_vertex_lh:] * -1), outdata_mask_rh,
                           affine_mask_rh, surface, 'rh', bin_mask_rh,
                           calcTFCE_rh, bin_mask_rh.shape[0], vdensity_rh)
def run(opts):
    arg_perm_start = int(opts.range[0])
    arg_perm_stop = int(opts.range[1]) + 1
    surface = str(opts.surface[0])
    if opts.exchangeblock:
        block_list = np.genfromtxt(opts.exchangeblock[0], dtype=np.str)
        indexer = np.array(range(len(block_list)))

    #load variables
    ny = np.load("python_temp_%s/merge_y.npy" % (surface))
    num_vertex = np.load("python_temp_%s/num_vertex.npy" % (surface))
    num_vertex_lh = np.load("python_temp_%s/num_vertex_lh.npy" % (surface))
    all_vertex = np.load("python_temp_%s/all_vertex.npy" % (surface))
    bin_mask_lh = np.load("python_temp_%s/bin_mask_lh.npy" % (surface))
    bin_mask_rh = np.load("python_temp_%s/bin_mask_rh.npy" % (surface))
    n = np.load("python_temp_%s/num_subjects.npy" % (surface))
    pred_x = np.load("python_temp_%s/pred_x.npy" % (surface))
    adjac_lh = np.load("python_temp_%s/adjac_lh.npy" % (surface))
    adjac_rh = np.load("python_temp_%s/adjac_rh.npy" % (surface))
    optstfce = np.load('python_temp_%s/optstfce.npy' % (surface))
    vdensity_lh = np.load('python_temp_%s/vdensity_lh.npy' % (surface))
    vdensity_rh = np.load('python_temp_%s/vdensity_rh.npy' % (surface))

    #load TFCE fucntion
    calcTFCE_lh = CreateAdjSet(float(optstfce[0]), float(optstfce[1]),
                               adjac_lh)  # H=2, E=1
    calcTFCE_rh = CreateAdjSet(float(optstfce[0]), float(optstfce[1]),
                               adjac_rh)  # H=2, E=1

    #permute T values and write max TFCE values
    if not os.path.exists("output_%s/perm_Tstat_%s" % (surface, surface)):
        os.mkdir("output_%s/perm_Tstat_%s" % (surface, surface))
    os.chdir("output_%s/perm_Tstat_%s" % (surface, surface))

    X = np.column_stack([np.ones(n), pred_x])
    k = len(X.T)
    for iter_perm in range(arg_perm_start, arg_perm_stop):
        np.random.seed(int(iter_perm * 1000 + time()))
        print("Iteration number : %d" % (iter_perm))
        if opts.specifyvars:
            start = opts.specifyvars[0]
            stop = opts.specifyvars[1] + 1
            nx = X
            nx[:, start:stop] = X[:, start:stop][np.random.permutation(
                list(range(n)))]
        elif opts.exchangeblock:
            randindex = []
            for block in np.random.permutation(list(np.unique(block_list))):
                randindex.append(
                    np.random.permutation(indexer[block_list == block]))
            randindex = np.concatenate(np.array(randindex))
            nx = X[randindex]
        else:
            nx = X[np.random.permutation(list(range(n)))]
        invXX = np.linalg.inv(np.dot(nx.T, nx))
        tvals = tval_int(nx, invXX, ny, n, k, num_vertex)
        if opts.specifyvars:
            for j in range(stop - start):
                tnum = j + 1
                write_perm_maxTFCE_vertex('tstat_con%d' % tnum, tvals[tnum],
                                          num_vertex_lh, bin_mask_lh,
                                          bin_mask_rh, calcTFCE_lh,
                                          calcTFCE_rh, vdensity_lh,
                                          vdensity_rh)
                write_perm_maxTFCE_vertex('tstat_con%d' % tnum,
                                          (tvals[tnum] * -1), num_vertex_lh,
                                          bin_mask_lh, bin_mask_rh,
                                          calcTFCE_lh, calcTFCE_rh,
                                          vdensity_lh, vdensity_rh)
        else:
            for j in range(k - 1):
                tnum = j + 1
                write_perm_maxTFCE_vertex('tstat_con%d' % tnum, tvals[tnum],
                                          num_vertex_lh, bin_mask_lh,
                                          bin_mask_rh, calcTFCE_lh,
                                          calcTFCE_rh, vdensity_lh,
                                          vdensity_rh)
                write_perm_maxTFCE_vertex('tstat_con%d' % tnum,
                                          (tvals[tnum] * -1), num_vertex_lh,
                                          bin_mask_lh, bin_mask_rh,
                                          calcTFCE_lh, calcTFCE_rh,
                                          vdensity_lh, vdensity_rh)
    print(
        ("Finished. Randomization took %.1f seconds" % (time() - start_time)))
def run(opts):
    currentTime = int(time())
    if opts.multisurfacefwecorrection:
        #############################
        ###### FWER CORRECTION ######
        #############################
        _, image_array, masking_array, maskname, affine_array, vertex_array, face_array, surfname, adjacency_array, tmi_history, columnids = read_tm_filetype(
            '%s' % opts.tmifile[0], verbose=False)

        # check file dimensions
        if not image_array[0].shape[1] % 3 == 0:
            print(
                'Print file format is not understood. Please make sure %s is statistics file.'
                % opts.tmifile[0])
            quit()
        else:
            num_contrasts = int(image_array[0].shape[1] / 3)

        # get surface coordinates in data array
        position_array = create_position_array(masking_array)

        if num_contrasts == 1:
            # get lists for positive and negative contrasts
            pos_range = [1]
            neg_range = [2]
        else:
            # get lists for positive and negative contrasts
            pos_range = list(
                range(num_contrasts, num_contrasts + num_contrasts))
            neg_range = list(
                range(num_contrasts * 2, num_contrasts * 2 + num_contrasts))

        # check that randomisation has been run
        if not os.path.exists(
                "%s/output_%s/perm_maxTFCE_surf0_tcon1.csv" %
            (os.getcwd(), opts.tmifile[0])):  # make this safer
            print(
                'Permutation folder not found. Please run --randomise first.')
            quit()

        #check permutation file lengths
        num_surf = len(masking_array)
        surface_range = list(range(num_surf))
        num_perm = lowest_length(num_contrasts, surface_range, opts.tmifile[0])

        if opts.setsurfacerange:
            surface_range = list(
                range(opts.setsurfacerange[0], opts.setsurfacerange[1] + 1))
        elif opts.setsurface:
            surface_range = opts.setsurface
        if np.array(surface_range).max() > len(masking_array):
            print(
                "Error: range does note fit the surfaces contained in the tmi file. %s contains the following surfaces"
                % opts.tmifile[0])
            for i in range(len(surfname)):
                print(("Surface %d : %s, %s" % (i, surfname[i], maskname[i])))
            quit()
        print("Reading %d contrast(s) from %d of %d surface(s)" %
              ((num_contrasts), len(surface_range), num_surf))
        print("Reading %s permutations with an accuracy of p=0.05+/-%.4f" %
              (num_perm, (2 * (np.sqrt(0.05 * 0.95 / num_perm)))))

        # calculate the P(FWER) images from all surfaces
        positive_data, negative_data = apply_mfwer(image_array,
                                                   num_contrasts,
                                                   surface_range,
                                                   num_perm,
                                                   num_surf,
                                                   opts.tmifile[0],
                                                   position_array,
                                                   pos_range,
                                                   neg_range,
                                                   weight='logmasksize')

        # write out files
        if opts.concatestats:
            write_tm_filetype(opts.tmifile[0],
                              image_array=positive_data,
                              masking_array=masking_array,
                              maskname=maskname,
                              affine_array=affine_array,
                              vertex_array=vertex_array,
                              face_array=face_array,
                              surfname=surfname,
                              adjacency_array=adjacency_array,
                              checkname=False,
                              tmi_history=tmi_history)
            _, image_array, masking_array, maskname, affine_array, vertex_array, face_array, surfname, adjacency_array, tmi_history, columnids = read_tm_filetype(
                opts.tmifile[0], verbose=False)
            write_tm_filetype(opts.tmifile[0],
                              image_array=np.column_stack(
                                  (image_array[0], negative_data)),
                              masking_array=masking_array,
                              maskname=maskname,
                              affine_array=affine_array,
                              vertex_array=vertex_array,
                              face_array=face_array,
                              surfname=surfname,
                              adjacency_array=adjacency_array,
                              checkname=False,
                              tmi_history=tmi_history)
        else:
            for i in range(len(opts.outtype)):
                if opts.outtype[i] == 'tmi':
                    contrast_names = []

                    for j in range(num_contrasts):
                        contrast_names.append(("tstat_pFWER_con%d" % (j + 1)))
                    for k in range(num_contrasts):
                        contrast_names.append(
                            ("negtstat_pFWER_con%d" % (k + 1)))

                    outdata = np.column_stack((positive_data, negative_data))

