Ejemplo n.º 1
0
def main(cmd):
    cfg = yaml.safe_load(cmd.cfg.read())
    print(yaml.dump(cfg, default_flow_style=False))

    num_chunks = cfg['dataset']['num_chunks']
    chunks = get_latest_chunks(cfg['dataset']['input'], num_chunks)

    train_ratio = cfg['dataset']['train_ratio']
    num_train = int(num_chunks * train_ratio)
    shuffle_size = cfg['training']['shuffle_size']
    ChunkParser.BATCH_SIZE = cfg['training']['batch_size']

    root_dir = os.path.join(cfg['training']['path'], cfg['name'])
    if not os.path.exists(root_dir):
        os.makedirs(root_dir)

    train_parser = ChunkParser(FileDataSrc(chunks[:num_train]),
                               shuffle_size=shuffle_size,
                               sample=SKIP,
                               batch_size=ChunkParser.BATCH_SIZE)
    dataset = tf.data.Dataset.from_generator(train_parser.parse,
                                             output_types=(tf.string,
                                                           tf.string,
                                                           tf.string))
    dataset = dataset.map(ChunkParser.parse_function)
    dataset = dataset.prefetch(4)
    train_iterator = dataset.make_one_shot_iterator()

    shuffle_size = int(shuffle_size * (1.0 - train_ratio))
    test_parser = ChunkParser(FileDataSrc(chunks[num_train:]),
                              shuffle_size=shuffle_size,
                              sample=SKIP,
                              batch_size=ChunkParser.BATCH_SIZE)
    dataset = tf.data.Dataset.from_generator(test_parser.parse,
                                             output_types=(tf.string,
                                                           tf.string,
                                                           tf.string))
    dataset = dataset.map(ChunkParser.parse_function)
    dataset = dataset.prefetch(4)
    test_iterator = dataset.make_one_shot_iterator()

    tfprocess = TFProcess(cfg)
    tfprocess.init(dataset, train_iterator, test_iterator)

    if os.path.exists(os.path.join(root_dir, 'checkpoint')):
        cp = get_checkpoint(root_dir)
        tfprocess.restore(cp)

    # Sweeps through all test chunks statistically
    num_evals = (num_chunks - num_train) * 10 // ChunkParser.BATCH_SIZE
    print("Using {} evaluation batches".format(num_evals))

    for _ in range(cfg['training']['total_steps']):
        tfprocess.process(ChunkParser.BATCH_SIZE, num_evals)

    tfprocess.save_leelaz_weights(cmd.output)

    tfprocess.session.close()
    train_parser.shutdown()
    test_parser.shutdown()
Ejemplo n.º 2
0
def main(args):

    train_data_prefix = args.pop(0)

    chunks = get_chunks(train_data_prefix)
    print("Found {0} chunks".format(len(chunks)))

    if not chunks:
        return

    parser = ChunkParser(chunks)

    run_test(parser)
    #benchmark(parser)

    dataset = tf.data.Dataset.from_generator(
        parser.parse_chunk, output_types=(tf.string))
    dataset = dataset.shuffle(65536)
    dataset = dataset.map(_parse_function)
    dataset = dataset.batch(BATCH_SIZE)
    dataset = dataset.prefetch(16)
    iterator = dataset.make_one_shot_iterator()
    next_batch = iterator.get_next()

    tfprocess = TFProcess(next_batch)
    if args:
        restore_file = args.pop(0)
        tfprocess.restore(restore_file)
    while True:
        tfprocess.process(BATCH_SIZE)
Ejemplo n.º 3
0
def main():
    batch = [
        tf.placeholder(tf.float32, [None, 120, 8 * 8]),
        tf.placeholder(tf.float32, [None, 1924]),
        tf.placeholder(tf.float32, [None, 1]),
    ]
    tfprocess = TFProcess(batch)
    tfprocess.save_leelaz_weights('weights.txt')
Ejemplo n.º 4
0
def main(cmd):
    cfg = yaml.safe_load(cmd.cfg.read())
    print(yaml.dump(cfg, default_flow_style=False))

    root_dir = os.path.join(cfg['training']['path'], cfg['name'])
    if not os.path.exists(root_dir):
        os.makedirs(root_dir)

    x = [
        tf.placeholder(tf.float32, [None, 112, 8*8]),
        tf.placeholder(tf.float32, [None, 1858]),
        tf.placeholder(tf.float32, [None, 3]),
        tf.placeholder(tf.float32, [None, 3]),
    ]

    tfprocess = TFProcess(cfg)
    tfprocess.init_net(x)

    if os.path.exists(os.path.join(root_dir, 'checkpoint')):
        cp = tf.train.latest_checkpoint(root_dir)
        reader = tf.train.NewCheckpointReader(cp)
        saved_shapes = reader.get_variable_to_shape_map()
        new_names = sorted(
            [var.name.split(':')[0] for var in tf.global_variables()
             if var.name.split(':')[0] not in saved_shapes])
        for saved_var_name in new_names:
            print("New name {} will use default value".format(saved_var_name))
        var_names = sorted(
            [(var.name, var.name.split(':')[0]) for var in tf.global_variables()
             if var.name.split(':')[0] in saved_shapes])
        restore_vars = []
        restore_names = []
        for var_name, saved_var_name in var_names:
            curr_var = tf.get_default_graph().get_tensor_by_name(var_name)
            var_shape = curr_var.get_shape().as_list()
            if var_shape == saved_shapes[saved_var_name]:
                restore_vars.append(curr_var)
                restore_names.append(saved_var_name)
            else:
                print("Dropping {} due to shape change".format(saved_var_name))
        legacy_names = sorted(
            [name for name in saved_shapes.keys()
             if name not in restore_names])
        for saved_var_name in legacy_names:
            print("Dropping {} as no longer used".format(saved_var_name))
        opt_saver = tf.train.Saver(restore_vars)
        opt_saver.restore(tfprocess.session, cp)
    else:
        print("No checkpoint to upgrade!")
        exit(1)

    steps = tf.train.global_step(tfprocess.session, tfprocess.global_step)
    path = os.path.join(root_dir, cfg['name'])
    save_path = tfprocess.saver.save(tfprocess.session, path, global_step=steps)
    tfprocess.session.close()
Ejemplo n.º 5
0
def main(args):
    train_data_prefix = args.pop(0)

    chunks = get_chunks(train_data_prefix)
    print("Found {0} chunks".format(len(chunks)))

    if chunks:
        tfprocess = TFProcess()
        if args:
            restore_file = args.pop(0)
            tfprocess.restore(restore_file)
        do_train_loop(chunks, tfprocess)
Ejemplo n.º 6
0
def main(args):

    trainning = GameArchive('../../data/train1.data')
    train_parser = ChunkParser(trainning.games)
    dataset = tf.data.Dataset.from_generator(train_parser.parse_chunk,
                                             output_types=(tf.string))
    dataset = dataset.shuffle(1 << 18)
    dataset = dataset.map(_parse_function)
    dataset = dataset.batch(BATCH_SIZE)
    dataset = dataset.prefetch(4)
    train_iterator = dataset.make_one_shot_iterator()

    testing = GameArchive('../../data/test1.data')
    test_parser = ChunkParser(testing.games)
    dataset = tf.data.Dataset.from_generator(test_parser.parse_chunk,
                                             output_types=(tf.string))
    dataset = dataset.map(_parse_function)
    dataset = dataset.batch(BATCH_SIZE)
    dataset = dataset.prefetch(4)
    test_iterator = dataset.make_one_shot_iterator()

    tfprocess = TFProcess()
    tfprocess.init(dataset, train_iterator, test_iterator)

    if args:
        restore_file = args.pop(0)
        tfprocess.restore(restore_file)
    while True:
        tfprocess.process(BATCH_SIZE)
Ejemplo n.º 7
0
def main():
    if len(sys.argv) != 2:
        print("Usage: {} config.yaml".format(sys.argv[0]))
        return 1

    cfg = yaml.safe_load(open(sys.argv[1], 'r').read())
    print(yaml.dump(cfg, default_flow_style=False))

    batch = [
        tf.placeholder(tf.float32, [None, 120, 8 * 8]),
        tf.placeholder(tf.float32, [None, 1924]),
        tf.placeholder(tf.float32, [None, 1]),
    ]
    tfprocess = TFProcess(cfg, batch)
    tfprocess.save_leelaz_weights('weights.txt')
Ejemplo n.º 8
0
def main(cmd):
    cfg = yaml.safe_load(cmd.cfg.read())
    print(yaml.dump(cfg, default_flow_style=False))

    num_chunks = cfg['dataset']['num_chunks']
    chunks = get_latest_chunks(cfg['dataset']['input'], num_chunks)

    train_ratio = cfg['dataset']['train_ratio']
    num_train = int(num_chunks*train_ratio)
    shuffle_size = cfg['training']['shuffle_size']
    ChunkParser.BATCH_SIZE = cfg['training']['batch_size']

    root_dir = os.path.join(cfg['training']['path'], cfg['name'])
    if not os.path.exists(root_dir):
        os.makedirs(root_dir)

    train_parser = ChunkParser(FileDataSrc(chunks[:num_train]),
            shuffle_size=shuffle_size, sample=SKIP, batch_size=ChunkParser.BATCH_SIZE)
    dataset = tf.data.Dataset.from_generator(
        train_parser.parse, output_types=(tf.string, tf.string, tf.string))
    dataset = dataset.map(ChunkParser.parse_function)
    dataset = dataset.prefetch(4)
    train_iterator = dataset.make_one_shot_iterator()

    shuffle_size = int(shuffle_size*(1.0-train_ratio))
    test_parser = ChunkParser(FileDataSrc(chunks[num_train:]), 
            shuffle_size=shuffle_size, sample=SKIP, batch_size=ChunkParser.BATCH_SIZE)
    dataset = tf.data.Dataset.from_generator(
        test_parser.parse, output_types=(tf.string, tf.string, tf.string))
    dataset = dataset.map(ChunkParser.parse_function)
    dataset = dataset.prefetch(4)
    test_iterator = dataset.make_one_shot_iterator()

    tfprocess = TFProcess(cfg)
    tfprocess.init(dataset, train_iterator, test_iterator)

    if os.path.exists(os.path.join(root_dir, 'checkpoint')):
        cp = get_checkpoint(root_dir)
        tfprocess.restore(cp)

