Ejemplo n.º 1
0
def save_metadata_to_model_file(metadata, model_filename):
    b = flatbuffers.Builder(0)
    b.Finish(metadata.Pack(b),
             _metadata.MetadataPopulator.METADATA_FILE_IDENTIFIER)
    metadata_buffer = b.Output()
    populator = _metadata.MetadataPopulator.with_model_file(model_filename)
    populator.load_metadata_buffer(metadata_buffer)
    # populator.load_associated_files(["your_path_to_label_file"]) # No associated files for this (e.g. No labels files)
    populator.populate()
Ejemplo n.º 2
0
    _metadata_fb.FeaturePropertiesT())

group = _metadata_fb.TensorGroupT()
group.name = "detection result"
group.tensorNames = [
    output_location_meta.name, output_class_meta.name, output_score_meta.name
]
subgraph = _metadata_fb.SubGraphMetadataT()
subgraph.inputTensorMetadata = [input_meta]
subgraph.outputTensorMetadata = [
    output_location_meta, output_class_meta, output_score_meta,
    output_number_meta
]
subgraph.outputTensorGroups = [group]
model_meta.subgraphMetadata = [subgraph]
b = flatbuffers.Builder(0)
b.Finish(model_meta.Pack(b),
         _metadata.MetadataPopulator.METADATA_FILE_IDENTIFIER)
metadta_buf = b.Output()

#본인 경로
populator = _metadata.MetadataPopulator.with_model_file("detect.tflite")
populator.load_metadata_buffer(metadta_buf)
#본인 경로
populator.load_associated_files(["label.txt"])
populator.populate()

# #메타 데이터 시각화
# import os
# displayer = _metadata.MetadataDisplayer.with_model_file("C:/Users/lee01/Jupyter_Projects/Safety-Helmet-Wearing-Dataset/ProcessingTfliteDetectionModel/final_model.tflite")
# export_json_file = os.path.join(FLAGS.export_directory,
def build_metadata(name: str,
                   version: str,
                   labels: List[LabelDescription],
                   output_types: List[OutputTensorType],
                   output_interpretation: str = "",
                   task: Optional[str] = None,
                   author: str = "",
                   task_params: str = "") -> bytearray:
    """

    Args:
        name:
        version:
        labels:
        output_types:
        output_interpretation:
        task:
        author:
        task_params:

    Returns:

    """
    if task is None or task == "":
        # Auto infer detection or localization from targets
        types = set(output_types)
        if types == {
                OutputTensorType.BOX_SHAPE,
                OutputTensorType.OBJECTNESS,
                OutputTensorType.CLASSES,
        }:
            task = TaskType.OBJECT_DETECTION.value
        elif types == {
                OutputTensorType.BOX_SHAPE, OutputTensorType.OBJECTNESS
        }:
            task = TaskType.OBJECT_LOCALIZATION.value
        else:
            raise ValueError(
                f"Cannot infer task_type from output_types: {output_types}")

    metadata = ModelMetadata(
        name=name,
        version=version,
        task=task,
        output_interpretation=output_interpretation,
        labels=labels,
        task_params=task_params,
    )

    model_meta = _metadata_fb.ModelMetadataT()
    model_meta.name = name
    model_meta.description = json.dumps(metadata.asdict)
    model_meta.version = version
    model_meta.author = author

    input_meta = _metadata_fb.TensorMetadataT()
    input_meta.name = "image"

    output_metas = []
    for t in output_types:
        output_meta = _metadata_fb.TensorMetadataT()
        output_meta.name = t.value
        output_metas.append(output_meta)

    subgraph = _metadata_fb.SubGraphMetadataT()
    subgraph.inputTensorMetadata = [input_meta]
    subgraph.outputTensorMetadata = output_metas
    model_meta.subgraphMetadata = [subgraph]

    b = flatbuffers.Builder(0)
    b.Finish(model_meta.Pack(b),
             _metadata.MetadataPopulator.METADATA_FILE_IDENTIFIER)
    metadata_buf = b.Output()
    return metadata_buf
def build_metadata(
    model_file_path: str,
    #model_name: str,
    #model_description: str,
    #model_author: str,
    #model_license: str,
    vocab_file_path: str=None, 
    sentencepiece_model_path: str=None):


    model_meta = _metadata_fb.ModelMetadataT()
    model_meta.name = 'distilbert news'
    model_meta.description = 'some model description'
    model_meta.version = 'v1'
    model_meta.author = 'Unknown'
    model_meta.license = 'Apache License. Version 2.0'
    model_meta.minParserVersion = '1.1.0'