                    if opts.neglog:
                        for j in range(num_contrasts):
                            contrast_names.append(
                                ("tstat_negLog_pFWER_con%d" % (j + 1)))
                        for k in range(num_contrasts):
                            contrast_names.append(
                                ("negtstat_negLog_pFWER_con%d" % (k + 1)))

                    outdata = np.column_stack(
                        (outdata, -np.log10(1 - positive_data)))
                    outdata = np.column_stack(
                        (outdata, -np.log10(1 - negative_data)))

                    write_tm_filetype("pFWER_%s" % opts.tmifile[0],
                                      image_array=outdata,
                                      masking_array=masking_array,
                                      maskname=maskname,
                                      affine_array=affine_array,
                                      vertex_array=vertex_array,
                                      face_array=face_array,
                                      surfname=surfname,
                                      checkname=False,
                                      columnids=np.array(contrast_names),
                                      tmi_history=tmi_history)

                else:
                    if opts.outtype[i] == 'mgh':
                        savefunc = savemgh_v2
                    if opts.outtype[i] == 'nii.gz':
                        savefunc = savenifti_v2
                    if opts.outtype[i] == 'auto':
                        savefunc = saveauto
                    for surf_count in surface_range:
                        start = position_array[surf_count]
                        end = position_array[surf_count + 1]
                        basename = strip_basename(maskname[surf_count])
                        if not os.path.exists("output_stats"):
                            os.mkdir("output_stats")
                        out_image = positive_data[start:end]
                        temp_image = negative_data[start:end]
                        for contrast in range(num_contrasts):
                            out_image[temp_image[:, contrast] != 0,
                                      contrast] = temp_image[
                                          temp_image[:, contrast] != 0,
                                          contrast] * -1
                        if affine_array == []:
                            savefunc(
                                out_image, masking_array[surf_count],
                                "output_stats/%d_%s_pFWER" %
                                (surf_count, basename))
                        else:
                            savefunc(
                                out_image, masking_array[surf_count],
                                "output_stats/%d_%s_pFWER" %
                                (surf_count, basename),
                                affine_array[surf_count])
                        if opts.neglog:
                            out_image = -np.log10(1 - positive_data[start:end,
                                                                    contrast])
                            temp_image = np.log10(1 - negative_data[start:end,
                                                                    contrast])
                            for contrast in range(num_contrasts):
                                out_image[temp_image[:, contrast] != 0,
                                          contrast] = temp_image[
                                              temp_image[:, contrast] != 0,
                                              contrast]
                            if affine_array == []:
                                savefunc(
                                    out_image, masking_array[surf_count],
                                    "output_stats/%d_%s_negLog_pFWER" %
                                    (surf_count, basename))
                            else:
                                savefunc(
                                    out_image, masking_array[surf_count],
                                    "output_stats/%d_%s_negLog_pFWER" %
                                    (surf_count, basename),
                                    affine_array[surf_count])
        if opts.outputply:
            colorbar = True
            if not os.path.exists("output_ply"):
                os.mkdir("output_ply")
            for contrast in range(num_contrasts):
                for surf_count in surface_range:
                    start = position_array[surf_count]
                    end = position_array[surf_count + 1]
                    basename = strip_basename(maskname[surf_count])
                    if masking_array[surf_count].shape[2] > 1:
                        img_data = np.zeros((masking_array[surf_count].shape))
                        combined_data = positive_data[start:end, contrast]
                        combined_data[combined_data <= 0] = negative_data[
                            start:end, contrast][combined_data <= 0] * -1
                        combined_data[np.abs(combined_data) < float(
                            opts.outputply[0])] = 0
                        img_data[masking_array[surf_count]] = combined_data
                        v, f, values = convert_voxel(
                            img_data,
                            affine=affine_array[surf_count],
                            absthreshold=float(opts.outputply[0]))
                        if not v == []:
                            out_color_array = paint_surface(
                                opts.outputply[0],
                                opts.outputply[1],
                                opts.outputply[2],
                                values,
                                save_colorbar=colorbar)
                            negvalues = values * -1
                            index = negvalues > float(opts.outputply[0])
                            out_color_array2 = paint_surface(
                                opts.outputply[0],
                                opts.outputply[1],
                                opts.outputply[3],
                                negvalues,
                                save_colorbar=colorbar)
                            out_color_array[index, :] = out_color_array2[
                                index, :]
                            save_ply(
                                v, f, "output_ply/%d_%s_pFWE_tcon%d.ply" %
                                (surf_count, basename, contrast + 1),
                                out_color_array)
                            colorbar = False
                        else:
                            print("No output for %d %s T-contrast %d" %
                                  (surf_count, basename, contrast + 1))
                    else:
                        img_data = np.zeros(
                            (masking_array[surf_count].shape[0]))
                        img_data[masking_array[surf_count][:, 0, 0] ==
                                 True] = positive_data[start:end, contrast]
                        out_color_array = paint_surface(opts.outputply[0],
                                                        opts.outputply[1],
                                                        opts.outputply[2],
                                                        img_data,
                                                        save_colorbar=colorbar)
                        img_data[masking_array[surf_count][:, 0, 0] ==
                                 True] = negative_data[start:end, contrast]
                        index = img_data > float(opts.outputply[0])
                        out_color_array2 = paint_surface(
                            opts.outputply[0],
                            opts.outputply[1],
                            opts.outputply[3],
                            img_data,
                            save_colorbar=colorbar)
                        out_color_array[index, :] = out_color_array2[index, :]
                        save_ply(
                            vertex_array[surf_count], face_array[surf_count],
                            "output_ply/%d_%s_pFWE_tcon%d.ply" %
                            (surf_count, basename, contrast + 1),
                            out_color_array)
                        colorbar = False

    elif opts.mediationmfwe:  # temporary solution -> maybe a general function instead of bulky code

        _, image_array, masking_array, maskname, affine_array, vertex_array, face_array, surfname, adjacency_array, tmi_history, columnids = read_tm_filetype(
            '%s' % opts.tmifile[0], verbose=False)

        # check file dimensions
        if not image_array[0].shape[1] % 2 == 0:
            print(
                'Print file format is not understood. Please make sure %s is statistics file.'
                % opts.tmifile[0])
            quit()

        # get surface coordinates in data array
        position_array = create_position_array(masking_array)

        # check that randomisation has been run
        if not os.path.exists("%s/output_%s/perm_maxTFCE_surf0_%s_zstat.csv" %
                              (os.getcwd(), opts.tmifile[0],
                               opts.mediationmfwe[0])):  # make this safer
            print(
                'Permutation folder not found. Please run --randomise first.')
            quit()

        #check permutation file lengths
        num_surf = len(masking_array)
        surface_range = list(range(num_surf))
        num_perm = lowest_length(1,
                                 surface_range,
                                 opts.tmifile[0],
                                 medtype=opts.mediationmfwe[0])

        if opts.setsurfacerange:
            surface_range = list(
                range(opts.setsurfacerange[0], opts.setsurfacerange[1] + 1))
        elif opts.setsurface:
            surface_range = opts.setsurface
        if np.array(surface_range).max() > len(masking_array):
            print(
                "Error: range does note fit the surfaces contained in the tmi file. %s contains the following surfaces"
                % opts.tmifile[0])
            for i in range(len(surfname)):
                print(("Surface %d : %s, %s" % (i, surfname[i], maskname[i])))
            quit()
        print("Reading %d contrast(s) from %d of %d surface(s)" %
              (1, len(surface_range), num_surf))
        print("Reading %s permutations with an accuracy of p=0.05+/-%.4f" %
              (num_perm, (2 * (np.sqrt(0.05 * 0.95 / num_perm)))))

        # calculate the P(FWER) images from all surfaces
        positive_data = apply_mfwer(image_array,
                                    1,
                                    surface_range,
                                    num_perm,
                                    num_surf,
                                    opts.tmifile[0],
                                    position_array, [1],
                                    weight='logmasksize',
                                    mediation=True,
                                    medtype=opts.mediationmfwe[0])
        if opts.outtype[0] == 'tmi':
            contrast_names = []

            contrast_names.append(("zstat_pFWER"))
            outdata = positive_data

            if opts.neglog:
                contrast_names.append(("zstat_negLog_pFWER"))
                outdata = np.column_stack(
                    (outdata, -np.log10(1 - positive_data)))

            write_tm_filetype("pFWER_%s" % (opts.tmifile[0]),
                              image_array=outdata,
                              masking_array=masking_array,
                              maskname=maskname,
                              affine_array=affine_array,
                              vertex_array=vertex_array,
                              face_array=face_array,
                              surfname=surfname,
                              checkname=False,
                              columnids=np.array(contrast_names),
                              tmi_history=tmi_history)

    else:
        ##################################
        ###### STATISTICAL ANALYSIS ######
        ##################################
        # read tmi file
        if opts.randomise:
            _, image_array, masking_array, _, _, _, _, _, adjacency_array, _, _ = read_tm_filetype(
                opts.tmifile[0])
            _ = None
        else:
            element, image_array, masking_array, maskname, affine_array, vertex_array, face_array, surfname, adjacency_array, tmi_history, _ = read_tm_filetype(
                opts.tmifile[0])
        # get surface coordinates in data array
        position_array = create_position_array(masking_array)