    # Sweeps through all test chunks statistically
    num_evals = (num_chunks-num_train)*10 // ChunkParser.BATCH_SIZE
    print("Using {} evaluation batches".format(num_evals))

    for _ in range(cfg['training']['total_steps']):
        tfprocess.process(ChunkParser.BATCH_SIZE, num_evals)

    tfprocess.save_leelaz_weights(cmd.output)

    tfprocess.session.close()
    train_parser.shutdown()
    test_parser.shutdown()
Ejemplo n.º 9
0
def main(args):
    chunks = latest_chunks()
    parser, next_batch = chunks2batches(chunks)
    tfprocess = TFProcess(next_batch)
    if args:
        restore_file = args.pop(0)
        print("Restoring weights ....")
        tfprocess.restore(restore_file)
    print("Training starts ....")
    while True:
        change_data, run_val = tfprocess.process()
        if change_data:
            chunks = latest_chunks()
            parser.chunk_switch(chunks)
        if run_val:
            best_net = leela_conf.SAVE_DIR + "/best.txt"
            last_net = leela_conf.SAVE_DIR + "/latest.txt"
            cmd = leela_conf.VALIDATION_COMMAND % \
                (last_net,
                 best_net)
            print(cmd)
            subprocess.call(cmd.split(" ")) #, stdout=subprocess.PIPE)
            with open(leela_conf.VALIDATION_LOG, "r") as f:
                better = int(f.readlines()[-1].split("\t")[0])
                if better:
                    print("---------------- Better Network Found! --------------")
                    copy2(last_net, best_net)
                else:
                    print("------------- Checkout best net so far. -------------")
                    tfprocess.replace_weights(get_weights(best_net))
Ejemplo n.º 10
0
def main():
    if len(sys.argv) != 2:
        print("Usage: {} config.yaml".format(sys.argv[0]))
        return 1

    cfg = yaml.safe_load(open(sys.argv[1], 'r').read())
    print(yaml.dump(cfg, default_flow_style=False))

    num_chunks = cfg['dataset']['num_chunks']
    chunks = get_latest_chunks(cfg['dataset']['input'], num_chunks)

    num_train = int(num_chunks*cfg['dataset']['train_ratio'])
    shuffle_size = cfg['training']['shuffle_size']
    ChunkParser.BATCH_SIZE = cfg['training']['batch_size']

    root_dir = os.path.join(cfg['training']['path'], cfg['name'])
    if not os.path.exists(root_dir):
        os.makedirs(root_dir)

    #bench_parser = ChunkParser(FileDataSrc(chunks[:1000]), shuffle_size=1<<14, sample=SKIP, batch_size=ChunkParser.BATCH_SIZE)
    #benchmark(bench_parser)

    train_parser = ChunkParser(FileDataSrc(chunks[:num_train]),
            shuffle_size=shuffle_size, sample=SKIP, batch_size=ChunkParser.BATCH_SIZE)
    #benchmark(train_parser)
    dataset = tf.data.Dataset.from_generator(
        train_parser.parse, output_types=(tf.string, tf.string, tf.string))
    dataset = dataset.map(ChunkParser.parse_function)
    dataset = dataset.prefetch(4)
    train_iterator = dataset.make_one_shot_iterator()

    test_parser = ChunkParser(FileDataSrc(chunks[num_train:]), batch_size=ChunkParser.BATCH_SIZE)
    dataset = tf.data.Dataset.from_generator(
        test_parser.parse, output_types=(tf.string, tf.string, tf.string))
    dataset = dataset.map(ChunkParser.parse_function)
    dataset = dataset.prefetch(4)
    test_iterator = dataset.make_one_shot_iterator()

    tfprocess = TFProcess(cfg)
    tfprocess.init(dataset, train_iterator, test_iterator)

    if os.path.exists(os.path.join(root_dir, 'checkpoint')):
        cp = get_checkpoint(root_dir)
        tfprocess.restore(cp)

    # Sweeps through all test chunks statistically
    num_evals = int(round(((num_chunks-num_train) * (200 / SKIP)) / ChunkParser.BATCH_SIZE))
    print("Using {} evaluation batches".format(num_evals))

    # while True:
    for _ in range(cfg['training']['total_steps']):
        tfprocess.process(ChunkParser.BATCH_SIZE, num_evals)
Ejemplo n.º 11
0
def main():
    parser = argparse.ArgumentParser(
        description='Train network from game data.')
    parser.add_argument("trainpref",
        help='Training file prefix', nargs='?', type=str)
    parser.add_argument("restorepref",
        help='Training snapshot prefix', nargs='?', type=str)
    parser.add_argument("--train", '-t',
        help="Training file prefix", type=str)
    parser.add_argument("--test", help="Test file prefix", type=str)
    parser.add_argument("--restore", type=str,
        help="Prefix of tensorflow snapshot to restore from")
    parser.add_argument("--logbase", default='leelalogs', type=str,
        help="Log file prefix (for tensorboard)")
    parser.add_argument("--sample", default=DOWN_SAMPLE, type=int,
        help="Rate of data down-sampling to use")
    args = parser.parse_args()

    train_data_prefix = args.train or args.trainpref
    restore_prefix = args.restore or args.restorepref

    training = get_chunks(train_data_prefix)
    if not args.test:
        # Generate test by taking 10% of the training chunks.
        random.shuffle(training)
        training, test = split_chunks(training, 0.1)
    else:
        test = get_chunks(args.test)

    if not training:
        print("No data to train on!")
        return

    print("Training with {0} chunks, validating on {1} chunks".format(
        len(training), len(test)))

    train_parser = ChunkParser(FileDataSrc(training),
                               shuffle_size=1<<20, # 2.2GB of RAM.
                               sample=args.sample,
                               batch_size=RAM_BATCH_SIZE).parse()

    test_parser = ChunkParser(FileDataSrc(test),
                              shuffle_size=1<<19,
                              sample=args.sample,
                              batch_size=RAM_BATCH_SIZE).parse()

    tfprocess = TFProcess()
    tfprocess.init(RAM_BATCH_SIZE,
                   logbase=args.logbase,
                   macrobatch=BATCH_SIZE // RAM_BATCH_SIZE)

    #benchmark1(tfprocess)

    if restore_prefix:
        tfprocess.restore(restore_prefix)
    tfprocess.process(train_parser, test_parser)
Ejemplo n.º 12
0
def main(args):
    train_data_prefix = args.pop(0)

    chunks = get_chunks(train_data_prefix)
    print("Found {0} chunks".format(len(chunks)))

    if not chunks:
        return

    # The following assumes positions from one game are not
    # spread through chunks.
    random.shuffle(chunks)
    training, test = split_chunks(chunks, 0.1)
    print("Training with {0} chunks, validating on {1} chunks".format(
        len(training), len(test)))

    train_parser = ChunkParser(FileDataSrc(training),
                               shuffle_size=1 << 19,
                               sample=DOWN_SAMPLE,
                               batch_size=BATCH_SIZE)
    #benchmark(train_parser)
    dataset = tf.data.Dataset.from_generator(train_parser.parse,
                                             output_types=(tf.string,
                                                           tf.string,
                                                           tf.string))
    dataset = dataset.map(_parse_function)
    dataset = dataset.prefetch(4)
    train_iterator = dataset.make_one_shot_iterator()

    test_parser = ChunkParser(FileDataSrc(test),
                              shuffle_size=1 << 19,
                              sample=DOWN_SAMPLE,
                              batch_size=BATCH_SIZE)
    dataset = tf.data.Dataset.from_generator(test_parser.parse,
                                             output_types=(tf.string,
                                                           tf.string,
                                                           tf.string))
    dataset = dataset.map(_parse_function)
    dataset = dataset.prefetch(4)
    test_iterator = dataset.make_one_shot_iterator()

    tfprocess = TFProcess()
    tfprocess.init(dataset, train_iterator, test_iterator)

