Ejemplo n.º 1
0
def test_delete_layer_same_layer_outputs():
    # Create all model layers
    input_1 = Input(shape=(10, ))
    dense_1 = Dense(3)
    dense_2 = Dense(3)
    dense_3 = Dense(3)
    dense_4 = Dense(1)
    # Create the base model
    x = dense_1(input_1)
    y = dense_2(x)
    x = dense_3(x)
    output_1 = dense_4(x)
    output_2 = dense_4(y)
    model_1 = utils.clean_copy(Model(input_1, [output_1, output_2]))
    # Create the expected modified model
    x = dense_1(input_1)
    y = dense_2(x)
    output_1 = dense_4(x)
    output_2 = dense_4(y)
    model_2_exp = utils.clean_copy(Model(input_1, [output_1, output_2]))
    # Delete layer dense_3
    model_2 = operations.delete_layer(model_1,
                                      model_1.get_layer(dense_3.name),
                                      copy=False)
    # Compare the modified model with the expected modified model
    assert compare_models(model_2, model_2_exp)
Ejemplo n.º 2
0
def test_delete_all_channels_in_long_branch():
    input_1 = Input(shape=(20, 20, 3))
    conv_1 = Conv2D(2, [3, 3], name='conv_1')
    conv_2 = Conv2D(3, [3, 3], name='conv_2')
    conv_3 = Conv2D(4, [1, 1], name='conv_3')
    cat_1 = Concatenate(name='cat_1')

    x = conv_1(input_1)
    x = conv_3(x)
    y = conv_2(input_1)
    output_1 = cat_1([x, y])
    model_1 = utils.clean_copy(Model(input_1, output_1))

    surgeon = Surgeon(model_1, copy=True)
    surgeon.add_job('delete_channels',
                    model_1.get_layer('conv_1'),
                    channels=[0, 1])
    model_2 = surgeon.operate()

    output_1 = conv_2(input_1)
    model_2_exp = utils.clean_copy(Model(input_1, output_1))

    config_1 = model_2.get_config()
    config_2 = model_2_exp.get_config()
    config_2['name'] = config_1['name']  # make the config names identical
    assert config_1 == config_2
Ejemplo n.º 3
0
def test_delete_layer():
    # Create all model layers
    input_1 = Input(shape=[7, 7, 1])
    conv2d_1 = Conv2D(3, [3, 3], data_format='channels_last')
    conv2d_2 = Conv2D(3, [3, 3], data_format='channels_last')
    flatten_1 = Flatten()
    dense_1 = Dense(3)
    dense_2 = Dense(3)
    dense_3 = Dense(3)
    dense_4 = Dense(1)
    # Create the base model
    x = conv2d_1(input_1)
    x = conv2d_2(x)
    x = flatten_1(x)
    x = dense_1(x)
    x = dense_2(x)
    x = dense_3(x)
    output_1 = dense_4(x)
    model_1 = utils.clean_copy(Model(input_1, output_1))
    # Create the expected modified model
    x = conv2d_1(input_1)
    x = conv2d_2(x)
    x = flatten_1(x)
    x = dense_1(x)
    x = dense_3(x)
    output_2 = dense_4(x)
    model_2_exp = utils.clean_copy(Model(input_1, output_2))
    # Delete layer dense_2
    model_2 = operations.delete_layer(model_1, model_1.get_layer(dense_2.name))
    # Compare the modified model with the expected modified model
    assert compare_models(model_2, model_2_exp)
Ejemplo n.º 4
0
    def operate(self):
        """Perform all jobs assigned to the surgeon.
        """
        # Operate on each node in self.nodes by order of decreasing depth.
        sorted_nodes = sorted(
            self.nodes,
            reverse=True,
            key=lambda x: utils.get_node_depth(self.model, x))
        for node in sorted_nodes:
            # Rebuild submodel up to this node
            sub_output_nodes = utils.get_node_inbound_nodes(node)
            outputs, output_masks = self._rebuild_graph(
                self.model.inputs, sub_output_nodes)

            # Perform surgery at this node
            kwargs = self._kwargs_map[node]
            self._mod_func_map[node](node, outputs, output_masks, **kwargs)

        # Finish rebuilding model
        output_nodes = []
        for output in self.model.outputs:
            layer, node_index, tensor_index = output._keras_history
            output_nodes.append(get_inbound_nodes(layer)[node_index])
        new_outputs, _ = self._rebuild_graph(self.model.inputs, output_nodes)
        new_model = Model(self.model.inputs, new_outputs)

        if self._copy:
            return utils.clean_copy(new_model)
        else:
            return new_model
Ejemplo n.º 5
0
def test_insert_layer():
    # Create all model layers
    input_1 = Input(shape=[7, 7, 1])
    dense_1 = Dense(3)
    dense_2 = Dense(3)
    dense_3 = Dense(3)
    dense_4 = Dense(1)
    # Create the model
    x = dense_1(input_1)
    x = dense_2(x)
    output_1 = dense_4(x)
    model_1 = utils.clean_copy(Model(input_1, output_1))
    # Create the expected modified model
    x = dense_1(input_1)
    x = dense_2(x)
    x = dense_3(x)
    output_2 = dense_4(x)
    model_2_exp = utils.clean_copy(Model(input_1, output_2))
    # Insert dense_3 before dense_4 in model_1
    model_2 = operations.insert_layer(model_1, model_1.get_layer(dense_4.name),
                                      dense_3)
    # Compare the modified model with the expected modified model
    assert compare_models(model_2, model_2_exp)
Ejemplo n.º 6
0
def test_delete_channels_downstream_sharing():
    # Create all model layers
    input_1 = Input(shape=(5, ))
    dense_1 = Dense(4, name='dense_1')
    dense_2 = Dense(4, name='dense_2')
    dense_3 = Dense(3, name='dense_3')
    # Create the base model
    x = dense_1(input_1)
    y = dense_2(input_1)
    output_1 = dense_3(x)
    output_2 = dense_3(y)
    model_1 = utils.clean_copy(Model(input_1, [output_1, output_2]))
    # Delete channels from dense_1 and dense_2
    surgeon = Surgeon(model_1)
    surgeon.add_job('delete_channels',
                    model_1.get_layer(dense_1.name),
                    channels=[0])
    surgeon.add_job('delete_channels',
                    model_1.get_layer(dense_2.name),
                    channels=[1])
    model_2 = surgeon.operate()
    # Create the expected model
    # input_1 = Input(shape=(5,))
    dense_1_exp = Dense(3, name='dense_1')
    dense_2_exp = Dense(3, name='dense_2')
    dense_3_exp = Dense(3, name='dense_3')
    # Create the base model
    x = dense_1_exp(input_1)
    y = dense_2_exp(input_1)
    output_1 = dense_3_exp(x)
    output_2 = dense_3_exp(y)
    model_2_exp = utils.clean_copy(Model(input_1, [output_1, output_2]))

    config_1 = model_2.get_config()
    config_2 = model_2_exp.get_config()
    config_2['name'] = config_1['name']  # make the config names identical
    assert config_1 == config_2
Ejemplo n.º 7
0
 def __init__(self, model, copy=None):
     if copy:
         self.model = utils.clean_copy(model)
     else:
         self.model = model
     self.nodes = []
     self._copy = copy
     self._finished_nodes = {}
     self._replace_tensors = {}
     self._channels_map = {}
     self._new_layers_map = {}
     self._insert_layers_map = {}
     self._replace_layers_map = {}
     self._mod_func_map = {}
     self._kwargs_map = {}
     self.valid_jobs = ('delete_layer', 'insert_layer', 'replace_layer',
                        'delete_channels')