        if opts.setadjacencyobjs:
            if len(opts.setadjacencyobjs) == len(masking_array):
                adjacent_range = np.array(opts.setadjacencyobjs, dtype=np.int)
            else:
                print(
                    "Error: # of masking arrays (%d) must and list of matching adjacency (%d) must be equal."
                    % (len(masking_array), len(opts.setadjacencyobjs)))
                quit()
        else:
            adjacent_range = list(range(len(adjacency_array)))
        calcTFCE = []
        if opts.assigntfcesettings:
            if not len(opts.assigntfcesettings) == len(masking_array):
                print(
                    "Error: # of masking arrays (%d) must and list of matching tfce setting (%d) must be equal."
                    % (len(masking_array), len(opts.assigntfcesettings)))
                quit()
            if not len(opts.tfce) % 2 == 0:
                print("Error. The must be an even number of input for --tfce")
                quit()
            tfce_settings_mask = []
            for i in np.unique(opts.assigntfcesettings):
                tfce_settings_mask.append(
                    (np.array(opts.assigntfcesettings) == int(i)))
                pointer = int(i * 2)
                adjacency = merge_adjacency_array(
                    np.array(adjacent_range)[tfce_settings_mask[int(i)]],
                    np.array(adjacency_array)[tfce_settings_mask[int(i)]])
                calcTFCE.append((CreateAdjSet(float(opts.tfce[pointer]),
                                              float(opts.tfce[pointer + 1]),
                                              adjacency)))
                del adjacency
        else:
            adjacency = merge_adjacency_array(adjacent_range, adjacency_array)
            calcTFCE.append((CreateAdjSet(float(opts.tfce[0]),
                                          float(opts.tfce[1]), adjacency)))

        # make mega mask
        fullmask = create_full_mask(masking_array)

        if not opts.noweight:
            # correction for vertex density
            vdensity = []
            #np.ones_like(masking_array)
            for i in range(len(masking_array)):
                temp_vdensity = np.zeros(
                    (adjacency_array[adjacent_range[i]].shape[0]))
                for j in range(adjacency_array[adjacent_range[i]].shape[0]):
                    temp_vdensity[j] = len(
                        adjacency_array[adjacent_range[i]][j])
                if masking_array[i].shape[2] == 1:
                    temp_vdensity = temp_vdensity[masking_array[i][:, 0,
                                                                   0] == True]
                vdensity = np.hstack(
                    (vdensity,
                     np.array((1 - (temp_vdensity / temp_vdensity.max()) +
                               (temp_vdensity.mean() / temp_vdensity.max())),
                              dtype=np.float32)))
            del temp_vdensity
        else:
            vdensity = 1

        #load regressors
        if opts.input:
            for i, arg_pred in enumerate(opts.input):
                if i == 0:
                    pred_x = np.genfromtxt(arg_pred, delimiter=',')
                else:
                    pred_x = np.column_stack(
                        [pred_x,
                         np.genfromtxt(arg_pred, delimiter=',')])

            if opts.covariates:
                covars = np.genfromtxt(opts.covariates[0], delimiter=',')
                x_covars = np.column_stack([np.ones(len(covars)), covars])
            if opts.subset:
                masking_variable = np.isfinite(
                    np.genfromtxt(str(opts.subset[0]), delimiter=','))
                if opts.covariates:
                    merge_y = resid_covars(x_covars,
                                           image_array[0][:, masking_variable])
                else:
                    merge_y = image_array[0][:, masking_variable].T
                    print("Check dimensions")  # CHECK
                    print(merge_y.shape)
            else:
                if opts.covariates:
                    merge_y = resid_covars(x_covars, image_array[0])
                else:
                    merge_y = image_array[0].T
        if opts.inputmediation:
            medtype = opts.inputmediation[0]
            pred_x = np.genfromtxt(opts.inputmediation[1], delimiter=',')
            depend_y = np.genfromtxt(opts.inputmediation[2], delimiter=',')
            if opts.covariates:
                covars = np.genfromtxt(opts.covariates[0], delimiter=',')
                x_covars = np.column_stack([np.ones(len(covars)), covars])
                merge_y = resid_covars(x_covars, image_array[0])
            else:
                merge_y = image_array[0].T

        if opts.regressors:
            arg_predictor = opts.regressors[0]
            pred_x = np.genfromtxt(arg_predictor, delimiter=',')

            if opts.subset:
                masking_variable = np.isfinite(
                    np.genfromtxt(str(opts.subset[0]), delimiter=','))
                merge_y = image_array[0][:, masking_variable].T
            else:
                merge_y = image_array[0].T

        # cleanup
        image_array = None
        adjacency_array = None
        adjacency = None

        if opts.analysisname:
            outname = opts.analysisname[0]
        else:
            outname = opts.tmifile[0][:-4]

        # make output folder
        if not os.path.exists("output_%s" % (outname)):
            os.mkdir("output_%s" % (outname))
        os.chdir("output_%s" % (outname))
        if opts.randomise:
            randTime = int(time())
            mapped_y = merge_y.astype(np.float32,
                                      order="C")  # removed memory mapping
            merge_y = None
            if not outname.endswith('tmi'):
                outname += '.tmi'

            if opts.inputmediation:
                outname = 'med_stats_' + outname
            else:
                outname = 'stats_' + outname

            if not os.path.exists("output_%s" % (outname)):
                os.mkdir("output_%s" % (outname))
            os.chdir("output_%s" % (outname))
            for i in range(opts.randomise[0], (opts.randomise[1] + 1)):
                if opts.assigntfcesettings:
                    calc_mixed_tfce(opts.assigntfcesettings,
                                    mapped_y,
                                    masking_array,
                                    position_array,
                                    vdensity,
                                    pred_x,
                                    calcTFCE,
                                    perm_number=i,
                                    randomise=True)
                elif opts.inputmediation:
                    calculate_mediation_tfce(medtype,
                                             mapped_y,
                                             masking_array,
                                             pred_x,
                                             depend_y,
                                             calcTFCE[0],
                                             vdensity,
                                             position_array,
                                             fullmask,
                                             perm_number=i,
                                             randomise=True)
                else:
                    calculate_tfce(mapped_y,
                                   masking_array,
                                   pred_x,
                                   calcTFCE[0],
                                   vdensity,
                                   position_array,
                                   fullmask,
                                   perm_number=i,
                                   randomise=True)
            print(("Total time took %.1f seconds" % (time() - currentTime)))
            print(("Randomization took %.1f seconds" % (time() - randTime)))
        else:
            # Run TFCE
            if opts.assigntfcesettings:
                tvals, tfce_tvals, neg_tfce_tvals = calc_mixed_tfce(
                    opts.assigntfcesettings, merge_y, masking_array,
                    position_array, vdensity, pred_x, calcTFCE)
            elif opts.inputmediation:
                SobelZ, tfce_SobelZ = calculate_mediation_tfce(
                    medtype, merge_y, masking_array, pred_x, depend_y,
                    calcTFCE[0], vdensity, position_array, fullmask)
            else:
                tvals, tfce_tvals, neg_tfce_tvals = calculate_tfce(
                    merge_y, masking_array, pred_x, calcTFCE[0], vdensity,
                    position_array, fullmask)
            if opts.outtype[0] == 'tmi':
                if not outname.endswith('tmi'):
                    outname += '.tmi'
                if opts.inputmediation:
                    outname = 'med_stats_' + outname
                else:
                    outname = 'stats_' + outname

                if opts.inputmediation:
                    contrast_names = []
                    contrast_names.append(("SobelZ"))
                    contrast_names.append(("SobelZ_tfce"))
                    outdata = np.column_stack((SobelZ.T, tfce_SobelZ.T))
                else:
                    if tvals.ndim == 1:
                        num_contrasts = 1
                    else:
                        num_contrasts = tvals.shape[0]

                    contrast_names = []
                    for i in range(num_contrasts):
                        contrast_names.append(("tstat_con%d" % (i + 1)))
                    for j in range(num_contrasts):
                        contrast_names.append(("tstat_tfce_con%d" % (j + 1)))
                    for k in range(num_contrasts):
                        contrast_names.append(
                            ("negtstat_tfce_con%d" % (k + 1)))
                    outdata = np.column_stack((tvals.T, tfce_tvals.T))
                    outdata = np.column_stack((outdata, neg_tfce_tvals.T))

                # write tstat
                write_tm_filetype(outname,
                                  image_array=outdata,
                                  masking_array=masking_array,
                                  maskname=maskname,
                                  affine_array=affine_array,
                                  vertex_array=vertex_array,
                                  face_array=face_array,
                                  surfname=surfname,
                                  checkname=False,
                                  columnids=np.array(contrast_names),
                                  tmi_history=[])

            else:
                print("not implemented yet")
def run(opts):
	try:
		sopts = np.load("tmi_temp/opts.npy").tolist()
	except:
		print("Error: tmi_temp was not found. Run mmr-lr first, or change directory to where tmi_temp is located.") # this error should never happen.