    #benchmark1(tfprocess)

    if args:
        restore_file = args.pop(0)
        tfprocess.restore(restore_file)
    while True:
        tfprocess.process(BATCH_SIZE)
Ejemplo n.º 13
0
def main(args):
    train_data_prefix = args.pop(0)

    chunks = get_chunks(train_data_prefix)
    print("Found {0} chunks".format(len(chunks)))

    if not chunks:
        return

    # The following assumes positions from one game are not
    # spread through chunks.
    random.shuffle(chunks)
    training, test = split_chunks(chunks, 0.1)
    print("Training with {0} chunks, validating on {1} chunks".format(
        len(training), len(test)))

    #run_test(parser)
    #benchmark(parser)

    train_parser = ChunkParser(training)
    dataset = tf.data.Dataset.from_generator(train_parser.parse_chunk,
                                             output_types=(tf.string))
    dataset = dataset.shuffle(1 << 18)
    dataset = dataset.map(_parse_function)
    dataset = dataset.batch(BATCH_SIZE)
    dataset = dataset.prefetch(4)
    train_iterator = dataset.make_one_shot_iterator()

    test_parser = ChunkParser(test)
    dataset = tf.data.Dataset.from_generator(test_parser.parse_chunk,
                                             output_types=(tf.string))
    dataset = dataset.map(_parse_function)
    dataset = dataset.batch(BATCH_SIZE)
    dataset = dataset.prefetch(4)
    test_iterator = dataset.make_one_shot_iterator()

    tfprocess = TFProcess()
    tfprocess.init(dataset, train_iterator, test_iterator)
    if args:
        restore_file = args.pop(0)
        tfprocess.restore(restore_file)

    for _ in range(12001):
        tfprocess.process(BATCH_SIZE)

    for x in train_parser.mp_instances:
        x.terminate()
        x.join()

    os.killpg(0, signal.SIGTERM)
Ejemplo n.º 14
0
def main(args):
    train_data_prefix = args.pop(0)

    chunks = get_chunks(train_data_prefix)
    print("Found {0} chunks".format(len(chunks)))

    if not chunks:
        return

    parser = ChunkParser(chunks)

    dataset = tf.data.Dataset.from_generator(parser.parse_chunk,
                                             output_types=(tf.float32,
                                                           tf.float32,
                                                           tf.float32))
    dataset = dataset.shuffle(65536)
    dataset = dataset.batch(BATCH_SIZE)
    dataset = dataset.prefetch(16)
    iterator = dataset.make_one_shot_iterator()
    next_batch = iterator.get_next()

    tfprocess = TFProcess(next_batch)
    if args:
        restore_file = args.pop(0)
        tfprocess.restore(restore_file)
    while True:
        tfprocess.process(BATCH_SIZE)
Ejemplo n.º 15
0
def main(cmd):
    cfg = yaml.safe_load(cmd.cfg.read())
    print(yaml.dump(cfg, default_flow_style=False))

    root_dir = os.path.join(cfg['training']['path'], cfg['name'])
    if not os.path.exists(root_dir):
        os.makedirs(root_dir)

    x = [
        tf.placeholder(tf.float32, [None, 112, 8 * 8]),
        tf.placeholder(tf.float32, [None, 1858]),
        tf.placeholder(tf.float32, [None, 3]),
        tf.placeholder(tf.float32, [None, 3]),
    ]

    tfprocess = TFProcess(cfg)
    tfprocess.init_net(x)

    if os.path.exists(os.path.join(root_dir, 'checkpoint')):
        cp = tf.train.latest_checkpoint(root_dir)
        tfprocess.restore(cp)

    START_FROM = cmd.start

    update_global_step = tfprocess.global_step.assign(START_FROM)
    tfprocess.session.run(update_global_step)
    path = os.path.join(root_dir, cfg['name'])
    save_path = tfprocess.saver.save(tfprocess.session,
                                     path,
                                     global_step=START_FROM)

    tfprocess.session.close()
Ejemplo n.º 16
0
def main():
    if len(sys.argv) != 2:
        print("Usage: {} config.yaml".format(sys.argv[0]))
        return 1

    cfg = yaml.safe_load(open(sys.argv[1], 'r').read())
    print(yaml.dump(cfg, default_flow_style=False))

    batch_size = cfg['training']['batch_size']

    filename = os.path.join(cfg['dataset']['path'], 'train.bin')
    train_next_batch, parser = dataset_iterator(filename, batch_size)
    print("Creating trainingset from {}".format(filename))
    num_eval = parser.num_samples() // batch_size
    print("Train epoch in {} steps".format(num_eval))

    filename = os.path.join(cfg['dataset']['path'], 'test.bin')
    test_next_batch, parser = dataset_iterator(filename, batch_size)
    print("Creating testset from {}".format(filename))
    num_eval = parser.num_samples() // batch_size
    print("Test epoch in {} steps".format(num_eval))

    tfprocess = TFProcess(cfg, train_next_batch, test_next_batch, num_eval)

    root_dir = os.path.join(cfg['training']['path'], cfg['name'])
    if os.path.exists(os.path.join(root_dir, 'checkpoint')):
        checkpoint = parse.get_checkpoint(root_dir)
        tfprocess.restore(checkpoint)

    if not os.path.exists(root_dir):
        os.makedirs(root_dir)
        print("Created output directory: {}".format(root_dir))

    while True:
        tfprocess.process(batch_size)
Ejemplo n.º 17
0
def main(cmd):
    cfg = yaml.safe_load(cmd.cfg.read())
    print(yaml.dump(cfg, default_flow_style=False))

    root_dir = os.path.join(cfg['training']['path'], cfg['name'])
    if not os.path.exists(root_dir):
        os.makedirs(root_dir)

    tfprocess = TFProcess(cfg)
    tfprocess.init_net_v2()

    tfprocess.restore_v2()

    START_FROM = cmd.start

    tfprocess.global_step.assign(START_FROM)
    tfprocess.manager.save(checkpoint_number=START_FROM)
Ejemplo n.º 18
0
def main():
    if len(sys.argv) != 2:
        print("Usage: {} config.yaml".format(sys.argv[0]))
        return 1

    cfg = yaml.safe_load(open(sys.argv[1], 'r').read())
    print(yaml.dump(cfg, default_flow_style=False))

    chunks = get_chunks(cfg['dataset']['input'])
    print("Found {0} chunks".format(len(chunks)))

    if not chunks:
        return

    parser = ChunkParser(chunks)

    run_test(parser)
    #benchmark(parser)

    dataset = tf.data.Dataset.from_generator(parser.parse_chunk,
                                             output_types=(tf.string))
    dataset = dataset.shuffle(65536)
    dataset = dataset.map(_parse_function)
    dataset = dataset.batch(cfg['training']['batch_size'])
    dataset = dataset.prefetch(16)
    iterator = dataset.make_one_shot_iterator()
    next_batch = iterator.get_next()

    tfprocess = TFProcess(cfg, next_batch)
    root_dir = os.path.join(cfg['training']['path'], cfg['name'])
    if os.path.exists(os.path.join(root_dir, 'checkpoint')):
        checkpoint = get_checkpoint(root_dir)
        tfprocess.restore(checkpoint)

    while True:
        tfprocess.process(cfg['training']['batch_size'])
Ejemplo n.º 19
0
with open(sys.argv[1], 'r') as f:
    weights = []
    for e, line in enumerate(f):
        if e == 0:
            #Version
            print("Version", line.strip())
            if line != '1\n':
                raise ValueError("Unknown version {}".format(line.strip()))
        else:
            weights.append(list(map(float, line.split(' '))))
        if e == 2:
            channels = len(line.split(' '))
            print("Channels", channels)
    blocks = e - (4 + 14)
    if blocks % 8 != 0:
        raise ValueError("Inconsistent number of weights in the file")
    blocks /= 8
    print("Blocks", blocks)

x = [
    tf.placeholder(tf.float32, [None, 18, 19 * 19]),
    tf.placeholder(tf.float32, [None, 362]),
    tf.placeholder(tf.float32, [None, 1])
    ]

tfprocess = TFProcess(x)
tfprocess.replace_weights(weights)
path = os.path.join(os.getcwd(), "leelaz-model")
save_path = tfprocess.saver.save(tfprocess.session, path, global_step=0)
Ejemplo n.º 20
0
def main(cmd):
    cfg = yaml.safe_load(cmd.cfg.read())
    print(yaml.dump(cfg, default_flow_style=False))

    num_chunks = cfg['dataset']['num_chunks']
    train_ratio = cfg['dataset']['train_ratio']
    num_train = int(num_chunks*train_ratio)
    num_test = num_chunks - num_train
    if 'input_test' in cfg['dataset']:
        train_chunks = get_latest_chunks(cfg['dataset']['input_train'], num_train)
        test_chunks = get_latest_chunks(cfg['dataset']['input_test'], num_test)
    else:
        chunks = get_latest_chunks(cfg['dataset']['input'], num_chunks)
        train_chunks = chunks[:num_train]
        test_chunks = chunks[num_train:]

    shuffle_size = cfg['training']['shuffle_size']
    total_batch_size = cfg['training']['batch_size']
    batch_splits = cfg['training'].get('num_batch_splits', 1)
    if total_batch_size % batch_splits != 0:
        raise ValueError('num_batch_splits must divide batch_size evenly')
    split_batch_size = total_batch_size // batch_splits
    # Load data with split batch size, which will be combined to the total batch size in tfprocess.
    ChunkParser.BATCH_SIZE = split_batch_size

    root_dir = os.path.join(cfg['training']['path'], cfg['name'])
    if not os.path.exists(root_dir):
        os.makedirs(root_dir)

