Ejemplo n.º 1
0
def test_adjoint_and_gradients(im_size, batch_size):
    tf.random.set_seed(0)
    grid_size = tuple(np.array(im_size) * 2)
    im_rank = len(im_size)
    M = im_size[0] * 2**im_rank
    nufft_ob = KbNufftModule(im_size=im_size,
                             grid_size=grid_size,
                             norm='ortho',
                             grad_traj=True)
    # Generate Trajectory
    ktraj_ori = tf.Variable(
        tf.random.uniform(
            (batch_size, im_rank, M), minval=-1 / 2, maxval=1 / 2) * 2 * np.pi)
    # Have a random signal
    signal = tf.Variable(
        tf.cast(tf.random.uniform((batch_size, 1, *im_size)), tf.complex64))
    kdata = tf.Variable(
        kbnufft_forward(nufft_ob._extract_nufft_interpob())(signal, ktraj_ori))
    Idata = tf.Variable(
        kbnufft_adjoint(nufft_ob._extract_nufft_interpob())(kdata, ktraj_ori))
    ktraj_noise = np.copy(ktraj_ori)
    ktraj_noise += 0.01 * tf.Variable(
        tf.random.uniform(
            (batch_size, im_rank, M), minval=-1 / 2, maxval=1 / 2) * 2 * np.pi)
    ktraj = tf.Variable(ktraj_noise)
    with tf.GradientTape(persistent=True) as g:
        I_nufft = kbnufft_adjoint(nufft_ob._extract_nufft_interpob())(kdata,
                                                                      ktraj)
        A = get_fourier_matrix(ktraj, im_size, im_rank, do_ifft=True)
        I_ndft = tf.reshape(tf.transpose(tf.matmul(kdata, A), [0, 1, 2]),
                            (batch_size, 1, *im_size))
        loss_nufft = tf.math.reduce_mean(tf.abs(Idata - I_nufft)**2)
        loss_ndft = tf.math.reduce_mean(tf.abs(Idata - I_ndft)**2)

    tf_test = tf.test.TestCase()
    # Test if the NUFFT and NDFT operation is same
    tf_test.assertAllClose(I_nufft, I_ndft, atol=2e-3)

    # Test gradients with respect to kdata
    gradient_ndft_kdata = g.gradient(I_ndft, kdata)[0]
    gradient_nufft_kdata = g.gradient(I_nufft, kdata)[0]
    tf_test.assertAllClose(gradient_ndft_kdata,
                           gradient_nufft_kdata,
                           atol=6e-3)

    # Test gradients with respect to trajectory location
    gradient_ndft_traj = g.gradient(I_ndft, ktraj)[0]
    gradient_nufft_traj = g.gradient(I_nufft, ktraj)[0]
    tf_test.assertAllClose(gradient_ndft_traj, gradient_nufft_traj, atol=6e-3)

