Ejemplo n.º 1
0
Archivo: test.py Proyecto: tpq/tf-logic
    def test_subdomain(self):
        World.reset()
        """Checking caching mechanism works"""

        # Program Model
        nn = tfl.functions.FeedForwardNN(input_shape=[2], output_size=2)
        images = tfl.Domain(label="Images", data=[[0., 0], [1, 1], [0.2, 0.3]])
        supervised_images = tfl.Domain(label="SupImages",
                                       data=[[0., 0], [1, 1]],
                                       father=images)
        zero = tfl.Predicate(label="zero",
                             domains=["Images"],
                             function=tfl.functions.Slice(nn, 0))
        one = tfl.Predicate(label="one",
                            domains=["Images"],
                            function=tfl.functions.Slice(nn, 1))
        tfl.setTNorm(id=tfl.PRODUCT, p=None)

        # Constraint 1
        c1 = tfl.constraint("zero(x) and one(x)", {"x": supervised_images})

        x = tfl.variable(supervised_images, name="x")
        c2 = tfl.and_n(zero(x), one(x))

        sess = tf.Session()
        sess.run(tf.global_variables_initializer())
        assert len(sess.run(c1)) == supervised_images.size
        assert np.equal(sess.run(c1), sess.run(c2)).all()
Ejemplo n.º 2
0
Archivo: test.py Proyecto: tpq/tf-logic
    def test_parser_forall(self):

        World.reset()
        World._evaluation_mode = tfl.LOGIC_MODE
        tfl.setTNorm(id=tfl.SS, p=1)

        sess = tf.Session()

        def inside(x, y):
            centers_distance = tf.sqrt(
                tf.reduce_sum(tf.squared_difference(x[:, 0:2], y[:, 0:2]),
                              axis=1) + 1e-6)
            return tf.cast((centers_distance + x[:, 2]) < y[:, 2], tf.float32)

        circles = tfl.Domain(label="Circles",
                             data=[[0., 0, 1], [0, 0, 2], [0, 0, 3]])
        inside = tfl.Predicate(label="inside",
                               domains=["Circles", "Circles"],
                               function=inside)

        x = tfl.variable(circles, "x")
        y = tfl.variable(circles, "y")

        symmetric_formula = tfl.forall(
            x, tfl.forall(y, tfl.and_n(inside(x, y), inside(y, x))))
        symmetric_parsed = tfl.constraint(
            "forall x: forall y: inside(x,y) and inside(y,x)")
        assert np.equal(sess.run(symmetric_formula),
                        sess.run(symmetric_parsed))
Ejemplo n.º 3
0
Archivo: test.py Proyecto: tpq/tf-logic
    def test_parser_and(self):

        World.reset()
        World._evaluation_mode = tfl.LOGIC_MODE

        def inside(x, y):
            centers_distance = tf.sqrt(
                tf.reduce_sum(tf.squared_difference(x[:, 0:2], y[:, 0:2]),
                              axis=1) + 1e-6)
            return tf.cast((centers_distance + x[:, 2]) < y[:, 2], tf.float32)

        tfl.setTNorm(id=tfl.SS, p=1)
        circles = tfl.Domain(label="Circles",
                             data=[[0., 0, 1], [0, 0, 2], [0, 0, 3]])
        inside = tfl.Predicate(label="inside",
                               domains=["Circles", "Circles"],
                               function=inside)

        x = tfl.variable(circles, "x")
        y = tfl.variable(circles, "y")
        a = tfl.atom(inside, (x, y))
        b = tfl.atom(inside, (y, x))
        f = tfl.and_n(a, b)

        tensor = tfl.constraint("inside(x,y) and inside(y,x)")

        sess = tf.Session()

        assert np.equal(sess.run(tensor), sess.run(f)).all()
Ejemplo n.º 4
0
Archivo: test.py Proyecto: tpq/tf-logic
    def test_slice_caching(self):
        World.reset()
        """Checking caching mechanism works"""