    '''train_parser = ChunkParser(FileDataSrc(train_chunks),
            shuffle_size=shuffle_size, sample=SKIP, batch_size=ChunkParser.BATCH_SIZE)
    dataset = tf.data.Dataset.from_generator(
        train_parser.parse, output_types=(tf.string, tf.string, tf.string))
    dataset = dataset.map(ChunkParser.parse_function)
    dataset = dataset.prefetch(2)
    train_iterator = dataset.make_one_shot_iterator()

    shuffle_size = int(shuffle_size*(1.0-train_ratio))
    test_parser = ChunkParser(FileDataSrc(test_chunks),
            shuffle_size=shuffle_size, sample=SKIP, batch_size=ChunkParser.BATCH_SIZE)
    dataset = tf.data.Dataset.from_generator(
        test_parser.parse, output_types=(tf.string, tf.string, tf.string))
    dataset = dataset.map(ChunkParser.parse_function)
    dataset = dataset.prefetch(2)
    test_iterator = dataset.make_one_shot_iterator()'''

    filenames = {'train': 'test_bytes', 'test': 'test_bytes'}

    def extract(example):
        features = {
            'x': tf.FixedLenFeature((), tf.string),
            '_y': tf.FixedLenFeature((), tf.string),
            '_z': tf.FixedLenFeature((), tf.string)
        }
        parsed_example = tf.parse_single_example(example, features)
        x = tf.decode_raw(parsed_example['x'], tf.float32)
        _y = tf.decode_raw(parsed_example['_y'], tf.float32)
        _z = tf.decode_raw(parsed_example['_z'], tf.float32)
        x.set_shape([112 * 64])
        _y.set_shape([1858])
        _z.set_shape([1])
        x = tf.reshape(x, [112, 64])
        return x, _y, _z

    dataset = tf.data.TFRecordDataset(filenames=[filenames['train']],
                                      compression_type='GZIP')
    dataset = dataset.map(extract)
    dataset = dataset.batch(total_batch_size)
    dataset = dataset.prefetch(4)
    train_iterator = dataset.make_one_shot_iterator()

    dataset = tf.data.TFRecordDataset(filenames=[filenames['test']],
                                      compression_type='GZIP')
    dataset = dataset.map(extract)
    dataset = dataset.batch(total_batch_size)
    dataset = dataset.prefetch(4)
    test_iterator = dataset.make_one_shot_iterator()

    tfprocess = TFProcess(cfg)
    tfprocess.init(dataset, train_iterator, test_iterator)

    if os.path.exists(os.path.join(root_dir, 'checkpoint')):
        cp = tf.train.latest_checkpoint(root_dir)

    # Sweeps through all test chunks statistically
    # Assumes average of 10 samples per test game.
    # For simplicity, testing can use the split batch size instead of total batch size.
    # This does not affect results, because test results are simple averages that are independent of batch size.
    num_evals = num_test*10 // ChunkParser.BATCH_SIZE
    print("Using {} evaluation batches".format(num_evals))

    tfprocess.process_loop(total_batch_size, num_evals)

    tfprocess.session.close()
    train_parser.shutdown()
    test_parser.shutdown()
Ejemplo n.º 21
0
    version, blocks, filters, weights = read_net(sys.argv[2])

    if data_format == 'NHWC':
        planes = tf.placeholder(tf.float32,
                                [None, BOARD_SIZE, BOARD_SIZE, FEATURES],
                                name='x')
        probs = tf.placeholder(tf.float32, [None, BOARD_SIZE * BOARD_SIZE + 1])
        winner = tf.placeholder(tf.float32, [None, 1])
    else:
        planes = tf.placeholder(tf.float32,
                                [None, FEATURES, BOARD_SIZE, BOARD_SIZE],
                                name='x')
        probs = tf.placeholder(tf.float32, [None, BOARD_SIZE * BOARD_SIZE + 1])
        winner = tf.placeholder(tf.float32, [None, 1])

    tfprocess = TFProcess()
    tfprocess.TFCOREML = True
    tfprocess.DATA_FORMAT = data_format
    tfprocess.BOARD_SIZE = BOARD_SIZE
    tfprocess.INPUT_DIM = 2
    tfprocess.FEATURES = FEATURES
    tfprocess.RESIDUAL_FILTERS = filters
    tfprocess.RESIDUAL_BLOCKS = blocks
    if BOARD_SIZE == 9:
        tfprocess.VALUE_FULLY_CONNECTED = 64
    tfprocess.training = False  # batch normalizationをコンバートするため
    tfprocess.init_net(planes, probs, winner)
    tfprocess.replace_weights(weights)
    tf.train.write_graph(tf.get_default_graph(),
                         os.path.dirname(sys.argv[3]),
                         os.path.basename(sys.argv[3]),
Ejemplo n.º 22
0
def main(cmd):
    cfg = yaml.safe_load(cmd.cfg.read())
    print(yaml.dump(cfg, default_flow_style=False))

    num_chunks = cfg['dataset']['num_chunks']
    allow_less = cfg['dataset'].get('allow_less_chunks', False)
    train_ratio = cfg['dataset']['train_ratio']
    num_train = int(num_chunks * train_ratio)
    num_test = num_chunks - num_train
    sort_type = cfg['dataset'].get('sort_type', 'mtime')
    if sort_type == 'mtime':
        sort_key_fn = os.path.getmtime
    elif sort_type == 'number':
        sort_key_fn = game_number_for_name
    elif sort_type == 'name':
        sort_key_fn = identity_function
    else:
        raise ValueError('Unknown dataset sort_type: {}'.format(sort_type))
    if 'input_test' in cfg['dataset']:
        train_chunks = get_latest_chunks(cfg['dataset']['input_train'],
                                         num_train, allow_less, sort_key_fn)
        test_chunks = get_latest_chunks(cfg['dataset']['input_test'], num_test,
                                        allow_less, sort_key_fn)
    else:
        chunks = get_latest_chunks(cfg['dataset']['input'], num_chunks,
                                   allow_less, sort_key_fn)
        if allow_less:
            num_train = int(len(chunks) * train_ratio)
            num_test = len(chunks) - num_train
        train_chunks = chunks[:num_train]
        test_chunks = chunks[num_train:]

    shuffle_size = cfg['training']['shuffle_size']
    total_batch_size = cfg['training']['batch_size']
    batch_splits = cfg['training'].get('num_batch_splits', 1)
    train_workers = cfg['dataset'].get('train_workers', None)
    test_workers = cfg['dataset'].get('test_workers', None)
    if total_batch_size % batch_splits != 0:
        raise ValueError('num_batch_splits must divide batch_size evenly')
    split_batch_size = total_batch_size // batch_splits

    diff_focus_min = cfg['training'].get('diff_focus_min', 1)
    diff_focus_slope = cfg['training'].get('diff_focus_slope', 0)
    diff_focus_q_weight = cfg['training'].get('diff_focus_q_weight', 6.0)
    diff_focus_pol_scale = cfg['training'].get('diff_focus_pol_scale', 3.5)

    root_dir = os.path.join(cfg['training']['path'], cfg['name'])
    if not os.path.exists(root_dir):
        os.makedirs(root_dir)

    train_parser = ChunkParser(train_chunks,
                               get_input_mode(cfg),
                               shuffle_size=shuffle_size,
                               sample=SKIP,
                               batch_size=split_batch_size,
                               diff_focus_min=diff_focus_min,
                               diff_focus_slope=diff_focus_slope,
                               diff_focus_q_weight=diff_focus_q_weight,
                               diff_focus_pol_scale=diff_focus_pol_scale,
                               workers=train_workers)
    test_shuffle_size = int(shuffle_size * (1.0 - train_ratio))
    # no diff focus for test_parser
    test_parser = ChunkParser(test_chunks,
                              get_input_mode(cfg),
                              shuffle_size=test_shuffle_size,
                              sample=SKIP,
                              batch_size=split_batch_size,
                              workers=test_workers)
    if 'input_validation' in cfg['dataset']:
        valid_chunks = get_all_chunks(cfg['dataset']['input_validation'])
        validation_parser = ChunkParser(valid_chunks,
                                        get_input_mode(cfg),
                                        sample=1,
                                        batch_size=split_batch_size,
                                        workers=0)