    # Test gradients in chain rule with respect to ktraj
    gradient_ndft_loss = g.gradient(loss_ndft, ktraj)[0]
    gradient_nufft_loss = g.gradient(loss_nufft, ktraj)[0]
    tf_test.assertAllClose(gradient_ndft_loss, gradient_nufft_loss, atol=5e-4)
Ejemplo n.º 2
0
def test_forward_gradient():
    traj = ktraj_function()
    image = tf.zeros([1, 1, *image_shape], dtype=tf.complex64)
    nufft_ob = KbNufftModule(
        im_size=(640, 400),
        grid_size=None,
        norm='ortho',
    )
    forward_op = kbnufft_forward(nufft_ob._extract_nufft_interpob())
    with tf.GradientTape() as tape:
        tape.watch(image)
        res = forward_op(image, traj)
    grad = tape.gradient(res, image)
    tf_test = tf.test.TestCase()
    tf_test.assertEqual(grad.shape, image.shape)
Ejemplo n.º 3
0
def test_adjoint_gradient():
    traj = ktraj_function()
    kspace = tf.zeros([1, 1, kspace_shape], dtype=tf.complex64)
    nufft_ob = KbNufftModule(
        im_size=(640, 400),
        grid_size=None,
        norm='ortho',
    )
    backward_op = kbnufft_adjoint(nufft_ob._extract_nufft_interpob())
    with tf.GradientTape() as tape:
        tape.watch(kspace)
        res = backward_op(kspace, traj)
    grad = tape.gradient(res, kspace)
    tf_test = tf.test.TestCase()
    tf_test.assertEqual(grad.shape, kspace.shape)
def test_ncpdnet_init_and_call_3d(dcomp, volume_shape):
    model = NCPDNet(
        n_iter=1,
        n_primal=2,
        n_filters=2,
        multicoil=False,
        im_size=volume_shape,
        three_d=True,
        dcomp=dcomp,
        fastmri=False,
    )
    af = 16
    traj = get_stacks_of_radial_trajectory(volume_shape, af=af)
    spokelength = volume_shape[-2]
    nspokes = volume_shape[-1] // af
    nstacks = volume_shape[0]
    kspace_shape = nspokes * spokelength * nstacks
    extra_args = (tf.constant([volume_shape]), )
    if dcomp:
        nufft_ob = KbNufftModule(
            im_size=volume_shape,
            grid_size=None,
            norm='ortho',
        )
        interpob = nufft_ob._extract_nufft_interpob()
        nufftob_forw = kbnufft_forward(interpob)
        nufftob_back = kbnufft_adjoint(interpob)
        dcomp = calculate_radial_dcomp_tf(
            interpob,
            nufftob_forw,
            nufftob_back,
            traj[0],
            stacks=True,
        )
        dcomp = tf.ones([1, tf.shape(dcomp)[0]],
                        dtype=dcomp.dtype) * dcomp[None, :]
        extra_args += (dcomp, )
    res = model([
        tf.zeros([1, 1, kspace_shape, 1], dtype=tf.complex64),
        traj,
        extra_args,
    ])
    assert res.shape[1:4] == volume_shape
Ejemplo n.º 5
0
def profile_tfkbnufft(
    image,
    ktraj,
    im_size,
    device,
):
    if device == 'CPU':
        num_nuffts = 20
    else:
        num_nuffts = 50
    print(f'Using {device}')
    device_name = f'/{device}:0'
    with tf.device(device_name):
        image = tf.constant(image)
        if device == 'GPU':
            image = tf.cast(image, tf.complex64)
        ktraj = tf.constant(ktraj)
        nufft_ob = KbNufftModule(im_size=im_size, grid_size=None, norm='ortho')
        forward_op = kbnufft_forward(nufft_ob._extract_nufft_interpob())
        adjoint_op = kbnufft_adjoint(nufft_ob._extract_nufft_interpob())

        # warm-up computation
        for _ in range(2):
            y = forward_op(image, ktraj)

        start_time = time.perf_counter()
        for _ in range(num_nuffts):
            y = forward_op(image, ktraj)
        end_time = time.perf_counter()
        avg_time = (end_time - start_time) / num_nuffts
        print('forward average time: {}'.format(avg_time))

        # warm-up computation
        for _ in range(2):
            x = adjoint_op(y, ktraj)

        # run the adjoint speed tests
        start_time = time.perf_counter()
        for _ in range(num_nuffts):
            x = adjoint_op(y, ktraj)
        end_time = time.perf_counter()
        avg_time = (end_time - start_time) / num_nuffts
        print('backward average time: {}'.format(avg_time))
Ejemplo n.º 6
0
class NFFTBase(Layer):
    def __init__(self,
                 multicoil=False,
                 im_size=(640, 472),
                 density_compensation=False,
                 **kwargs):
        super(NFFTBase, self).__init__(**kwargs)
        self.multicoil = multicoil
        self.im_size = im_size
        self.nufft_ob = KbNufftModule(
            im_size=im_size,
            grid_size=None,
            norm='ortho',
        )
        self.density_compensation = density_compensation
        self.forward_op = kbnufft_forward(
            self.nufft_ob._extract_nufft_interpob())
        self.backward_op = kbnufft_adjoint(
            self.nufft_ob._extract_nufft_interpob())

    def pad_for_nufft(self, image):
        return _pad_for_nufft(image, self.im_size)

    def crop_for_pad(self, image, shape):
        return _crop_for_pad(image, shape, self.im_size)

    def crop_for_nufft(self, image):
        return _crop_for_nufft(image, self.im_size)