        # Program Model
        nn = tfl.functions.FeedForwardNN(input_shape=[2], output_size=2)
        images = tfl.Domain(label="Images", data=[[0., 0], [1, 1], [0.2, 0.3]])
        zero = tfl.Predicate(label="zero",
                             domains=["Images"],
                             function=tfl.functions.Slice(nn, 0))
        one = tfl.Predicate(label="one",
                            domains=["Images"],
                            function=tfl.functions.Slice(nn, 1))
        close = tfl.Predicate(
            label="close",
            domains=["Images", "Images"],
            function=lambda x: tf.reduce_sum(tf.abs(x[0] - x[1]), axis=1))
        tfl.setTNorm(id=tfl.PRODUCT, p=None)

        # Constraint 1
        c1 = tfl.constraint("forall x: zero(x) and one(x) and one(y)")
Ejemplo n.º 5
0
tfl.World.reset()
tfl.World._evaluation_mode = tfl.LOSS_MODE
tfl.setTNorm(id=tfl.SS, p=1)

# Domains Definition
images = tfl.Domain("Images", data=x_final, size=minibatch_size)

# Predicates Definition
for k,v in predicates_dict.items():
    tfl.Predicate(k, domains=("Images",), function=tfl.functions.Slice(cifar, v))


# Constraints
constraints = []
constraints.append(tfl.constraint("forall x: transport(x) <-> airplane(x) or ship(x) or onroad(x)"))
constraints.append(tfl.constraint("forall x: onroad(x) <-> automobile(x) or truck(x)"))
constraints.append(tfl.constraint("forall x: animal(x) <-> bird(x) or frog(x) or mammal(x)"))
constraints.append(tfl.constraint("forall x: mammal(x) <-> cat(x) or deer(x) or dog(x) or horse(x)"))
constraints.append(tfl.constraint("forall x: otherleaves(x) <-> bird(x) or frog(x) or ship(x) or airplane(x)"))
constraints.append(tfl.constraint("forall x: flies(x) <-> bird(x) or airplane(x)"))
constraints.append(tfl.constraint("forall x: notflies(x) <-> cat(x) or dog(x) or horse(x) or deer(x) or truck(x) or ship(x) or automobile(x) or frog(x)"))




# --------------------- LEARNING -----------------------------#
print("Creating learning operations graph...")

y_pred = cifar_log(x_tr)[:,:original_num_classes]
sup_loss = tf.losses.softmax_cross_entropy(logits=y_pred, onehot_labels=y_tr)
Ejemplo n.º 6
0
num_points_ph = tf.placeholder(tf.int64)
X_ph = tf.placeholder(tf.float32, shape=(None, 2))
Points = tfl.Domain(label="Points", data=X_ph, size=num_points_ph)
SPoints = tfl.Domain(label="SPoints", data=X_sup_np, father=Points)

R1 = tfl.Predicate("A", domains=[
    "Points",
], function=is_A)
R2 = tfl.Predicate("isClose", domains=["Points", "Points"], function=is_close)
R3 = tfl.Predicate("SA",
                   domains=[
                       "Points",
                   ],
                   function=lambda x: tf.squeeze(y_sup))

c_m = tfl.constraint("forall p: forall q: isClose(p,q) -> (A(p) <-> A(q))")
c_s = tfl.constraint("forall p: SA(p) <-> A(p)", {"p": SPoints})

loss_pre_vincoli = c_s

activate_rules = tf.placeholder(dtype=tf.bool, shape=[])
lr = tf.placeholder(dtype=tf.float32, shape=[])
loss_post_vincoli = loss_pre_vincoli + 0.001 * c_m
loss = tf.cond(activate_rules, lambda: loss_post_vincoli,
               lambda: loss_pre_vincoli)
train_op = tf.train.AdamOptimizer(lr).minimize(loss)

test_outputs = is_A(X_test)[:, 0:1]
test_predictions = tf.where(test_outputs > 0.5,
                            tf.ones_like(test_outputs, dtype=tf.float32),
                            tf.zeros_like(test_outputs, dtype=tf.float32))