    import tensorflow as tf
    from chunkparsefunc import parse_function
    from tfprocess import TFProcess
    tfprocess = TFProcess(cfg)
    train_dataset = tf.data.Dataset.from_generator(
        train_parser.parse,
        output_types=(tf.string, tf.string, tf.string, tf.string, tf.string))
    train_dataset = train_dataset.map(parse_function)
    test_dataset = tf.data.Dataset.from_generator(
        test_parser.parse,
        output_types=(tf.string, tf.string, tf.string, tf.string, tf.string))
    test_dataset = test_dataset.map(parse_function)

    validation_dataset = None
    if 'input_validation' in cfg['dataset']:
        validation_dataset = tf.data.Dataset.from_generator(
            validation_parser.sequential,
            output_types=(tf.string, tf.string, tf.string, tf.string,
                          tf.string))
        validation_dataset = validation_dataset.map(parse_function)

    if tfprocess.strategy is None:  #Mirrored strategy appends prefetch itself with a value depending on number of replicas
        train_dataset = train_dataset.prefetch(4)
        test_dataset = test_dataset.prefetch(4)
        if validation_dataset is not None:
            validation_dataset = validation_dataset.prefetch(4)
    else:
        options = tf.data.Options()
        options.experimental_distribute.auto_shard_policy = tf.data.experimental.AutoShardPolicy.OFF
        train_dataset = train_dataset.with_options(options)
        test_dataset = test_dataset.with_options(options)
        if validation_dataset is not None:
            validation_dataset = validation_dataset.with_options(options)
    tfprocess.init(train_dataset, test_dataset, validation_dataset)

    tfprocess.restore()

    # If number of test positions is not given
    # sweeps through all test chunks statistically
    # Assumes average of 10 samples per test game.
    # For simplicity, testing can use the split batch size instead of total batch size.
    # This does not affect results, because test results are simple averages that are independent of batch size.
    num_evals = cfg['training'].get('num_test_positions',
                                    len(test_chunks) * 10)
    num_evals = max(1, num_evals // split_batch_size)
    print("Using {} evaluation batches".format(num_evals))
    tfprocess.total_batch_size = total_batch_size
    tfprocess.process_loop(total_batch_size,
                           num_evals,
                           batch_splits=batch_splits)

    if cmd.output is not None:
        if cfg['training'].get('swa_output', False):
            tfprocess.save_swa_weights(cmd.output)
        else:
            tfprocess.save_leelaz_weights(cmd.output)

    train_parser.shutdown()
    test_parser.shutdown()
Ejemplo n.º 23
0
def main(cmd):
    cfg = yaml.safe_load(cmd.cfg.read())
    print(yaml.dump(cfg, default_flow_style=False))

    num_chunks = cfg['dataset']['num_chunks']
    train_ratio = cfg['dataset']['train_ratio']
    num_train = int(num_chunks*train_ratio)
    num_test = num_chunks - num_train
    if 'input_test' in cfg['dataset']:
        train_chunks = get_latest_chunks(cfg['dataset']['input_train'], num_train)
        test_chunks = get_latest_chunks(cfg['dataset']['input_test'], num_test)
    else:
        chunks = get_latest_chunks(cfg['dataset']['input'], num_chunks)
        train_chunks = chunks[:num_train]
        test_chunks = chunks[num_train:]

    shuffle_size = cfg['training']['shuffle_size']
    total_batch_size = cfg['training']['batch_size']
    batch_splits = cfg['training'].get('num_batch_splits', 1)
    if total_batch_size % batch_splits != 0:
        raise ValueError('num_batch_splits must divide batch_size evenly')
    split_batch_size = total_batch_size // batch_splits
    # Load data with split batch size, which will be combined to the total batch size in tfprocess.
    ChunkParser.BATCH_SIZE = split_batch_size

    root_dir = os.path.join(cfg['training']['path'], cfg['name'])
    if not os.path.exists(root_dir):
        os.makedirs(root_dir)

    train_parser = ChunkParser(FileDataSrc(train_chunks),
            shuffle_size=shuffle_size, sample=SKIP, batch_size=ChunkParser.BATCH_SIZE)
    dataset = tf.data.Dataset.from_generator(
        train_parser.parse, output_types=(tf.string, tf.string, tf.string, tf.string))
    dataset = dataset.map(ChunkParser.parse_function)
    dataset = dataset.prefetch(4)
    train_iterator = dataset.make_one_shot_iterator()

    shuffle_size = int(shuffle_size*(1.0-train_ratio))
    test_parser = ChunkParser(FileDataSrc(test_chunks),
            shuffle_size=shuffle_size, sample=SKIP, batch_size=ChunkParser.BATCH_SIZE)
    dataset = tf.data.Dataset.from_generator(
        test_parser.parse, output_types=(tf.string, tf.string, tf.string, tf.string))
    dataset = dataset.map(ChunkParser.parse_function)
    dataset = dataset.prefetch(4)
    test_iterator = dataset.make_one_shot_iterator()

    tfprocess = TFProcess(cfg)
    tfprocess.init(dataset, train_iterator, test_iterator)

    if os.path.exists(os.path.join(root_dir, 'checkpoint')):
        cp = tf.train.latest_checkpoint(root_dir)
        tfprocess.restore(cp)

    # If number of test positions is not given
    # sweeps through all test chunks statistically
    # Assumes average of 10 samples per test game.
    # For simplicity, testing can use the split batch size instead of total batch size.
    # This does not affect results, because test results are simple averages that are independent of batch size.
    num_evals = cfg['training'].get('num_test_positions', num_test * 10)
    num_evals = max(1, num_evals // ChunkParser.BATCH_SIZE)
    print("Using {} evaluation batches".format(num_evals))

    tfprocess.process_loop(total_batch_size, num_evals, batch_splits=batch_splits)

    if cmd.output is not None:
        tfprocess.save_leelaz_weights(cmd.output)

    tfprocess.session.close()
    train_parser.shutdown()
    test_parser.shutdown()
Ejemplo n.º 24
0
def main():
    parser = argparse.ArgumentParser(
        description='Train network from game data.')
    parser.add_argument("blockspref",
        help="Number of blocks", nargs='?', type=int)
    parser.add_argument("filterspref",
        help="Number of filters", nargs='?', type=int)
    parser.add_argument("trainpref",
        help='Training file prefix', nargs='?', type=str)
    parser.add_argument("restorepref",
        help='Training snapshot prefix', nargs='?', type=str)
    parser.add_argument("--blocks", '-b',
        help="Number of blocks", type=int)
    parser.add_argument("--filters", '-f',
        help="Number of filters", type=int)
    parser.add_argument("--train", '-t',
        help="Training file prefix", type=str)
    parser.add_argument("--test", help="Test file prefix", type=str)
    parser.add_argument("--restore", type=str,
        help="Prefix of tensorflow snapshot to restore from")
    parser.add_argument("--logbase", default='leelalogs', type=str,
        help="Log file prefix (for tensorboard) (default: %(default)s)")
    parser.add_argument("--sample", default=DOWN_SAMPLE, type=int,
        help="Rate of data down-sampling to use (default: %(default)d)")
    parser.add_argument("--bufferbits", default=TRAIN_SHUFFLE_BITS, type=int,
        help="Train shuffle-buffer size in bits (default: %(default)d)")
    parser.add_argument("--rate", default=LEARN_RATE, type=float,
                        help="Learning rate (default: %(default)f)")
    parser.add_argument("--steps", default=TRAINING_STEPS, type=int,
        help="Training step before writing a network (default: %(default)d)")
    parser.add_argument("--maxsteps", default=MAX_TRAINING_STEPS, type=int,
        help="Terminates after this many steps (default: %(default)d)")
    parser.add_argument("--maxkeep", default=MAX_SAVER_TO_KEEP, type=int,
        help="Keeps meta files for at most this many networks (default: %(default)d)")
    parser.add_argument("--policyloss", default=POLICY_LOSS_WT, type=float,
        help="Coefficient for policy term in loss function (default: %(default)f)")
    parser.add_argument("--mseloss", default=MSE_LOSS_WT, type=float,
        help="Coefficient for mse term in loss function (default: %(default)f)")
    parser.add_argument("--regloss", default=REG_LOSS_WT, type=float,
        help="Coefficient for regularizing term in loss function (default: %(default)f)")
    args = parser.parse_args()

    blocks = args.blocks or args.blockspref
    filters = args.filters or args.filterspref
    train_data_prefix = args.train or args.trainpref
    restore_prefix = args.restore or args.restorepref

    if not blocks or not filters:
        print("Must supply number of blocks and filters")
        return

    training = get_chunks(train_data_prefix)
    if not args.test:
        # Generate test by taking 10% of the training chunks.
        random.shuffle(training)
        training, test = split_chunks(training, 0.1)
    else:
        test = get_chunks(args.test)

    if not training:
        print("No data to train on!")
        return

    print("Training with {0} chunks, validating on {1} chunks".format(
        len(training), len(test)))

    train_parser = ChunkParser(FileDataSrc(training),
                               shuffle_size=1<<args.bufferbits, # was 20 -- 2.2GB of RAM.
                               sample=args.sample,
                               batch_size=RAM_BATCH_SIZE).parse()

    test_parser = ChunkParser(FileDataSrc(test),
                              shuffle_size=1<<(args.bufferbits-3),  # was 19
                              sample=args.sample,
                              batch_size=RAM_BATCH_SIZE).parse()

    tfprocess = TFProcess(blocks, filters,
                          args.rate, args.steps, args.maxsteps, args.maxkeep,
                          args.policyloss, args.mseloss, args.regloss)
    tfprocess.init(RAM_BATCH_SIZE,
                   logbase=args.logbase,
                   macrobatch=BATCH_SIZE // RAM_BATCH_SIZE)