	tfce_settings = []
	masking_array = np.load("tmi_temp/masking_array.npy")
	for surf_num in range(len(masking_array)):
		if sopts.assigntfcesettings:
			pointer = int(sopts.assigntfcesettings[surf_num] * 2)
			tfce_settings.append(([sopts.tfce[pointer],sopts.tfce[pointer+1]]))

	if opts.outputstats:

		# load npy objects for building the tmi file
		maskname = np.load("tmi_temp/maskname.npy")
		affine_array = np.load("tmi_temp/affine_array.npy")
		vertex_array = np.load("tmi_temp/vertex_array.npy")
		face_array = np.load("tmi_temp/face_array.npy")
		surfname = np.load("tmi_temp/surfname.npy")

		for surf_num in range(len(masking_array)):
			print("Calculating stats for:\t %s" % maskname[surf_num])
			adjacency = np.load("tmi_temp/%d_adjacency_temp.npy" % surf_num)
			mask = np.load("tmi_temp/%d_mask_temp.npy" % surf_num)
			data = np.load("tmi_temp/%d_data_temp.npy" % surf_num)
			vdensity = np.load("tmi_temp/%d_vdensity_temp.npy" % surf_num)
			if not sopts.assigntfcesettings:
				calcTFCE = CreateAdjSet(float(sopts.tfce[0]), float(sopts.tfce[1]), adjacency)

			if sopts.input:
				for i, arg_pred in enumerate(sopts.input):
					if i == 0:
						pred_x = np.genfromtxt(arg_pred, delimiter=',')
					else:
						pred_x = np.column_stack([pred_x, np.genfromtxt(arg_pred, delimiter=',')])
				if sopts.assigntfcesettings:
					calcTFCE = CreateAdjSet(float(tfce_settings[surf_num][0]), float(tfce_settings[surf_num][1]), adjacency)
				temp_tvals, temp_tfce_tvals, temp_neg_tfce_tvals = low_ram_calculate_tfce(data, mask, pred_x, calcTFCE, vdensity, set_surf_count = surf_num, randomise = False, no_intercept = True)

				if surf_num == 0:
					tvals = temp_tvals
					tfce_tvals = temp_tfce_tvals
					neg_tfce_tvals = temp_neg_tfce_tvals
					if pred_x.ndim == 1: # get number of contrasts
						num_contrasts = 1
					else:
						num_contrasts = pred_x.shape[1]
				else:
					tvals = np.concatenate((tvals, temp_tvals), 1)
					tfce_tvals = np.concatenate((tfce_tvals, temp_tfce_tvals), 1)
					neg_tfce_tvals = np.concatenate((neg_tfce_tvals, temp_neg_tfce_tvals), 1)

			if sopts.inputmediation:
				medtype = sopts.inputmediation[0]
				pred_x =  np.genfromtxt(sopts.inputmediation[1], delimiter=',')
				depend_y =  np.genfromtxt(sopts.inputmediation[2], delimiter=',')
				if sopts.assigntfcesettings:
					calcTFCE = CreateAdjSet(float(tfce_settings[surf_num][0]), float(tfce_settings[surf_num][1]), adjacency)
				temp_zvals, temp_tfce_zvals = low_ram_calculate_mediation_tfce(medtype, data, mask, pred_x, depend_y, calcTFCE, vdensity, set_surf_count = surf_num, randomise = False, no_intercept = True)

				if surf_num == 0:
					zvals = temp_zvals
					tfce_zvals = temp_tfce_zvals
					if pred_x.ndim == 1: # get number of contrasts
						num_contrasts = 1
					else:
						num_contrasts = pred_x.shape[1]
				else:
					zvals = np.concatenate((zvals, temp_zvals))
					tfce_zvals = np.concatenate((tfce_zvals, temp_tfce_zvals))

		if sopts.input:
			data = np.column_stack((tvals.T, tfce_tvals.T))
			data = np.column_stack((data, neg_tfce_tvals.T))
			contrast_names = []
			for i in range(num_contrasts):
				contrast_names.append(("tstat_con%d" % (i+1)))
			for j in range(num_contrasts):
				contrast_names.append(("tstat_tfce_con%d" % (j+1)))
			for k in range(num_contrasts):
				contrast_names.append(("negtstat_tfce_con%d" % (k+1)))
		if sopts.inputmediation:
			data = np.column_stack((zvals.T, tfce_zvals.T))
			contrast_names = []
			contrast_names.append(("SobelZ"))
			contrast_names.append(("SobelZ_tfce"))

		outname = os.path.basename(str(opts.path[0]))[7:]

		if not outname.endswith('tmi'):
			outname += '.tmi'

		write_tm_filetype("%s/%s" % (os.path.dirname(str(opts.path[0])), outname), 
			image_array = data, 
			masking_array = masking_array, 
			maskname = maskname, 
			affine_array = affine_array, 
			vertex_array = vertex_array, 
			face_array = face_array, 
			surfname = surfname, 
			checkname = True, 
			columnids = np.array(contrast_names),
			tmi_history=[])

	else:
		currentTime=int(time())
		surf_num = int(opts.surfacenumber[0])
		p_range = np.array(opts.permutationrange)
		adjacency = np.load("tmi_temp/%d_adjacency_temp.npy" % surf_num)
		mask = np.load("tmi_temp/%d_mask_temp.npy" % surf_num)
		data = np.load("tmi_temp/%d_data_temp.npy" % surf_num)
		vdensity = np.load("tmi_temp/%d_vdensity_temp.npy" % surf_num)


		if sopts.assigntfcesettings:
			calcTFCE = CreateAdjSet(float(tfce_settings[surf_num][0]), float(tfce_settings[surf_num][1]), adjacency)
		else:
			calcTFCE = CreateAdjSet(float(sopts.tfce[0]), float(sopts.tfce[1]), adjacency)
		if sopts.input:
			for i, arg_pred in enumerate(sopts.input):
				if i == 0:
					pred_x = np.genfromtxt(arg_pred, delimiter=',')
				else:
					pred_x = np.column_stack([pred_x, np.genfromtxt(arg_pred, delimiter=',')])
			for perm_number in range(p_range[0],int(p_range[1]+1)):
				low_ram_calculate_tfce(data, mask, pred_x, calcTFCE, vdensity,
					set_surf_count = surf_num,
					perm_number = perm_number,
					randomise = True,
					no_intercept = True,
					output_dir = str(opts.path[0]),
					perm_seed = int(opts.seed[0]))

		if sopts.inputmediation:
			medtype = sopts.inputmediation[0]
			pred_x =  np.genfromtxt(sopts.inputmediation[1], delimiter=',')
			depend_y =  np.genfromtxt(sopts.inputmediation[2], delimiter=',')
			for perm_number in range(p_range[0],int(p_range[1]+1)):
				low_ram_calculate_mediation_tfce(medtype, data, mask, pred_x, depend_y, calcTFCE, vdensity,
					set_surf_count = surf_num,
					perm_number = perm_number,
					randomise = True,
					no_intercept = True,
					output_dir = str(opts.path[0]),
					perm_seed = int(opts.seed[0]))
		print("Mask %d, Iteration %d -> %d took %i seconds." % (surf_num, p_range[0], p_range[1], (int(time()) - currentTime)))
Ejemplo n.º 8
0
def run(opts):
    arg_perm_start = int(opts.range[0])
    arg_perm_stop = int(opts.range[1]) + 1
    if opts.exchangeblock:
        block_list = np.genfromtxt(opts.exchangeblock[0], dtype=np.str)
        indexer = np.array(range(len(block_list)))

    np.seterr(divide="ignore",
              invalid="ignore")  #only necessary for ANTS skeleton

    #load variables
    num_voxel = np.load('python_temp/num_voxel.npy')
    n = np.load('python_temp/num_subjects.npy')
    ny = np.load('python_temp/raw_nonzero_corr.npy').T
    pred_x = np.load('python_temp/pred_x.npy')
    adjac = np.load('python_temp/adjac.npy')
    ancova = np.load('python_temp/ancova.npy')
    optstfce = np.load('python_temp/optstfce.npy')

    #load TFCE fucntion
    calcTFCE = CreateAdjSet(float(optstfce[0]), float(optstfce[1]),
                            adjac)  # H=2, E=2, 26 neighbour connectivity

    #permute T values and write max TFCE values
    if not os.path.exists('output/perm_Tstat'):
        os.mkdir('output/perm_Tstat')
    os.chdir('output/perm_Tstat')

