print(psnr_vals_list)


# -------------------------------- Train loop ---------------------------------------------

config = tf.ConfigProto()  # dynamic memory growth
config.gpu_options.allow_growth = True

with tf.Session(config=config) as session:

    # Init variables
    if (START_ITER > 0):
        saver.restore(session,
                      restore_path)  # Restore variables from saved session.
        print("Model restored.")
        plotter.restore(START_ITER)  # makes plots start from 0
        session.run(fixed_noise.initializer)
    else:
        session.run(init_op)
        session.run(fixed_noise.initializer)
    print(fixed_noise.eval())

    overall_start_time = time.time()

    summary_writer = tf.summary.FileWriter(log_dir, graph=session.graph)

    # Network Training
    for iteration in range(START_ITER,
                           ITERS):  # START_ITER: 0 or from last checkpoint
        start_time = time.time()
Ejemplo n.º 2
0
    imsaver.save_images(samples_255.reshape((BATCH_SIZE, 3, IM_DIM, IM_DIM)),
                        'samples_{}.png'.format(frame))  ### for MNIST


init_op = tf.global_variables_initializer()  # op to initialize the variables.
saver = tf.train.Saver()  # ops to save and restore all the variables.

# Train loop
with tf.Session() as session:
    # Init variables
    if (CONTINUE):
        saver.restore(session,
                      restore_path)  # Restore variables from saved session.
        print("Model restored.")
        plotter.restore(
            START_ITER
        )  # does not fully work, but makes plots start from newly started iteration
    else:
        session.run(init_op)

    for iteration in range(START_ITER,
                           ITERS):  # START_ITER: 0 or from last checkpoint
        start_time = time.time()
        # Train generator
        if iteration > 0:
            _ = session.run(gen_train_op)
        # Train duscriminator
        for i in range(DISC_ITERS):
            _data, _ = next(gen)  # shape: (batchsize, 6144)
            _real_data = _data[:, 2 * OUTPUT_DIM:]  # current frame for disc
            _disc_cost, _ = session.run([disc_cost, disc_train_op],