    #benchmark1(tfprocess)

    if restore_prefix:
        tfprocess.restore(restore_prefix)
    tfprocess.process(train_parser, test_parser)
Ejemplo n.º 25
0
            print("Version", line.strip())
            if line != '1\n':
                raise ValueError("Unknown version {}".format(line.strip()))
        else:
            weights.append(list(map(float, line.split(' '))))
        if e == 2:
            filters = len(line.split(' '))
            print("Channels", filters)
    blocks = e - (4 + 14)
    if blocks % 8 != 0:
        raise ValueError("Inconsistent number of weights in the file")
    blocks //= 8
    print("Blocks", blocks)

cfg['model']['filters'] = filters
cfg['model']['residual_blocks'] = blocks
print(yaml.dump(cfg, default_flow_style=False))

x = [
    tf.placeholder(tf.float32, [None, 120, 8 * 8]),
    tf.placeholder(tf.float32, [None, 1924]),
    tf.placeholder(tf.float32, [None, 1])
]

tfprocess = TFProcess(cfg)
tfprocess.init_net(x)
tfprocess.replace_weights(weights)
path = os.path.join(os.getcwd(), cfg['name'])
save_path = tfprocess.saver.save(tfprocess.session, path, global_step=0)
print("Writted model to {}".format(path))
Ejemplo n.º 26
0
def main(cmd):
    cfg = yaml.safe_load(cmd.cfg.read())
    print(yaml.dump(cfg, default_flow_style=False))

    num_chunks = cfg['dataset']['num_chunks']
    allow_less = cfg['dataset'].get('allow_less_chunks', False)
    train_ratio = cfg['dataset']['train_ratio']
    experimental_parser = cfg['dataset'].get('experimental_v5_only_dataset',
                                             False)
    # num_train = int(num_chunks * train_ratio)
    # we just need to use one data loader, just put everything into train
    num_train = int(num_chunks)
    num_test = num_chunks - num_train
    sort_type = cfg['dataset'].get('sort_type', 'mtime')
    if sort_type == 'mtime':
        sort_key_fn = os.path.getmtime
    elif sort_type == 'number':
        sort_key_fn = game_number_for_name
    elif sort_type == 'name':
        sort_key_fn = identity_function
    else:
        raise ValueError('Unknown dataset sort_type: {}'.format(sort_type))
    if 'input_test' in cfg['dataset']:
        train_chunks = get_latest_chunks(cfg['dataset']['input_train'],
                                         num_train, allow_less, sort_key_fn)
        test_chunks = get_latest_chunks(cfg['dataset']['input_test'], num_test,
                                        allow_less, sort_key_fn)
    else:
        chunks = get_latest_chunks(cfg['dataset']['input'], num_chunks,
                                   allow_less, sort_key_fn)
        if allow_less:
            num_train = int(len(chunks) * train_ratio)
            num_test = len(chunks) - num_train
        train_chunks = chunks[:num_train]
        test_chunks = chunks[num_train:]

    # shuffle_size = cfg['training']['shuffle_size']
    shuffle_size = 1
    total_batch_size = cfg['training']['batch_size']
    batch_splits = cfg['training'].get('num_batch_splits', 1)
    train_workers = cfg['dataset'].get('train_workers', None)
    test_workers = cfg['dataset'].get('test_workers', None)
    if total_batch_size % batch_splits != 0:
        raise ValueError('num_batch_splits must divide batch_size evenly')
    split_batch_size = total_batch_size // batch_splits
    # Load data with split batch size, which will be combined to the total batch size in tfprocess.
    ChunkParser.BATCH_SIZE = split_batch_size

    value_focus_min = cfg['training'].get('value_focus_min', 1)
    value_focus_slope = cfg['training'].get('value_focus_slope', 0)

    root_dir = os.path.join(cfg['training']['path'], cfg['name'])
    if not os.path.exists(root_dir):
        os.makedirs(root_dir)
    tfprocess = TFProcess(cfg)
    experimental_reads = max(2, mp.cpu_count() - 2) // 2
    extractor = select_extractor(tfprocess.INPUT_MODE)

    if experimental_parser and (value_focus_min != 1
                                or value_focus_slope != 0):
        raise ValueError(
            'Experimental parser does not support non-default value \
                          focus parameters.')

    def read(x):
        return tf.data.FixedLengthRecordDataset(
            x,
            8308,
            compression_type='GZIP',
            num_parallel_reads=experimental_reads)

    if experimental_parser:
        # train_dataset = tf.data.Dataset.from_tensor_slices(train_chunks).shuffle(len(train_chunks)).repeat().batch(256)\
        train_dataset = tf.data.Dataset.from_tensor_slices(train_chunks).repeat().batch(256)\
                         .interleave(read, num_parallel_calls=1)\
                         .batch(SKIP_MULTIPLE*SKIP).map(semi_sample).unbatch()\
                         .batch(split_batch_size).map(extractor)
        #  .shuffle(shuffle_size)\
        # .batch(split_batch_size).map(extractor)
    else:
        train_parser = ChunkParser(train_chunks,
                                   tfprocess.INPUT_MODE,
                                   shuffle_size=shuffle_size,
                                   sample=SKIP,
                                   batch_size=ChunkParser.BATCH_SIZE,
                                   value_focus_min=value_focus_min,
                                   value_focus_slope=value_focus_slope,
                                   workers=train_workers)
        train_dataset = tf.data.Dataset.from_generator(
            train_parser.parse,
            output_types=(tf.string, tf.string, tf.string, tf.string,
                          tf.string))
        train_dataset = train_dataset.map(ChunkParser.parse_function)

    shuffle_size = int(shuffle_size * (1.0 - train_ratio))
    if experimental_parser:
        # test_dataset = tf.data.Dataset.from_tensor_slices(test_chunks).shuffle(len(test_chunks)).repeat().batch(256)\
        test_dataset = tf.data.Dataset.from_tensor_slices(test_chunks).repeat().batch(256)\
                         .interleave(read, num_parallel_calls=2)\
                         .batch(SKIP_MULTIPLE*SKIP).map(semi_sample).unbatch()\
                         .batch(split_batch_size).map(extractor)
        #  .shuffle(shuffle_size)\
        #  .batch(split_batch_size).map(extractor)

    else:
        # no value focus for test_parser
        test_parser = ChunkParser(test_chunks,
                                  tfprocess.INPUT_MODE,
                                  shuffle_size=shuffle_size,
                                  sample=SKIP,
                                  batch_size=ChunkParser.BATCH_SIZE,
                                  workers=test_workers)
        test_dataset = tf.data.Dataset.from_generator(
            test_parser.parse,
            output_types=(tf.string, tf.string, tf.string, tf.string,
                          tf.string))
        test_dataset = test_dataset.map(ChunkParser.parse_function)
    validation_dataset = None
    if 'input_validation' in cfg['dataset']:
        valid_chunks = get_all_chunks(cfg['dataset']['input_validation'])
        validation_dataset = tf.data.FixedLengthRecordDataset(valid_chunks, 8308, compression_type='GZIP', num_parallel_reads=experimental_reads)\
                               .batch(split_batch_size, drop_remainder=True).map(extractor)
    if tfprocess.strategy is None:  #Mirrored strategy appends prefetch itself with a value depending on number of replicas
        train_dataset = train_dataset.prefetch(4)
        test_dataset = test_dataset.prefetch(4)
        if validation_dataset is not None:
            validation_dataset = validation_dataset.prefetch(4)
    else:
        options = tf.data.Options()
        options.experimental_distribute.auto_shard_policy = tf.data.experimental.AutoShardPolicy.OFF
        train_dataset = train_dataset.with_options(options)
        test_dataset = test_dataset.with_options(options)
        if validation_dataset is not None:
            validation_dataset = validation_dataset.with_options(options)

    ##########################
    # Custom Additions #
    ##########################

    tfprocess.init_v2(train_dataset, test_dataset, validation_dataset)
    # load net from weights file given in yaml config
    tfprocess.replace_weights_v2(proto_filename=cmd.net, ignore_errors=False)
    tfprocess.model.summary()

    for layer_name, path in zip(cmd.layer, cmd.path):