    X = np.column_stack([np.ones(n), pred_x])
    k = len(X.T)
    if ancova == 1:
        for iter_perm in range(arg_perm_start,
                               int((arg_perm_stop - 1) * 2 + 1)):
            np.random.seed(int(iter_perm * 1000 + time()))
            print("Permutation number: %d" % (iter_perm))
            nx = X[np.random.permutation(list(range(n)))]
            perm_fvals = calcF(nx, ny, n, k)
            perm_fvals[perm_fvals < 0] = 0
            perm_fvals = np.sqrt(perm_fvals)
            print(perm_fvals.max())
            print(perm_fvals.min())
            write_perm_maxTFCE_voxel('fstat', perm_fvals, calcTFCE)
    else:
        for iter_perm in range(arg_perm_start, arg_perm_stop):
            np.random.seed(int(iter_perm * 1000 + time()))
            print("Iteration number : %d" % (iter_perm))
            if opts.specifyvars:
                start = opts.specifyvars[0]
                stop = opts.specifyvars[1] + 1
                nx = X
                nx[:, start:stop] = X[:, start:stop][np.random.permutation(
                    list(range(n)))]
            elif opts.exchangeblock:
                randindex = []
                for block in np.random.permutation(list(
                        np.unique(block_list))):
                    randindex.append(
                        np.random.permutation(indexer[block_list == block]))
                randindex = np.concatenate(np.array(randindex))
                nx = X[randindex]
            else:
                nx = X[np.random.permutation(list(range(n)))]
            invXX = np.linalg.inv(np.dot(nx.T, nx))
            perm_tvalues = tval_int(nx, invXX, ny, n, k, num_voxel)
            perm_tvalues[np.isnan(
                perm_tvalues)] = 0  #only necessary for ANTS skeleton
            if opts.specifyvars:
                for j in range(stop - start):
                    tnum = j + 1
                    write_perm_maxTFCE_voxel('tstat_con%d' % tnum,
                                             perm_tvalues[tnum], calcTFCE)
                    write_perm_maxTFCE_voxel('tstat_con%d' % tnum,
                                             (perm_tvalues[tnum] * -1),
                                             calcTFCE)
            else:
                for j in range(k - 1):
                    tnum = j + 1
                    write_perm_maxTFCE_voxel('tstat_con%d' % tnum,
                                             perm_tvalues[tnum], calcTFCE)
                    write_perm_maxTFCE_voxel('tstat_con%d' % tnum,
                                             (perm_tvalues[tnum] * -1),
                                             calcTFCE)
    print(
        ("Finished. Randomization took %.1f seconds" % (time() - start_time)))
Ejemplo n.º 9
0
def run(opts):
    if not os.path.exists("python_temp"):
        print("python_temp missing!")

    #load variables
    raw_nonzero = np.load('python_temp/raw_nonzero.npy')
    affine_mask = np.load('python_temp/affine_mask.npy')
    data_mask = np.load('python_temp/data_mask.npy')
    data_index = data_mask > 0.99
    num_voxel = np.load('python_temp/num_voxel.npy')
    n = raw_nonzero.shape[1]

    imgext = '.nii.gz'  #default save type is nii.gz
    #	if not os.path.isfile('python_temp/imgext.npy'): # to maintain compability
    #		imgext = '.nii.gz'
    #	else:
    #		imgext = np.load('python_temp/imgext.npy')

    #step1
    if opts.input:
        pred_x = np.genfromtxt(opts.input[0], delimiter=',')
        covars = np.genfromtxt(opts.input[1], delimiter=',')
        x_covars = np.column_stack([np.ones(n), covars])
        y = resid_covars(x_covars, raw_nonzero)
        np.save('python_temp/covars', covars)
    if opts.regressors:
        pred_x = np.genfromtxt(opts.regressors[0], delimiter=',')
        y = raw_nonzero.T
    if opts.onesample:
        pred_x = np.ones(n)
        pred_x[:int(n / 2)] = -1
        if opts.onesample[0] != 'none':
            covars = np.genfromtxt(opts.onesample[0], delimiter=',')
            x_covars = np.column_stack([np.ones(n), covars])
            y = resid_covars(x_covars, raw_nonzero)
            np.save('python_temp/covars', covars)
        else:
            y = raw_nonzero.T

    ancova = 0
    if opts.ftest:
        ancova = 1

    #TFCE
    adjac = create_adjac_voxel(data_index,
                               data_mask,
                               num_voxel,
                               dirtype=opts.tfce[2])
    calcTFCE = CreateAdjSet(float(opts.tfce[0]), float(opts.tfce[1]),
                            adjac)  # H=2, E=2, 26 neighbour connectivity

    #save
    np.save('python_temp/adjac', adjac)
    np.save('python_temp/pred_x', pred_x)
    np.save('python_temp/ancova', ancova)
    np.save('python_temp/optstfce', opts.tfce)
    np.save('python_temp/raw_nonzero_corr', y.T.astype(np.float32, order="C"))

    if not os.path.exists('output'):
        os.mkdir('output')
    os.chdir('output')
    X = np.column_stack([np.ones(n), pred_x])
    k = len(X.T)

    if opts.onesample:
        if opts.onesample[0] == 'none':
            tvalues, _ = stats.ttest_1samp(raw_nonzero, 0, axis=1)
            write_voxelStat_img('tstat_intercept', tvalues, data_mask,
                                data_index, affine_mask, calcTFCE, imgext)
            write_voxelStat_img('negtstat_intercept', (tvalues * -1),
                                data_mask, data_index, affine_mask, calcTFCE,
                                imgext)
        else:
            tvalues = tval_int(x_covars,
                               np.linalg.inv(np.dot(x_covars.T, x_covars)),
                               raw_nonzero.T, n, len(x_covars.T), num_voxel)
            tvalues = tvalues[0]
            write_voxelStat_img('tstat_intercept', tvalues, data_mask,
                                data_index, affine_mask, calcTFCE, imgext)
            write_voxelStat_img('negtstat_intercept', (tvalues * -1),
                                data_mask, data_index, affine_mask, calcTFCE,
                                imgext)
        exit()

    if ancova == 0:

        if opts.voxelregressor:

            img_all_name = opts.voxelregressor[0]
            _, file_ext = os.path.splitext(img_all_name)
            if file_ext == '.gz':
                _, file_ext = os.path.splitext(img_all_name)
                if file_ext == '.mnc':
                    imgext = '.mnc'
                    image_x = nib.load(
                        '../%s' % img_all_name).get_data()[data_index].astype(
                            np.float32)
                else:
                    imgext = '.nii.gz'
                    os.system("zcat ../%s > temp_4d.nii" % img_all_name)
                    image_x = nib.load(
                        'temp_4d.nii').get_data()[data_index].astype(
                            np.float32)
                    os.system("rm temp_4d.nii")
            elif file_ext == '.nii':
                imgext = '.nii.gz'  # default to zipped images
                image_x = nib.load('../%s' %
                                   img_all_name).get_data()[data_index].astype(
                                       np.float32)
            else:
                print('Error filetype for %s is not supported' % img_all_name)
                quit()

            tvalues, timage = image_regression(raw_nonzero.astype(np.float32),
                                               image_x, pred_x, covars)
            write_voxelStat_img('tstat_imgcovar', timage, data_mask,
                                data_index, affine_mask, calcTFCE, imgext)
            write_voxelStat_img('negtstat_imgcovar', -timage, data_mask,
                                data_index, affine_mask, calcTFCE, imgext)
            tvalues = tvalues.T
            VIF = image_reg_VIF(image_x.T, np.column_stack((pred_x, covars)))
            write_voxelStat_img('VIF_imgcovar',
                                VIF,
                                data_mask,
                                data_index,
                                affine_mask,
                                calcTFCE,
                                imgext,
                                TFCE=False)
        else:
            #multiple regression
            invXX = np.linalg.inv(np.dot(X.T, X))
            tvalues = tval_int(X, invXX, y, n, k, num_voxel)
        tvalues[np.isnan(tvalues)] = 0  #only necessary for ANTS skeleton
        #write TFCE images
        for j in range(k - 1):
            tnum = j + 1
            write_voxelStat_img('tstat_con%d' % tnum, tvalues[tnum], data_mask,
                                data_index, affine_mask, calcTFCE, imgext)
            write_voxelStat_img('negtstat_con%d' % tnum, (tvalues[tnum] * -1),
                                data_mask, data_index, affine_mask, calcTFCE,
                                imgext)
    elif ancova == 1:
        #anova
        fvals = calcF(X, y, n, k)  # sqrt to approximate the t-distribution
        fvals[fvals < 0] = 0
        write_voxelStat_img('fstat', np.sqrt(fvals), data_mask, data_index,
                            affine_mask, calcTFCE, imgext)
    else:
        print("Error")
        exit()
Ejemplo n.º 10
0
def run(opts):
    scriptwd = os.path.dirname(os.path.dirname(os.path.realpath(__file__)))
    arg_predictor = opts.input[0]
    arg_depend = opts.input[1]
    surface = opts.surface[0]
    medtype = opts.medtype[0]
    FWHM = opts.fwhm[0]

    #load variables
    pred_x = np.genfromtxt(arg_predictor, delimiter=",")
    depend_y = np.genfromtxt(arg_depend, delimiter=",")