    # Creates input info.
    ids = _metadata_fb.TensorMetadataT()
    segment_ids = _metadata_fb.TensorMetadataT()
    mask = _metadata_fb.TensorMetadataT()
    
    ids.name = "ids"
    ids.description = "Tokenized ids of input text."
    ids.content = _metadata_fb.ContentT()
    ids.content.contentProperties = _metadata_fb.FeaturePropertiesT()
    ids.content.contentPropertiesType = (
        _metadata_fb.ContentProperties.FeatureProperties)

    segment_ids.name = "segment_ids"
    segment_ids.description = "0 for the first sequence, 1 for the second sequence if exits."
    segment_ids.content = _metadata_fb.ContentT()
    segment_ids.content.contentProperties = _metadata_fb.FeaturePropertiesT()
    segment_ids.content.contentPropertiesType = (
        _metadata_fb.ContentProperties.FeatureProperties)

    mask.name = "mask"
    mask.description = "Mask with 1 for real tokens and 0 for padding tokens."
    mask.content = _metadata_fb.ContentT()
    mask.content.contentProperties = _metadata_fb.FeaturePropertiesT()
    mask.content.contentPropertiesType = (
        _metadata_fb.ContentProperties.FeatureProperties)
    

    # Creates output info.
    output_meta = _metadata_fb.TensorMetadataT()
    output_meta.name = "output"
    output_meta.description = "the id of the output class"
    output_meta.content = _metadata_fb.ContentT()
    output_meta.content.contentProperties = _metadata_fb.FeaturePropertiesT()
    output_meta.content.contentPropertiesType = (
        _metadata_fb.ContentProperties.FeatureProperties)

    """
    label_file = _metadata_fb.AssociatedFileT()
    label_file.name = os.path.basename(label_file_path)
    label_file.description = "Labels for the categories to be predicted."
    label_file.type = _metadata_fb.AssociatedFileType.TENSOR_AXIS_LABELS
    output_meta.associatedFiles = [label_file]
    """
    
    input_process_units = []
    if sentencepiece_model_path is not None:
    #Add sentencepiece specific process unit
        sentencepiece_process_unit = _metadata_fb.ProcessUnitT()
        sentencepiece_process_unit.optionsType = (
            _metadata_fb.ProcessUnitOptions.SentencePieceTokenizerOptions)
        sentencepiece_process_unit.options = _metadata_fb.SentencePieceTokenizerOptionsT()
        sentencepiece_model = AssociatedFileT()
        sentencepiece_model.name="30k-clean-model",
        sentencepiece_model.description="The sentence piece model file."
        sentencepiece_process_unit.options.sentencePieceModel = [sentencepiece_model]
        input_process_units.append(sentencepiece_process_unit)

    if vocab_file_path is not None:
        model_process_unit = _metadata_fb.ProcessUnitT()
        model_process_unit.optionsType = (
            _metadata_fb.ProcessUnitOptions.BertTokenizerOptions)
        model_process_unit.options = _metadata_fb.BertTokenizerOptionsT()
        vocab_file = AssociatedFileT()
        vocab_file.name="jp word piece vocab",
        vocab_file.description="Japanese Vocabulary file for the BERT tokenizer.",
        vocab_file.type=_metadata_fb.AssociatedFileType.VOCABULARY
        model_process_unit.options.vocabFile = [vocab_file]
        input_process_units.append(model_process_unit)

    #Put metadata together

    subgraph = _metadata_fb.SubGraphMetadataT()
    subgraph.inputTensorMetadata = [ids, mask, segment_ids]
    subgraph.outputTensorMetadata = [output_meta]
    
    subgraph.inputProcessUnits = input_process_units

    model_meta.subgraphMetadata = [subgraph]

    #create flat buffers for metadata
    b = flatbuffers.Builder(0)
    b.Finish(
        model_meta.Pack(b),
        _metadata.MetadataPopulator.METADATA_FILE_IDENTIFIER)
    metadata_buf = b.Output()

    #associate files to metadata

    populator = _metadata.MetadataPopulator.with_model_file(model_file_path)
    populator.load_metadata_buffer(metadata_buf)
    if vocab_file_path is not None:
        files = [vocab_file_path]
    else:
        files = [sentencepiece_model_path]
    populator.load_associated_files(files)
    populator.populate()
Ejemplo n.º 5
0
def create_metadata(model_file_name, label_map_file_name, num_labels):
    from tflite_support import flatbuffers
    from tflite_support import metadata as _metadata
    from tflite_support import metadata_schema_py_generated as _metadata_fb
    """ ... """
    """Creates the metadata for an image classifier."""