        # sort data files
        train_chunks = sorted(train_chunks)

        # create predictor that gives access to specific intermediate layer
        layer = tfprocess.model.get_layer(layer_name)
        earlyPredictor = tf.keras.models.Model(
            tfprocess.model.inputs,
            [tfprocess.model.inputs, tfprocess.model.outputs, layer.output])

        # create custom iterator which doesn't shuffle the data etc
        custom_parse_gen = train_parser.custom_parse(train_chunks)
        turn_counter = 0
        custom_iter = iter(custom_parse_gen)

        # prepare dataframe
        df = pd.DataFrame()

        # iterate entire dataset generator / iterator
        for data in custom_iter:  #i in range(30):
            # data = next(custom_iter)
            planes, probs, winner, best_q = train_parser.custom_get_batch(data)
            x = planes
            print('predicting...')
            _, _, layer_results = earlyPredictor.predict(x)
            # append to dataframe
            # df = df.append(pd.DataFrame(activation_31.reshape(-1,128*8*8)))
            shape_tuple = (-1, np.prod(layer.output_shape[1:]))
            df = df.append(pd.DataFrame(layer_results.reshape(shape_tuple)))

            turn_counter += len(x)

        df.info()
        df.to_csv(path)

        print('done')

    train_parser.shutdown()
    test_parser.shutdown()
Ejemplo n.º 27
0
    weights = []
    for e, line in enumerate(f):
        if e == 0:
            #Version
            print("Version", line.strip())
            if line != '1\n':
                raise ValueError("Unknown version {}".format(line.strip()))
        else:
            weights.append(list(map(float, line.split(' '))))
        if e == 2:
            channels = len(line.split(' '))
            print("Channels", channels)

    blocks = e - (4 + 14)
    if blocks % 8 != 0:
        raise ValueError("Inconsistent number of weights in the file")
    blocks //= 8
    print("Blocks", blocks)

tfprocess = TFProcess()
tfprocess.init(batch_size=1)
if tfprocess.RESIDUAL_BLOCKS != blocks:
    raise ValueError("Number of blocks in tensorflow model doesn't match "\
            "number of blocks in input network")
if tfprocess.RESIDUAL_FILTERS != channels:
    raise ValueError("Number of filters in tensorflow model doesn't match "\
            "number of filters in input network")
tfprocess.replace_weights(weights)
path = os.path.join(os.getcwd(), "leelaz-model")
save_path = tfprocess.saver.save(tfprocess.session, path, global_step=0)
Ejemplo n.º 28
0
with open(sys.argv[2], 'r') as f:
    weights = []
    for e, line in enumerate(f):
        if e == 0:
            #Version
            print("Version", line.strip())
            if line != '1\n':
                raise ValueError("Unknown version {}".format(line.strip()))
        else:
            weights.append(list(map(float, line.split(' '))))
        if e == 2:
            channels = len(line.split(' '))
            print("Channels", channels)
    blocks = e - (4 + 14)
    if blocks % 8 != 0:
        raise ValueError("Inconsistent number of weights in the file")
    blocks //= 8
    print("Blocks", blocks)

tfprocess = TFProcess(cfg)
tfprocess.init(1)
if tfprocess.RESIDUAL_BLOCKS != blocks:
    raise ValueError("Number of blocks in tensorflow model doesn't match "\
            "number of blocks in input network")
if tfprocess.RESIDUAL_FILTERS != channels:
    raise ValueError("Number of filters in tensorflow model doesn't match "\
            "number of filters in input network")
tfprocess.replace_weights(weights)
path = os.path.join(os.getcwd(), cfg['name'])
save_path = tfprocess.saver.save(tfprocess.session, path, global_step=0)
from tfprocess import TFProcess
from net import Net
from chunkparser import ChunkParser
import multiprocessing as mp

cfg_path = "128x10-t60-2.yaml"
net_path = "128x10-t60-2-5300.pb.gz"
ignore_errors = False

with open(cfg_path, 'r') as f:
    cfg = yaml.safe_load(f.read())

print(yaml.dump(cfg, default_flow_style=False))
# START_FROM = args.start

tfp = TFProcess(cfg)
tfp.init_net_v2()
tfp.replace_weights_v2(net_path, ignore_errors)
# tfp.global_step.assign(START_FROM)

# root_dir = os.path.join(cfg['training']['path'], cfg['name'])
# if not os.path.exists(root_dir):
#     os.makedirs(root_dir)
# # tfp.manager.save(checkpoint_number=START_FROM)
# print("Wrote model to {}".format(tfp.manager.latest_checkpoint))

cfg['dataset']['input_train'] = "tf/data/*/"
cfg['dataset']['input_test'] = "tf/data/*/"

import glob
for d in glob.glob(cfg['dataset']['input_train']):
Ejemplo n.º 30
0
def main(cmd):
    cfg = yaml.safe_load(cmd.cfg.read())
    print(yaml.dump(cfg, default_flow_style=False))

    num_chunks = cfg['dataset']['num_chunks']
    chunks = get_latest_chunks(cfg['dataset']['input'], num_chunks)

    train_ratio = cfg['dataset']['train_ratio']
    num_train = int(num_chunks*train_ratio)
    shuffle_size = cfg['training']['shuffle_size']
    ChunkParser.BATCH_SIZE = cfg['training']['batch_size']

    root_dir = os.path.join(cfg['training']['path'], cfg['name'])
    if not os.path.exists(root_dir):
        os.makedirs(root_dir)

    train_parser = ChunkParser(FileDataSrc(chunks[:num_train]),
            shuffle_size=shuffle_size, sample=SKIP, batch_size=ChunkParser.BATCH_SIZE)
    dataset = tf.data.Dataset.from_generator(
        train_parser.parse, output_types=(tf.string, tf.string, tf.string))
    dataset = dataset.map(ChunkParser.parse_function)
    dataset = dataset.prefetch(4)
    train_iterator = dataset.make_one_shot_iterator()

    shuffle_size = int(shuffle_size*(1.0-train_ratio))
    test_parser = ChunkParser(FileDataSrc(chunks[num_train:]), 
            shuffle_size=shuffle_size, sample=SKIP, batch_size=ChunkParser.BATCH_SIZE)
    dataset = tf.data.Dataset.from_generator(
        test_parser.parse, output_types=(tf.string, tf.string, tf.string))
    dataset = dataset.map(ChunkParser.parse_function)
    dataset = dataset.prefetch(4)
    test_iterator = dataset.make_one_shot_iterator()

    tfprocess = TFProcess(cfg)
    tfprocess.init(dataset, train_iterator, test_iterator)

    if os.path.exists(os.path.join(root_dir, 'checkpoint')):
        cp = get_checkpoint(root_dir)
        tfprocess.restore(cp)

    # Sweeps through all test chunks statistically
    num_evals = (num_chunks-num_train)*10 // ChunkParser.BATCH_SIZE
    print("Using {} evaluation batches".format(num_evals))

    for _ in range(cfg['training']['total_steps']):
        tfprocess.process(ChunkParser.BATCH_SIZE, num_evals)

    tfprocess.save_leelaz_weights('/tmp/weights.txt')

    with open('/tmp/weights.txt', 'rb') as f:
        m = hashlib.sha256()
        w = f.read()
        m.update(w)
        digest = m.hexdigest()

    filename = '/tmp/{}.gz'.format(digest)
    with gzip.open(filename, 'wb') as f:
        f.write(w)

    if cmd.upload:
        metadata = {'training_id':'1', 'layers':cfg['model']['residual_blocks'],
                'filters':cfg['model']['filters']}
        print("\nUploading `{}'...".format(digest[:8]), end='')
        upload(cmd.upload, metadata, filename)
        print("[done]\n")
    else:
        print("\nStored `{}'\n".format(filename))
Ejemplo n.º 31
0
def main():
    parser = argparse.ArgumentParser(
        description='Train network from game data.')
    parser.add_argument("blockspref",
                        help="Number of blocks",
                        nargs='?',
                        type=int)
    parser.add_argument("filterspref",
                        help="Number of filters",
                        nargs='?',
                        type=int)
    parser.add_argument("trainpref",
                        help='Training file prefix',
                        nargs='?',
                        type=str)
    parser.add_argument("restorepref",
                        help='Training snapshot prefix',
                        nargs='?',
                        type=str)
    parser.add_argument("--blocks", '-b', help="Number of blocks", type=int)
    parser.add_argument("--filters", '-f', help="Number of filters", type=int)
    parser.add_argument("--train", '-t', help="Training file prefix", type=str)
    parser.add_argument("--test", help="Test file prefix", type=str)
    parser.add_argument("--restore",
                        type=str,
                        help="Prefix of tensorflow snapshot to restore from")
    parser.add_argument(
        "--logbase",
        default='leelalogs',
        type=str,
        help="Log file prefix (for tensorboard) (default: %(default)s)")
    parser.add_argument(
        "--sample",
        default=DOWN_SAMPLE,
        type=int,
        help="Rate of data down-sampling to use (default: %(default)d)")
    args = parser.parse_args()

    blocks = args.blocks or args.blockspref
    filters = args.filters or args.filterspref
    train_data_prefix = args.train or args.trainpref
    restore_prefix = args.restore or args.restorepref

    if not blocks or not filters:
        print("Must supply number of blocks and filters")
        return

    training = get_chunks(train_data_prefix)
    if not args.test:
        # Generate test by taking 10% of the training chunks.
        random.shuffle(training)
        print("here1")
        training, test = split_chunks(training, 0.1)
    else:
        test = get_chunks(args.test)

    if not training:
        print("No data to train on!")
        return

    print("Training with {0} chunks, validating on {1} chunks".format(
        len(training), len(test)))

    train_parser = ChunkParser(
        FileDataSrc(training),
        shuffle_size=1 << 20,  # 2.2GB of RAM.
        sample=args.sample,
        batch_size=RAM_BATCH_SIZE).parse()

    test_parser = ChunkParser(FileDataSrc(test),
                              shuffle_size=1 << 19,
                              sample=args.sample,
                              batch_size=RAM_BATCH_SIZE).parse()

    tfprocess = TFProcess(blocks, filters)
    tfprocess.init(RAM_BATCH_SIZE,
                   logbase=args.logbase,
                   macrobatch=BATCH_SIZE // RAM_BATCH_SIZE)