    #load data
    img_data_lh = nib.freesurfer.mghformat.load("lh.all.%s.%s.mgh" %
                                                (surface, FWHM))
    data_full_lh = img_data_lh.get_data()
    data_lh = np.squeeze(data_full_lh)
    affine_mask_lh = img_data_lh.get_affine()
    n = data_lh.shape[1]
    outdata_mask_lh = np.zeros_like(data_full_lh[:, :, :, 1])
    img_data_rh = nib.freesurfer.mghformat.load("rh.all.%s.%s.mgh" %
                                                (surface, FWHM))
    data_full_rh = img_data_rh.get_data()
    data_rh = np.squeeze(data_full_rh)
    affine_mask_rh = img_data_rh.get_affine()
    outdata_mask_rh = np.zeros_like(data_full_rh[:, :, :, 1])
    if not os.path.exists("lh.mean.%s.%s.mgh" % (surface, FWHM)):
        mean_lh = np.sum(data_lh, axis=1) / data_lh.shape[1]
        outmean_lh = np.zeros_like(data_full_lh[:, :, :, 1])
        outmean_lh[:, 0, 0] = mean_lh
        nib.save(nib.freesurfer.mghformat.MGHImage(outmean_lh, affine_mask_lh),
                 "lh.mean.%s.%s.mgh" % (surface, FWHM))
        mean_rh = np.sum(data_rh, axis=1) / data_rh.shape[1]
        outmean_rh = np.zeros_like(data_full_rh[:, :, :, 1])
        outmean_rh[:, 0, 0] = mean_rh
        nib.save(nib.freesurfer.mghformat.MGHImage(outmean_rh, affine_mask_rh),
                 "rh.mean.%s.%s.mgh" % (surface, FWHM))
    else:
        img_mean_lh = nib.freesurfer.mghformat.load("lh.mean.%s.%s.mgh" %
                                                    (surface, FWHM))
        mean_full_lh = img_mean_lh.get_data()
        mean_lh = np.squeeze(mean_full_lh)
        img_mean_rh = nib.freesurfer.mghformat.load("rh.mean.%s.%s.mgh" %
                                                    (surface, FWHM))
        mean_full_rh = img_mean_rh.get_data()
        mean_rh = np.squeeze(mean_full_rh)

    #create masks
    if opts.fmri:
        maskthresh = opts.fmri
        print("fMRI threshold mask = %2.2f" % maskthresh)
        bin_mask_lh = np.logical_or(mean_lh > maskthresh, mean_lh <
                                    (-1 * maskthresh))
        bin_mask_rh = np.logical_or(mean_rh > maskthresh, mean_rh <
                                    (-1 * maskthresh))

    elif opts.fsmask:
        label = opts.fsmask
        print("Loading fsaverage ?l.%s.label" % label)

        index_lh, _, _ = convert_fslabel("%s/fsaverage/label/lh.%s.label" %
                                         (os.environ["SUBJECTS_DIR"], label))
        index_rh, _, _ = convert_fslabel("%s/fsaverage/label/rh.%s.label" %
                                         (os.environ["SUBJECTS_DIR"], label))

        bin_mask_lh = np.zeros_like(mean_lh)
        bin_mask_lh[index_lh] = 1
        bin_mask_lh = bin_mask_lh.astype(bool)

        bin_mask_rh = np.zeros_like(mean_rh)
        bin_mask_rh[index_rh] = 1
        bin_mask_rh = bin_mask_rh.astype(bool)

    elif opts.label:
        label_lh = opts.label[0]
        label_rh = opts.label[1]

        index_lh, _, _ = convert_fslabel(label_lh)
        index_rh, _, _ = convert_fslabel(label_rh)

        bin_mask_lh = np.zeros_like(mean_lh)
        bin_mask_lh[index_lh] = 1
        bin_mask_lh = bin_mask_lh.astype(bool)

        bin_mask_rh = np.zeros_like(mean_rh)
        bin_mask_rh[index_rh] = 1
        bin_mask_rh = bin_mask_rh.astype(bool)
    elif opts.binmask:
        print("Loading masks")
        img_binmgh_lh = nib.freesurfer.mghformat.load(opts.binmask[0])
        binmgh_lh = img_binmgh_lh.get_data()
        binmgh_lh = np.squeeze(binmgh_lh)
        img_binmgh_rh = nib.freesurfer.mghformat.load(opts.binmask[1])
        binmgh_rh = img_binmgh_rh.get_data()
        binmgh_rh = np.squeeze(binmgh_rh)
        bin_mask_lh = binmgh_lh > .99
        bin_mask_rh = binmgh_rh > .99
    else:
        bin_mask_lh = mean_lh > 0
        bin_mask_rh = mean_rh > 0
    data_lh = data_lh[bin_mask_lh]
    num_vertex_lh = data_lh.shape[0]
    data_rh = data_rh[bin_mask_rh]
    num_vertex_rh = data_rh.shape[0]
    num_vertex = num_vertex_lh + num_vertex_rh
    all_vertex = data_full_lh.shape[0]

    #TFCE
    if opts.triangularmesh:
        print "Creating adjacency set"
        if opts.inputsurfs:
            # 3 Neighbour vertex connectity
            v_lh, faces_lh = nib.freesurfer.read_geometry(opts.inputsurfs[0])
            v_rh, faces_rh = nib.freesurfer.read_geometry(opts.inputsurfs[1])
        else:
            v_lh, faces_lh = nib.freesurfer.read_geometry(
                "%s/fsaverage/surf/lh.sphere" % os.environ["SUBJECTS_DIR"])
            v_rh, faces_rh = nib.freesurfer.read_geometry(
                "%s/fsaverage/surf/rh.sphere" % os.environ["SUBJECTS_DIR"])
        adjac_lh = create_adjac_vertex(v_lh, faces_lh)
        adjac_rh = create_adjac_vertex(v_rh, faces_rh)
    elif opts.adjfiles:
        print "Loading prior adjacency set"
        arg_adjac_lh = opts.adjfiles[0]
        arg_adjac_rh = opts.adjfiles[1]
        adjac_lh = np.load(arg_adjac_lh)
        adjac_rh = np.load(arg_adjac_rh)
    elif opts.dist:
        print "Loading prior adjacency set for %s mm" % opts.dist[0]
        adjac_lh = np.load("%s/adjacency_sets/lh_adjacency_dist_%s.0_mm.npy" %
                           (scriptwd, str(opts.dist[0])))
        adjac_rh = np.load("%s/adjacency_sets/rh_adjacency_dist_%s.0_mm.npy" %
                           (scriptwd, str(opts.dist[0])))
    else:
        print "Error"
    if opts.noweight:
        vdensity_lh = 1
        vdensity_rh = 1
    else:
        # correction for vertex density
        vdensity_lh = np.zeros((adjac_lh.shape[0]))
        vdensity_rh = np.zeros((adjac_rh.shape[0]))
        for i in xrange(adjac_lh.shape[0]):
            vdensity_lh[i] = len(adjac_lh[i])
        for j in xrange(adjac_rh.shape[0]):
            vdensity_rh[j] = len(adjac_rh[j])
        vdensity_lh = np.array((1 - (vdensity_lh / vdensity_lh.max()) +
                                (vdensity_lh.mean() / vdensity_lh.max())),
                               dtype=np.float32)
        vdensity_rh = np.array((1 - (vdensity_rh / vdensity_rh.max()) +
                                (vdensity_rh.mean() / vdensity_rh.max())),
                               dtype=np.float32)
    calcTFCE_lh = CreateAdjSet(float(opts.tfce[0]), float(opts.tfce[1]),
                               adjac_lh)
    calcTFCE_rh = CreateAdjSet(float(opts.tfce[0]), float(opts.tfce[1]),
                               adjac_rh)

    #save variables
    if not os.path.exists("python_temp_med_%s" % surface):
        os.mkdir("python_temp_med_%s" % surface)

    np.save("python_temp_med_%s/pred_x" % surface, pred_x)
    np.save("python_temp_med_%s/depend_y" % surface, depend_y)
    np.save("python_temp_med_%s/num_subjects" % surface, n)
    np.save("python_temp_med_%s/num_vertex" % surface, num_vertex)
    np.save("python_temp_med_%s/num_vertex_lh" % (surface), num_vertex_lh)
    np.save("python_temp_med_%s/num_vertex_rh" % (surface), num_vertex_rh)
    np.save("python_temp_med_%s/all_vertex" % (surface), all_vertex)
    np.save("python_temp_med_%s/bin_mask_lh" % (surface), bin_mask_lh)
    np.save("python_temp_med_%s/bin_mask_rh" % (surface), bin_mask_rh)
    np.save("python_temp_med_%s/adjac_lh" % (surface), adjac_lh)
    np.save("python_temp_med_%s/adjac_rh" % (surface), adjac_rh)
    np.save("python_temp_med_%s/optstfce" % (surface), opts.tfce)
    np.save('python_temp_med_%s/vdensity_lh' % (surface), vdensity_lh)
    np.save('python_temp_med_%s/vdensity_rh' % (surface), vdensity_rh)

    #step1
    if opts.covariates:
        arg_covars = opts.covariates[0]
        covars = np.genfromtxt(arg_covars, delimiter=",")
        x_covars = np.column_stack([np.ones(n), covars])
        y_lh = resid_covars(x_covars, data_lh)
        y_rh = resid_covars(x_covars, data_rh)
        merge_y = np.hstack((y_lh, y_rh))
        del y_lh
        del y_rh
    else:
        #no covariates
        merge_y = np.hstack((data_lh.T, data_rh.T))
    del data_lh
    del data_rh
    np.save("python_temp_med_%s/merge_y" % (surface),
            merge_y.astype(np.float32, order="C"))

