Ejemplo n.º 1
0
def quickrun3(operators, grabbed_vars=None, dir='probeview', feed_dict=None):
    sess = tf.Session()
    probe_stream = TFT.viewprep(sess, dir=dir)
    sess.run(tf.global_variables_initializer())
    results = sess.run([operators, grabbed_vars], feed_dict=feed_dict)
    sess.close()
    TFT.show_results(results[1], grabbed_vars, dir)
    return results
Ejemplo n.º 2
0
def quickrun2(operators, grabbed_vars=None, dir='probeview'):
    sess = tf.Session()
    probe_stream = TFT.viewprep(sess, dir=dir)
    sess.run(tf.global_variables_initializer())
    results = sess.run([
        operators, grabbed_vars
    ])  # result = a list of output values, one from each operator.
    sess.close()
    TFT.show_results(results[1], grabbed_vars, dir)
    return results
Ejemplo n.º 3
0
                print("Validation Error: ", self.validation_error_history[-1][1])
            # Consider validation testing here or something

        # TFT.fireup_tensorboard(logdir='probeview')

        # Plots.line([errors, self.validation_error_history])
        print("\nFinished Training")
        print("Training Cost: " + str(self.training_error_history[-1][1]))
        print("Training Error %: " + str(self.training_error_history[-1][1] * 100) + " %")
        print("Validation Error: " + str(self.validation_error_history[-1][1]))
        print("Validation Error %: " + str(self.validation_error_history[-1][1] * 100) + "%")
        # Plots.scatter([self.training_error_history, self.validation_error_history],
        #            ["Training Error", "Validation Error"])

        # Plots.plotWeights([self.grabbed_weigths_history])
        TFT.viewprep(sess)

        Plots.line([self.training_error_history, self.validation_error_history], ["Training Cost", "Validation Error"])

        print("\nResults for Training Set")
        self.do_testing(self.case_manager.get_training_cases())
        print("\nResults for Testing Set")
        self.do_testing(self.case_manager.get_testing_cases())

        if self.config.mbsize > 0:  # Should run map test
            print("\nRunning Map Tests")
            map_batch_size = self.config.mbsize
            np.random.shuffle(case_list)  # Select random cases for this minibatch
            cases = case_list[:map_batch_size]
            self.do_testing(cases, grabvars=self.grabvars, scenario="mapping")