    # Creates model info.
    model_meta = _metadata_fb.ModelMetadataT()
    model_meta.name = 'MobileNetV1 image classifier'
    model_meta.description = ('Identify the most prominent object in the '
                              'image from a set of 1,001 categories such as '
                              'trees, animals, food, vehicles, person etc.')
    model_meta.version = 'v1'
    model_meta.author = 'TensorFlow'
    model_meta.license = ('Apache License. Version 2.0 '
                          'http://www.apache.org/licenses/LICENSE-2.0.')

    # Creates input info.
    input_meta = _metadata_fb.TensorMetadataT()
    input_meta.name = 'image'
    input_meta.description = (
        'Input image to be classified. The expected image is {0} x {1}, with '
        'three channels (red, blue, and green) per pixel. Each value in the '
        'tensor is a single byte between 0 and 255.'.format(416, 416))
    input_meta.content = _metadata_fb.ContentT()
    input_meta.content.contentProperties = _metadata_fb.ImagePropertiesT()
    input_meta.content.contentProperties.colorSpace = (
        _metadata_fb.ColorSpaceType.RGB)
    input_meta.content.contentPropertiesType = (
        _metadata_fb.ContentProperties.ImageProperties)
    input_normalization = _metadata_fb.ProcessUnitT()
    input_normalization.optionsType = (
        _metadata_fb.ProcessUnitOptions.NormalizationOptions)
    input_normalization.options = _metadata_fb.NormalizationOptionsT()
    input_normalization.options.mean = [127.5]
    input_normalization.options.std = [127.5]
    input_meta.processUnits = [input_normalization]
    input_stats = _metadata_fb.StatsT()
    input_stats.max = [255]
    input_stats.min = [0]
    input_meta.stats = input_stats

    # Creates output info.
    bbox_meta = _metadata_fb.TensorMetadataT()
    bbox_meta.name = 'bbox'
    bbox_meta.description = '.'
    bbox_meta.content = _metadata_fb.ContentT()
    bbox_meta.content.content_properties = _metadata_fb.FeaturePropertiesT()
    bbox_meta.content.contentPropertiesType = (
        _metadata_fb.ContentProperties.FeatureProperties)
    bbox_stats = _metadata_fb.StatsT()
    bbox_stats.max = [416.0]
    bbox_stats.min = [0.0]
    bbox_meta.stats = bbox_stats

    classes_meta = _metadata_fb.TensorMetadataT()
    classes_meta.name = 'classes'
    classes_meta.description = '.'
    classes_meta.content = _metadata_fb.ContentT()
    classes_meta.content.content_properties = _metadata_fb.FeaturePropertiesT()
    classes_meta.content.contentPropertiesType = (
        _metadata_fb.ContentProperties.FeatureProperties)
    classes_stats = _metadata_fb.StatsT()
    classes_stats.max = [num_labels]
    classes_stats.min = [0]
    classes_meta.stats = classes_stats
    label_file = _metadata_fb.AssociatedFileT()
    label_file.name = os.path.basename(label_map_file_name)
    label_file.description = 'Labels for objects that the model can recognize.'
    label_file.type = _metadata_fb.AssociatedFileType.TENSOR_AXIS_LABELS
    classes_meta.associatedFiles = [label_file]

    confidence_meta = _metadata_fb.TensorMetadataT()
    confidence_meta.name = 'confidence'
    confidence_meta.description = '.'
    confidence_meta.content = _metadata_fb.ContentT()
    confidence_meta.content.content_properties = _metadata_fb.FeaturePropertiesT(
    )
    confidence_meta.content.contentPropertiesType = (
        _metadata_fb.ContentProperties.FeatureProperties)
    confidence_stats = _metadata_fb.StatsT()
    confidence_stats.max = [1.0]
    confidence_stats.min = [0.0]
    confidence_meta.stats = confidence_stats