    def op(self, inputs):
        if self.multicoil:
            image, ktraj, smaps = inputs
        else:
            image, ktraj = inputs
        # for tfkbnufft we need a coil dimension even if there is none
        image = image[:, None, ..., 0]
        if self.multicoil:
            image = image * smaps

        kspace = nufft(self.nufft_ob, image, ktraj, image_size=self.im_size)
        # TODO: get rid of shape return as not needed in the end.
        # shape is computed once in the preprocessing and passed on as is.
        shape = tf.ones([tf.shape(image)[0]],
                        dtype=tf.int32) * tf.shape(image)[-1]
        return kspace[..., None], [shape]

    def adj_op(self, inputs):
        if self.multicoil:
            if self.density_compensation:
                kspace, ktraj, smaps, shape, dcomp, = inputs
            else:
                kspace, ktraj, smaps, shape = inputs
        else:
            if self.density_compensation:
                kspace, ktraj, shape, dcomp = inputs
            else:
                kspace, ktraj, shape = inputs
        if self.density_compensation:
            kspace = tf.cast(dcomp, kspace.dtype) * kspace[..., 0]
        else:
            kspace = kspace[..., 0]
        image = self.backward_op(kspace, ktraj)
        ## image resizing
        if len(self.im_size) < 3:
            # NOTE: for now very ugly way to deal with this condition
            shape = tf.reshape(shape[0], [])
            reshaping_condition = tf.math.less(shape, self.im_size[-1])
        else:
            shape = shape[0]
            reshaping_condition = tf.reduce_any(
                tf.math.less(shape, self.im_size))
        image_reshaped = tf.cond(
            pred=reshaping_condition,
            true_fn=lambda: self.crop_for_pad(image, shape),
            false_fn=lambda: image,
        )
        if self.multicoil:
            image = tf.reduce_sum(image_reshaped * tf.math.conj(smaps), axis=1)
        else:
            image = image_reshaped[:, 0]
        image = image[..., None]
        return image
class NFFTBase(Layer):
    def __init__(self, multicoil=False, im_size=(640, 472), density_compensation=False, **kwargs):
        super(NFFTBase, self).__init__(**kwargs)
        self.multicoil = multicoil
        self.im_size = im_size
        self.nufft_ob = KbNufftModule(
            im_size=im_size,
            grid_size=None,
            norm='ortho',
        )
        self.density_compensation = density_compensation
        self.forward_op = kbnufft_forward(self.nufft_ob._extract_nufft_interpob())
        self.backward_op = kbnufft_adjoint(self.nufft_ob._extract_nufft_interpob())

    def pad_for_nufft(self, image):
        return _pad_for_nufft(image, self.im_size)

    def crop_for_pad(self, image, shape):
        return _crop_for_pad(image, shape, self.im_size)

    def crop_for_nufft(self, image):
        return _crop_for_nufft(image, self.im_size)

    def op(self, inputs):
        if self.multicoil:
            image, ktraj, smaps = inputs
        else:
            image, ktraj = inputs
        # for tfkbnufft we need a coil dimension even if there is none
        image = image[:, None, ..., 0]
        if self.multicoil:
            image = image * smaps

        kspace = nufft(self.nufft_ob, image, ktraj, image_size=self.im_size)
        shape = tf.ones([tf.shape(image)[0]], dtype=tf.int32) * tf.shape(image)[-1]
        return kspace[..., None], [shape]