    #step2 mediation
    SobelZ = calc_sobelz(medtype, pred_x, depend_y, merge_y, n, num_vertex)

    #write TFCE images
    if not os.path.exists("output_med_%s" % surface):
        os.mkdir("output_med_%s" % surface)
    os.chdir("output_med_%s" % surface)

    write_vertStat_img('SobelZ_%s' % (medtype), SobelZ[:num_vertex_lh],
                       outdata_mask_lh, affine_mask_lh, surface, 'lh',
                       bin_mask_lh, calcTFCE_lh, bin_mask_lh.shape[0],
                       vdensity_lh)
    write_vertStat_img('SobelZ_%s' % (medtype), SobelZ[num_vertex_lh:],
                       outdata_mask_rh, affine_mask_rh, surface, 'rh',
                       bin_mask_rh, calcTFCE_rh, bin_mask_rh.shape[0],
                       vdensity_rh)
Ejemplo n.º 11
0
def run(opts):

    currentTime = int(time())
    if opts.multisurfacefwecorrection:
        _, image_array, masking_array, maskname, affine_array, vertex_array, face_array, surfname, adjacency_array, tmi_history, subjectids = read_tm_filetype(
            '%s' % opts.tmifile[0], verbose=False)

        # check file dimensions
        if not image_array[0].shape[1] % 3 == 0:
            print 'Print file format is not understood. Please make sure %s is statistics file.' % opts.tmifile[
                0]
            quit()
        else:
            num_contrasts = int(image_array[0].shape[1] / 3)

        # get surface coordinates in data array
        pointer = 0
        position_array = [0]
        for i in range(len(masking_array)):
            pointer += len(masking_array[i][masking_array[i] == True])
            position_array.append(pointer)
        del pointer

        if num_contrasts == 1:
            # get lists for positive and negative contrasts
            pos_range = [1]
            neg_range = [2]
        else:
            # get lists for positive and negative contrasts
            pos_range = range(num_contrasts, num_contrasts + num_contrasts)
            neg_range = range(num_contrasts * 2,
                              num_contrasts * 2 + num_contrasts)

        # check that randomisation has been run
        if not os.path.exists(
                "%s/output_%s/perm_maxTFCE_surf0_tcon1.csv" %
            (os.getcwd(), opts.tmifile[0])):  # make this safer
            print 'Permutation folder not found. Please run --randomise first.'
            quit()

        #check permutation file lengths
        num_surf = len(masking_array)
        surface_range = range(num_surf)
        num_perm = lowest_length(num_contrasts, surface_range, opts.tmifile[0])

        if opts.setsurfacerange:
            surface_range = range(opts.setsurfacerange[0],
                                  opts.setsurfacerange[1] + 1)
        elif opts.setsurface:
            surface_range = opts.setsurface
        if np.array(surface_range).max() > len(masking_array):
            print "Error: range does note fit the surfaces contained in the tmi file. %s contains the following surfaces" % opts.tmifile[
                0]
            for i in range(len(surfname)):
                print("Surface %d : %s, %s" % (i, surfname[i], maskname[i]))
            quit()
        print "Reading %d contrast(s) from %d of %d surface(s)" % (
            (num_contrasts), len(surface_range), num_surf)
        print "Reading %s permutations with an accuracy of p=0.05+/-%.4f" % (
            num_perm, (2 * (np.sqrt(0.05 * 0.95 / num_perm))))

        # calculate the P(FWER) images from all surfaces
        positive_data, negative_data = apply_mfwer(image_array,
                                                   num_contrasts,
                                                   surface_range,
                                                   num_perm,
                                                   num_surf,
                                                   opts.tmifile[0],
                                                   position_array,
                                                   pos_range,
                                                   neg_range,
                                                   weight='logmasksize')

        # write out files
        if opts.concatestats:
            write_tm_filetype(opts.tmifile[0],
                              image_array=positive_data,
                              masking_array=masking_array,
                              maskname=maskname,
                              affine_array=affine_array,
                              vertex_array=vertex_array,
                              face_array=face_array,
                              surfname=surfname,
                              adjacency_array=adjacency_array,
                              checkname=False,
                              tmi_history=tmi_history)
            _, image_array, masking_array, maskname, affine_array, vertex_array, face_array, surfname, adjacency_array, tmi_history, subjectids = read_tm_filetype(
                opts.tmifile[0], verbose=False)
            write_tm_filetype(opts.tmifile[0],
                              image_array=np.column_stack(
                                  (image_array[0], negative_data)),
                              masking_array=masking_array,
                              maskname=maskname,
                              affine_array=affine_array,
                              vertex_array=vertex_array,
                              face_array=face_array,
                              surfname=surfname,
                              adjacency_array=adjacency_array,
                              checkname=False,
                              tmi_history=tmi_history)
        else:
            for i in range(len(opts.outtype)):
                if opts.outtype[i] == 'tmi':
                    write_tm_filetype("tstats_pFWER_%s" % opts.tmifile[0],
                                      image_array=positive_data,
                                      masking_array=masking_array,
                                      maskname=maskname,
                                      affine_array=affine_array,
                                      vertex_array=vertex_array,
                                      face_array=face_array,
                                      surfname=surfname,
                                      checkname=False,
                                      tmi_history=tmi_history)
                    write_tm_filetype("negtstats_pFWER_%s" % opts.tmifile[0],
                                      image_array=negative_data,
                                      masking_array=masking_array,
                                      maskname=maskname,
                                      affine_array=affine_array,
                                      vertex_array=vertex_array,
                                      face_array=face_array,
                                      surfname=surfname,
                                      checkname=False,
                                      tmi_history=tmi_history)
                    if opts.neglog:
                        write_tm_filetype(
                            "tstats_negLog_pFWER_%s" % opts.tmifile[0],
                            image_array=-np.log10(1 - positive_data),
                            masking_array=masking_array,
                            maskname=maskname,
                            affine_array=affine_array,
                            vertex_array=vertex_array,
                            face_array=face_array,
                            surfname=surfname,
                            checkname=False,
                            tmi_history=tmi_history)
                        write_tm_filetype(
                            "negtstats_negLog_pFWER_%s" % opts.tmifile[0],
                            image_array=-np.log10(1 - negative_data),
                            masking_array=masking_array,
                            maskname=maskname,
                            affine_array=affine_array,
                            vertex_array=vertex_array,
                            face_array=face_array,
                            surfname=surfname,
                            checkname=False,
                            tmi_history=tmi_history)
                else:
                    if opts.outtype[i] == 'mgh':
                        savefunc = savemgh_v2
                    if opts.outtype[i] == 'nii.gz':
                        savefunc = savenifti_v2
                    if opts.outtype[i] == 'auto':
                        savefunc = saveauto
                    for surf_count in surface_range:
                        start = position_array[surf_count]
                        end = position_array[surf_count + 1]
                        basename = strip_basename(maskname[surf_count])
                        if not os.path.exists("output_stats"):
                            os.mkdir("output_stats")
                        out_image = positive_data[start:end]
                        temp_image = negative_data[start:end]
                        for contrast in range(num_contrasts):
                            out_image[temp_image[:, contrast] != 0,
                                      contrast] = temp_image[
                                          temp_image[:, contrast] != 0,
                                          contrast] * -1
                        if affine_array == []:
                            savefunc(
                                out_image, masking_array[surf_count],
                                "output_stats/%d_%s_pFWER" %
                                (surf_count, basename))
                        else:
                            savefunc(
                                out_image, masking_array[surf_count],
                                "output_stats/%d_%s_pFWER" %
                                (surf_count, basename),
                                affine_array[surf_count])
                        if opts.neglog:
                            out_image = -np.log10(1 - positive_data[start:end,
                                                                    contrast])
                            temp_image = np.log10(1 - negative_data[start:end,
                                                                    contrast])
                            for contrast in range(num_contrasts):
                                out_image[temp_image[:, contrast] != 0,
                                          contrast] = temp_image[
                                              temp_image[:, contrast] != 0,
                                              contrast]
                            if affine_array == []:
                                savefunc(
                                    out_image, masking_array[surf_count],
                                    "output_stats/%d_%s_negLog_pFWER" %
                                    (surf_count, basename))
                            else:
                                savefunc(
                                    out_image, masking_array[surf_count],
                                    "output_stats/%d_%s_negLog_pFWER" %
                                    (surf_count, basename),
                                    affine_array[surf_count])
        if opts.outputply:
            if not os.path.exists("output_ply"):
                os.mkdir("output_ply")
            for contrast in range(num_contrasts):
                for surf_count in surface_range:
                    start = position_array[surf_count]
                    end = position_array[surf_count + 1]
                    basename = strip_basename(maskname[surf_count])
                    if masking_array[surf_count].shape[2] > 1:
                        img_data = np.zeros((masking_array[surf_count].shape))
                        combined_data = positive_data[start:end, contrast]
                        combined_data[combined_data <= 0] = negative_data[
                            start:end, contrast][combined_data <= 0] * -1
                        combined_data[np.abs(combined_data) < float(
                            opts.outputply[0])] = 0
                        img_data[masking_array[surf_count]] = combined_data
                        v, f, values = convert_voxel(
                            img_data,
                            affine=affine_array[surf_count],
                            absthreshold=float(opts.outputply[0]))
                        out_color_array = paint_surface(
                            opts.outputply[0], opts.outputply[1],
                            opts.outputply[2], values)
                        negvalues = values * -1
                        index = negvalues > float(opts.outputply[0])
                        out_color_array2 = paint_surface(
                            opts.outputply[0], opts.outputply[1],
                            opts.outputply[3], negvalues)
                        out_color_array[index, :] = out_color_array2[index, :]
                        save_ply(
                            v, f, "output_ply/%d_%s_pFWE_tcon%d.ply" %
                            (surf_count, basename, contrast + 1),
                            out_color_array)
                    else:
                        img_data = np.zeros(
                            (masking_array[surf_count].shape[0]))
                        img_data[masking_array[surf_count][:, 0, 0] ==
                                 True] = positive_data[start:end, contrast]
                        out_color_array = paint_surface(
                            opts.outputply[0], opts.outputply[1],
                            opts.outputply[2], img_data)
                        img_data[masking_array[surf_count][:, 0, 0] ==
                                 True] = negative_data[start:end, contrast]
                        index = img_data > float(opts.outputply[0])
                        out_color_array2 = paint_surface(
                            opts.outputply[0], opts.outputply[1],
                            opts.outputply[3], img_data)
                        out_color_array[index, :] = out_color_array2[index, :]
                        save_ply(
                            vertex_array[surf_count], face_array[surf_count],
                            "output_ply/%d_%s_pFWE_tcon%d.ply" %
                            (surf_count, basename, contrast + 1),
                            out_color_array)
    else:
        # read tmi file
        if opts.randomise:
            _, image_array, masking_array, _, _, _, _, _, adjacency_array, _, _ = read_tm_filetype(
                opts.tmifile[0])
            _ = None
        else:
            element, image_array, masking_array, maskname, affine_array, vertex_array, face_array, surfname, adjacency_array, tmi_history, _ = read_tm_filetype(
                opts.tmifile[0])
        # get surface coordinates in data array
        pointer = 0
        position_array = [0]
        for i in range(len(masking_array)):
            pointer += len(masking_array[i][masking_array[i] == True])
            position_array.append(pointer)
        del pointer