    num_dets_meta = _metadata_fb.TensorMetadataT()
    num_dets_meta.name = 'num_dets'
    num_dets_meta.description = '.'
    num_dets_meta.content = _metadata_fb.ContentT()
    num_dets_meta.content.content_properties = _metadata_fb.FeaturePropertiesT(
    )
    num_dets_meta.content.contentPropertiesType = (
        _metadata_fb.ContentProperties.FeatureProperties)
    num_dets_stats = _metadata_fb.StatsT()
    num_dets_stats.max = [200]
    num_dets_stats.min = [0]
    num_dets_meta.stats = num_dets_stats

    raw_output_meta = _metadata_fb.TensorMetadataT()
    raw_output_meta.name = 'raw_output'
    raw_output_meta.description = '.'
    raw_output_meta.content = _metadata_fb.ContentT()
    raw_output_meta.content.content_properties = _metadata_fb.FeaturePropertiesT(
    )
    raw_output_meta.content.contentPropertiesType = (
        _metadata_fb.ContentProperties.FeatureProperties)

    subgraph = _metadata_fb.SubGraphMetadataT()
    subgraph.inputTensorMetadata = [input_meta]
    subgraph.outputTensorMetadata = [
        bbox_meta, classes_meta, confidence_meta, num_dets_stats
    ]  # raw_output_meta
    model_meta.subgraphMetadata = [subgraph]

    b = flatbuffers.Builder(0)
    b.Finish(model_meta.Pack(b),
             _metadata.MetadataPopulator.METADATA_FILE_IDENTIFIER)
    metadata_buf = b.Output()

    populator = _metadata.MetadataPopulator.with_model_file(model_file_name)
    populator.load_metadata_buffer(metadata_buf)
    populator.load_associated_files([label_map_file_name])
    populator.populate()
Ejemplo n.º 6
0
    def _create_metadata(self):
        """Creates the metadata for the selfie2anime model."""

        # Creates model info.
        model_meta = _metadata_fb.ModelMetadataT()
        model_meta.name = "Selfie2Anime"
        model_meta.description = ("Convert selfie to anime.")
        model_meta.version = "v1"
        model_meta.author = "TensorFlow"
        model_meta.license = ("Apache License. Version 2.0 "
                              "http://www.apache.org/licenses/LICENSE-2.0.")

        # Creates info for the input, selfie image.
        input_image_meta = _metadata_fb.TensorMetadataT()
        input_image_meta.name = "selfie_image"
        input_image_meta.description = (
            "The expected image is 256 x 256, with three channels "
            "(red, blue, and green) per pixel. Each value in the tensor is between"
            " 0 and 1.")
        input_image_meta.content = _metadata_fb.ContentT()
        input_image_meta.content.contentProperties = (
            _metadata_fb.ImagePropertiesT())
        input_image_meta.content.contentProperties.colorSpace = (
            _metadata_fb.ColorSpaceType.RGB)
        input_image_meta.content.contentPropertiesType = (
            _metadata_fb.ContentProperties.ImageProperties)
        input_image_normalization = _metadata_fb.ProcessUnitT()
        input_image_normalization.optionsType = (
            _metadata_fb.ProcessUnitOptions.NormalizationOptions)
        input_image_normalization.options = _metadata_fb.NormalizationOptionsT(
        )
        input_image_normalization.options.mean = [0.0]
        input_image_normalization.options.std = [255]
        input_image_meta.processUnits = [input_image_normalization]
        input_image_stats = _metadata_fb.StatsT()
        input_image_stats.max = [1.0]
        input_image_stats.min = [0.0]
        input_image_meta.stats = input_image_stats

        # Creates output info, anime image
        output_image_meta = _metadata_fb.TensorMetadataT()
        output_image_meta.name = "anime_image"
        output_image_meta.description = "Image styled."
        output_image_meta.content = _metadata_fb.ContentT()
        output_image_meta.content.contentProperties = _metadata_fb.ImagePropertiesT(
        )
        output_image_meta.content.contentProperties.colorSpace = (
            _metadata_fb.ColorSpaceType.RGB)
        output_image_meta.content.contentPropertiesType = (
            _metadata_fb.ContentProperties.ImageProperties)
        output_image_normalization = _metadata_fb.ProcessUnitT()
        output_image_normalization.optionsType = (
            _metadata_fb.ProcessUnitOptions.NormalizationOptions)
        output_image_normalization.options = _metadata_fb.NormalizationOptionsT(
        )
        output_image_normalization.options.mean = [0.0]
        output_image_normalization.options.std = [0.003921568627]  # 1/255
        output_image_meta.processUnits = [output_image_normalization]
        output_image_stats = _metadata_fb.StatsT()
        output_image_stats.max = [1.0]
        output_image_stats.min = [0.0]
        output_image_meta.stats = output_image_stats