    #benchmark1(tfprocess)

    if restore_prefix:
        tfprocess.restore(restore_prefix)
    tfprocess.process(train_parser, test_parser)
Ejemplo n.º 32
0
with open(sys.argv[1], 'r') as f:
    weights = []
    for e, line in enumerate(f):
        if e == 0:
            #Version
            print("Version", line.strip())
            if line != '1\n':
                raise ValueError("Unknown version {}".format(line.strip()))
        else:
            weights.append(list(map(float, line.split(' '))))
        if e == 2:
            channels = len(line.split(' '))
            print("Channels", channels)
    blocks = e - (4 + 14)
    if blocks % 8 != 0:
        raise ValueError("Inconsistent number of weights in the file")
    blocks /= 8
    print("Blocks", blocks)

x = [
    tf.placeholder(tf.float32, [None, 18, 19 * 19]),
    tf.placeholder(tf.float32, [None, 362]),
    tf.placeholder(tf.float32, [None, 1])
]

tfprocess = TFProcess(x)
tfprocess.replace_weights(weights)
path = os.path.join(os.getcwd(), "leelaz-model")
save_path = tfprocess.saver.save(tfprocess.session, path, global_step=0)
Ejemplo n.º 33
0
def main(cmd):
    cfg = yaml.safe_load(cmd.cfg.read())
    print(yaml.dump(cfg, default_flow_style=False))

    num_chunks = cfg['dataset']['num_chunks']
    allow_less = cfg['dataset'].get('allow_less_chunks', False)
    train_ratio = cfg['dataset']['train_ratio']
    experimental_parser = cfg['dataset'].get('experimental_v5_only_dataset',
                                             False)
    num_train = int(num_chunks * train_ratio)
    num_test = num_chunks - num_train
    if 'input_test' in cfg['dataset']:
        train_chunks = get_latest_chunks(cfg['dataset']['input_train'],
                                         num_train, allow_less)
        test_chunks = get_latest_chunks(cfg['dataset']['input_test'], num_test,
                                        allow_less)
    else:
        chunks = get_latest_chunks(cfg['dataset']['input'], num_chunks,
                                   allow_less)
        if allow_less:
            num_train = int(len(chunks) * train_ratio)
            num_test = len(chunks) - num_train
        train_chunks = chunks[:num_train]
        test_chunks = chunks[num_train:]

    shuffle_size = cfg['training']['shuffle_size']
    total_batch_size = cfg['training']['batch_size']
    batch_splits = cfg['training'].get('num_batch_splits', 1)
    train_workers = cfg['dataset'].get('train_workers', None)
    test_workers = cfg['dataset'].get('test_workers', None)
    if total_batch_size % batch_splits != 0:
        raise ValueError('num_batch_splits must divide batch_size evenly')
    split_batch_size = total_batch_size // batch_splits
    # Load data with split batch size, which will be combined to the total batch size in tfprocess.
    ChunkParser.BATCH_SIZE = split_batch_size

    root_dir = os.path.join(cfg['training']['path'], cfg['name'])
    if not os.path.exists(root_dir):
        os.makedirs(root_dir)
    tfprocess = TFProcess(cfg)
    experimental_reads = max(2, mp.cpu_count() - 2) // 2
    extractor = select_extractor(tfprocess.INPUT_MODE)

    def read(x):
        return tf.data.FixedLengthRecordDataset(
            x,
            8308,
            compression_type='GZIP',
            num_parallel_reads=experimental_reads)

    if experimental_parser:
        train_dataset = tf.data.Dataset.from_tensor_slices(train_chunks).shuffle(len(train_chunks)).repeat().batch(256)\
                         .interleave(read, num_parallel_calls=2)\
                         .batch(SKIP_MULTIPLE*SKIP).map(semi_sample).unbatch()\
                         .shuffle(shuffle_size)\
                         .batch(split_batch_size).map(extractor).prefetch(4)
    else:
        train_parser = ChunkParser(train_chunks,
                                   tfprocess.INPUT_MODE,
                                   shuffle_size=shuffle_size,
                                   sample=SKIP,
                                   batch_size=ChunkParser.BATCH_SIZE,
                                   workers=train_workers)
        train_dataset = tf.data.Dataset.from_generator(
            train_parser.parse,
            output_types=(tf.string, tf.string, tf.string, tf.string,
                          tf.string))
        train_dataset = train_dataset.map(ChunkParser.parse_function)
        train_dataset = train_dataset.prefetch(4)

    shuffle_size = int(shuffle_size * (1.0 - train_ratio))
    if experimental_parser:
        test_dataset = tf.data.Dataset.from_tensor_slices(test_chunks).shuffle(len(test_chunks)).repeat().batch(256)\
                         .interleave(read, num_parallel_calls=2)\
                         .batch(SKIP_MULTIPLE*SKIP).map(semi_sample).unbatch()\
                         .shuffle(shuffle_size)\
                         .batch(split_batch_size).map(extractor).prefetch(4)
    else:
        test_parser = ChunkParser(test_chunks,
                                  tfprocess.INPUT_MODE,
                                  shuffle_size=shuffle_size,
                                  sample=SKIP,
                                  batch_size=ChunkParser.BATCH_SIZE,
                                  workers=test_workers)
        test_dataset = tf.data.Dataset.from_generator(
            test_parser.parse,
            output_types=(tf.string, tf.string, tf.string, tf.string,
                          tf.string))
        test_dataset = test_dataset.map(ChunkParser.parse_function)
        test_dataset = test_dataset.prefetch(4)

    validation_dataset = None
    if 'input_validation' in cfg['dataset']:
        valid_chunks = get_all_chunks(cfg['dataset']['input_validation'])
        validation_dataset = tf.data.FixedLengthRecordDataset(valid_chunks, 8308, compression_type='GZIP', num_parallel_reads=experimental_reads)\
                               .batch(split_batch_size, drop_remainder=True).map(extractor).prefetch(4)

    tfprocess.init_v2(train_dataset, test_dataset, validation_dataset)

    tfprocess.restore_v2()

    # If number of test positions is not given
    # sweeps through all test chunks statistically
    # Assumes average of 10 samples per test game.
    # For simplicity, testing can use the split batch size instead of total batch size.
    # This does not affect results, because test results are simple averages that are independent of batch size.
    num_evals = cfg['training'].get('num_test_positions',
                                    len(test_chunks) * 10)
    num_evals = max(1, num_evals // ChunkParser.BATCH_SIZE)
    print("Using {} evaluation batches".format(num_evals))

    tfprocess.process_loop_v2(total_batch_size,
                              num_evals,
                              batch_splits=batch_splits)

    if cmd.output is not None:
        if cfg['training'].get('swa_output', False):
            tfprocess.save_swa_weights_v2(cmd.output)
        else:
            tfprocess.save_leelaz_weights_v2(cmd.output)

    train_parser.shutdown()
    test_parser.shutdown()
Ejemplo n.º 34
0
#!/usr/bin/env python3
import os
import sys
from tfprocess import TFProcess

with open(sys.argv[1], 'r') as f:
    weights = []
    for e, line in enumerate(f):
        if e == 0:
            #Version
            print("Version", line.strip())
            if line != '1\n':
                raise ValueError("Unknown version {}".format(line.strip()))
        else:
            weights.append(list(map(float, line.split(' '))))
        if e == 2:
            channels = len(line.split(' '))
            print("Channels", channels)

    blocks = e - (4 + 14)
    if blocks % 8 != 0:
        raise ValueError("Inconsistent number of weights in the file")
    blocks //= 8
    print("Blocks", blocks)

tfprocess = TFProcess(blocks, channels)
tfprocess.init(batch_size=1, gpus_num=1)
tfprocess.replace_weights(weights)
path = os.path.join(os.getcwd(), "leelaz-model")
save_path = tfprocess.saver.save(tfprocess.session, path, global_step=0)