        if opts.setadjacencyobjs:
            if len(opts.setadjacencyobjs) == len(masking_array):
                adjacent_range = opts.setadjacencyobjs
            else:
                print "Error: # of masking arrays %d must and list of matching adjacency %d must be equal." % (
                    len(masking_array), len(opts.setadjacencyobjs))
                quit()
        else:
            adjacent_range = range(len(adjacency_array))
        calcTFCE = []
        if opts.setfcesettings:
            if len(opts.setfcesettings) == len(masking_array):
                print "Error: # of masking arrays %d must and list of matching tfce setting %d must be equal." % (
                    len(masking_array), len(opts.setfcesettings))
                quit()
            if len(opts.tfce) % 2 != 0:
                print "Error. The must be an even number of input for --tfce"
                quit()
            tfce_settings_mask = []
            for i in range(len(opts.tfce) / 2):
                tfce_settings_mask.append((opts.setfcesettings == int(i)))
                pointer = int(i * 2)
                adjacency = merge_adjacency_array(
                    adjacent_range[tfce_settings_mask[i]],
                    adjacency_array[tfce_settings_mask[i]])
                calcTFCE.append((CreateAdjSet(float(opts.tfce[pointer]),
                                              float(opts.tfce[pointer + 1]),
                                              adjacency)))
                del adjacency
        else:
            adjacency = merge_adjacency_array(adjacent_range, adjacency_array)
            calcTFCE.append((CreateAdjSet(float(opts.tfce[0]),
                                          float(opts.tfce[1]), adjacency)))

        # make mega mask
        fullmask = []
        for i in range(len(masking_array)):
            if masking_array[i].shape[
                    2] == 1:  # check if vertex or voxel image
                fullmask = np.hstack((fullmask, masking_array[i][:, 0, 0]))
            else:
                fullmask = np.hstack(
                    (fullmask, masking_array[i][masking_array[i] == True]))

        if not opts.noweight:
            # correction for vertex density
            vdensity = []
            #np.ones_like(masking_array)
            for i in range(len(masking_array)):
                temp_vdensity = np.zeros(
                    (adjacency_array[adjacent_range[i]].shape[0]))
                for j in xrange(adjacency_array[adjacent_range[i]].shape[0]):
                    temp_vdensity[j] = len(
                        adjacency_array[adjacent_range[i]][j])
                if masking_array[i].shape[2] == 1:
                    temp_vdensity = temp_vdensity[masking_array[i][:, 0,
                                                                   0] == True]
                vdensity = np.hstack(
                    (vdensity,
                     np.array((1 - (temp_vdensity / temp_vdensity.max()) +
                               (temp_vdensity.mean() / temp_vdensity.max())),
                              dtype=np.float32)))
            del temp_vdensity
        else:
            vdensity = 1

        #load regressors
        if opts.input:
            arg_predictor = opts.input[0]
            arg_covars = opts.input[1]
            pred_x = np.genfromtxt(arg_predictor, delimiter=',')
            covars = np.genfromtxt(arg_covars, delimiter=',')
            x_covars = np.column_stack([np.ones(len(covars)), covars])
            merge_y = resid_covars(x_covars, image_array[0])
        if opts.regressors:
            arg_predictor = opts.regressors[0]
            pred_x = np.genfromtxt(arg_predictor, delimiter=',')
            merge_y = image_array[0].T

        # cleanup
        image_array = None
        adjacency_array = None
        adjacency = None

        if opts.analysisname:
            outname = opts.analysisname[0]
        else:
            outname = opts.tmifile[0][:-4]

        # make output folder
        if not os.path.exists("output_%s" % (outname)):
            os.mkdir("output_%s" % (outname))
        os.chdir("output_%s" % (outname))
        if opts.randomise:
            randTime = int(time())
            mapped_y = merge_y.astype(np.float32,
                                      order="C")  # removed memory mapping
            merge_y = None
            if not outname.endswith('tmi'):
                outname += '.tmi'
            outname = 'stats_' + outname
            if not os.path.exists("output_%s" % (outname)):
                os.mkdir("output_%s" % (outname))
            os.chdir("output_%s" % (outname))
            for i in range(opts.randomise[0], (opts.randomise[1] + 1)):
                calculate_tfce(mapped_y,
                               masking_array,
                               pred_x,
                               calcTFCE[0],
                               vdensity,
                               position_array,
                               fullmask,
                               perm_number=i,
                               randomise=True)
            print("Total time took %.1f seconds" % (time() - currentTime))
            print("Randomization took %.1f seconds" % (time() - randTime))
        else:
            # Run TFCE
            tvals, tfce_tvals, neg_tfce_tvals = calculate_tfce(
                merge_y, masking_array, pred_x, calcTFCE[0], vdensity,
                position_array, fullmask)
            if opts.outtype[0] == 'tmi':
                if not outname.endswith('tmi'):
                    outname += '.tmi'
                outname = 'stats_' + outname
                # write tstat
                write_tm_filetype(outname,
                                  image_array=tvals.T,
                                  masking_array=masking_array,
                                  maskname=maskname,
                                  affine_array=affine_array,
                                  vertex_array=vertex_array,
                                  face_array=face_array,
                                  surfname=surfname,
                                  checkname=False,
                                  tmi_history=[])
                # read the tmi back in.
                _, image_array, masking_array, maskname, affine_array, vertex_array, face_array, surfname, _, tmi_history, subjectids = read_tm_filetype(
                    outname, verbose=False)
                write_tm_filetype(outname,
                                  image_array=np.column_stack(
                                      (image_array[0], tfce_tvals.T)),
                                  masking_array=masking_array,
                                  maskname=maskname,
                                  affine_array=affine_array,
                                  vertex_array=vertex_array,
                                  face_array=face_array,
                                  surfname=surfname,
                                  checkname=False,
                                  tmi_history=tmi_history)
                _, image_array, masking_array, maskname, affine_array, vertex_array, face_array, surfname, adjacency_array, tmi_history, subjectids = read_tm_filetype(
                    outname, verbose=False)
                write_tm_filetype(outname,
                                  image_array=np.column_stack(
                                      (image_array[0], neg_tfce_tvals.T)),
                                  masking_array=masking_array,
                                  maskname=maskname,
                                  affine_array=affine_array,
                                  vertex_array=vertex_array,
                                  face_array=face_array,
                                  surfname=surfname,
                                  checkname=False,
                                  tmi_history=tmi_history)
            else:
                print "not implemented yet"