    def adj_op(self, inputs):
        if self.multicoil:
            if self.density_compensation:
                kspace, ktraj, smaps, shape, dcomp, = inputs
            else:
                kspace, ktraj, smaps, shape = inputs
        else:
            if self.density_compensation:
                kspace, ktraj, shape, dcomp = inputs
            else:
                kspace, ktraj, shape = inputs
        shape = tf.reshape(shape[0], [])
        if self.density_compensation:
            kspace = tf.cast(dcomp, kspace.dtype) * kspace[..., 0]
        else:
            kspace = kspace[..., 0]
        image = self.backward_op(kspace, ktraj)
        image_reshaped = tf.cond(
            tf.math.greater_equal(shape, self.im_size[-1]),
            lambda: image,
            lambda: self.crop_for_pad(image, shape),
        )
        if self.multicoil:
            image = tf.reduce_sum(image_reshaped * tf.math.conj(smaps), axis=1)
        else:
            image = image_reshaped[:, 0]
        image = image[..., None]
        return image
Ejemplo n.º 8
0
class NonCartesianFastMRIDatasetBuilder(FastMRIDatasetBuilder):
    def __init__(
            self,
            image_size=IMAGE_SIZE,
            acq_type='radial',
            dcomp=True,
            scale_factor=1e6,
            traj=None,
            crop_image_data=False,
            **kwargs,
        ):
        self.image_size = image_size
        self.acq_type = acq_type
        self.traj = traj
        self._check_acq_type()
        self.dcomp = dcomp
        self.scale_factor = scale_factor
        self.crop_image_data = crop_image_data
        self.nufft_obj = KbNufftModule(
            im_size=self.image_size,
            grid_size=None,
            norm='ortho',
        )
        super(NonCartesianFastMRIDatasetBuilder, self).__init__(
            **kwargs,
        )
        if self.brain:
            raise ValueError(
                'Currently the non cartesian data works only with knee data.')
        self._check_mode()
        self._check_dcomp_multicoil()

    def _check_acq_type(self,):
        if self.acq_type not in ['spiral', 'radial', 'cartesian_debug', 'other']:
            raise ValueError(
                f'acq_type must be spiral, radial or cartesian_debug but is {self.acq_type}'
            )
        if self.acq_type == 'other' and self.traj is None:
            raise ValueError(
                f'Please provide a trajectory as input in case `acq_type` is `other`'
            )

    def _check_mode(self,):
        if self.mode == 'test':
            raise ValueError('NonCartesian dataset cannot be used in test mode')

    def _check_dcomp_multicoil(self,):
        if self.multicoil and not self.dcomp:
            raise ValueError('You must use density compensation when in multicoil')

    def generate_trajectory(self,):
        if self.acq_type == 'radial':
            traj = get_radial_trajectory(self.image_size, af=self.af)
        elif self.acq_type == 'cartesian':
            traj = get_debugging_cartesian_trajectory()
        elif self.acq_type == 'spiral':
            traj = get_spiral_trajectory(self.image_size, af=self.af)
        elif self.acq_type == 'other':
            traj = self.traj
        return traj

    def preprocessing(self, image, kspace):
        traj = self.generate_trajectory()
        interpob = self.nufft_obj._extract_nufft_interpob()
        nufftob_forw = kbnufft_forward(interpob, multiprocessing=True)
        nufftob_back = kbnufft_adjoint(interpob, multiprocessing=True)
        if self.dcomp:
            dcomp = calculate_density_compensator(
                interpob,
                nufftob_forw,
                nufftob_back,
                traj[0],
            )
        traj = tf.repeat(traj, tf.shape(image)[0], axis=0)
        orig_image_channels = ortho_ifft2d(kspace)
        if self.crop_image_data:
            image = adjust_image_size(image, self.image_size)
        nc_kspace = nufft(self.nufft_obj, orig_image_channels, traj, self.image_size, multicoil=self.multicoil)
        nc_kspace, image = scale_tensors(nc_kspace, image, scale_factor=self.scale_factor)
        image = image[..., None]
        nc_kspaces_channeled = nc_kspace[..., None]
        orig_shape = tf.ones([tf.shape(kspace)[0]], dtype=tf.int32) * self.image_size[-1]
        if not self.crop_image_data:
            output_shape = tf.shape(image)[1:][None, :]
            output_shape = tf.tile(output_shape, [tf.shape(image)[0], 1])
        extra_args = (orig_shape,)
        if self.dcomp:
            dcomp = tf.ones(
                [tf.shape(kspace)[0], tf.shape(dcomp)[0]],
                dtype=dcomp.dtype,
            ) * dcomp[None, :]
            extra_args += (dcomp,)
        model_inputs = (nc_kspaces_channeled, traj)
        if self.multicoil:
            smaps = non_cartesian_extract_smaps(nc_kspace, traj, dcomp, nufftob_back, self.image_size)
            model_inputs += (smaps,)
        if not self.crop_image_data:
            model_inputs += (output_shape,)
        model_inputs += (extra_args,)
        return model_inputs, image