        # Creates subgraph info.
        subgraph = _metadata_fb.SubGraphMetadataT()
        subgraph.inputTensorMetadata = [input_image_meta
                                        ]  # Updated by Margaret
        subgraph.outputTensorMetadata = [output_image_meta
                                         ]  # Updated by Margaret
        model_meta.subgraphMetadata = [subgraph]

        b = flatbuffers.Builder(0)
        b.Finish(model_meta.Pack(b),
                 _metadata.MetadataPopulator.METADATA_FILE_IDENTIFIER)
        self.metadata_buf = b.Output()
Ejemplo n.º 7
0
    def _create_metadata(self):
        """Creates the metadata for an image classifier."""

        # Creates model info.
        model_meta = _metadata_fb.ModelMetadataT()
        model_meta.name = self.model_info.name
        model_meta.description = ("Identify the most prominent object in the "
                                  "image from a set of categories.")
        model_meta.version = self.model_info.version
        model_meta.author = "TFLite Model Maker"
        model_meta.license = ("Apache License. Version 2.0 "
                              "http://www.apache.org/licenses/LICENSE-2.0.")

        # Creates input info.
        input_meta = _metadata_fb.TensorMetadataT()
        input_meta.name = "image"
        input_meta.description = (
            "Input image to be classified. The expected image is {0} x {1}, with "
            "three channels (red, blue, and green) per pixel. Each value in the "
            "tensor is a single byte between {2} and {3}.".format(
                self.model_info.image_width, self.model_info.image_height,
                self.model_info.image_min, self.model_info.image_max))
        input_meta.content = _metadata_fb.ContentT()
        input_meta.content.contentProperties = _metadata_fb.ImagePropertiesT()
        input_meta.content.contentProperties.colorSpace = (
            _metadata_fb.ColorSpaceType.RGB)
        input_meta.content.contentPropertiesType = (
            _metadata_fb.ContentProperties.ImageProperties)
        input_normalization = _metadata_fb.ProcessUnitT()
        input_normalization.optionsType = (
            _metadata_fb.ProcessUnitOptions.NormalizationOptions)
        input_normalization.options = _metadata_fb.NormalizationOptionsT()
        input_normalization.options.mean = self.model_info.mean
        input_normalization.options.std = self.model_info.std
        input_meta.processUnits = [input_normalization]
        input_stats = _metadata_fb.StatsT()
        input_stats.max = [self.model_info.image_max]
        input_stats.min = [self.model_info.image_min]
        input_meta.stats = input_stats

        # Creates output info.
        output_meta = _metadata_fb.TensorMetadataT()
        output_meta.name = "probability"
        output_meta.description = "Probabilities of the labels respectively."
        output_meta.content = _metadata_fb.ContentT()
        output_meta.content.content_properties = _metadata_fb.FeaturePropertiesT(
        )
        output_meta.content.contentPropertiesType = (
            _metadata_fb.ContentProperties.FeatureProperties)
        output_stats = _metadata_fb.StatsT()
        output_stats.max = [1.0]
        output_stats.min = [0.0]
        output_meta.stats = output_stats
        label_file = _metadata_fb.AssociatedFileT()
        label_file.name = os.path.basename(self.label_file_path)
        label_file.description = "Labels that %s can recognize." % model_meta.name
        label_file.type = _metadata_fb.AssociatedFileType.TENSOR_AXIS_LABELS
        output_meta.associatedFiles = [label_file]

        # Creates subgraph info.
        subgraph = _metadata_fb.SubGraphMetadataT()
        subgraph.inputTensorMetadata = [input_meta]
        subgraph.outputTensorMetadata = [output_meta]
        model_meta.subgraphMetadata = [subgraph]

        b = flatbuffers.Builder(0)
        b.Finish(model_meta.Pack(b),
                 _metadata.MetadataPopulator.METADATA_FILE_IDENTIFIER)
        self.metadata_buf = b.Output()