Ejemplo n.º 1
0
    def testClassifyModel(self):
        example_path = self._get_output_data_dir('examples')
        self._prepare_multihead_examples(example_path)
        model_path = self._get_output_data_dir('model')
        self._build_multihead_model(model_path)
        prediction_log_path = self._get_output_data_dir('predictions')
        self._run_inference_with_beam(
            example_path,
            model_spec_pb2.InferenceEndpoint(
                saved_model_spec=model_spec_pb2.SavedModelSpec(
                    model_path=model_path, signature_name=['classify_sum'])),
            prediction_log_path)

        results = self._get_results(prediction_log_path)
        self.assertLen(results, 2)
        classify_log = results[0].classify_log
        self.assertLen(classify_log.request.input.example_list.examples, 1)
        self.assertEqual(classify_log.request.input.example_list.examples[0],
                         self._multihead_examples[0])
        self.assertLen(classify_log.response.result.classifications, 1)
        self.assertLen(classify_log.response.result.classifications[0].classes,
                       1)
        self.assertAlmostEqual(
            classify_log.response.result.classifications[0].classes[0].score,
            1.0)
Ejemplo n.º 2
0
    def testEstimatorModelPredict(self):
        example_path = self._get_output_data_dir('examples')
        self._prepare_predict_examples(example_path)
        model_path = self._get_output_data_dir('model')
        self._build_predict_model(model_path)
        prediction_log_path = self._get_output_data_dir('predictions')
        self._run_inference_with_beam(
            example_path,
            model_spec_pb2.InferenceEndpoint(
                saved_model_spec=model_spec_pb2.SavedModelSpec(
                    model_path=model_path)), prediction_log_path)

        results = self._get_results(prediction_log_path)
        self.assertLen(results, 2)
        self.assertEqual(
            results[0].predict_log.request.inputs[
                run_inference._DEFAULT_INPUT_KEY].string_val[0],
            self._predict_examples[0].SerializeToString())
        self.assertEqual(results[0].predict_log.response.outputs['y'].dtype,
                         tf.float32)
        self.assertLen(
            results[0].predict_log.response.outputs['y'].tensor_shape.dim, 2)
        self.assertEqual(
            results[0].predict_log.response.outputs['y'].tensor_shape.dim[0].
            size, 1)
        self.assertEqual(
            results[0].predict_log.response.outputs['y'].tensor_shape.dim[1].
            size, 1)
Ejemplo n.º 3
0
 def testModelPathInvalid(self):
     example_path = self._get_output_data_dir('examples')
     self._prepare_predict_examples(example_path)
     prediction_log_path = self._get_output_data_dir('predictions')
     with self.assertRaisesRegexp(IOError,
                                  'SavedModel file does not exist.*'):
         self._run_inference_with_beam(
             example_path,
             model_spec_pb2.InferenceEndpoint(
                 saved_model_spec=model_spec_pb2.SavedModelSpec(
                     model_path=self._get_output_data_dir())),
             prediction_log_path)
Ejemplo n.º 4
0
    def testKerasModelPredict(self):
        inputs = tf.keras.Input(shape=(1, ), name='input1')
        output1 = tf.keras.layers.Dense(1,
                                        activation=tf.nn.sigmoid,
                                        name='output1')(inputs)
        output2 = tf.keras.layers.Dense(1,
                                        activation=tf.nn.sigmoid,
                                        name='output2')(inputs)
        inference_model = tf.keras.models.Model(inputs, [output1, output2])

        class TestKerasModel(tf.keras.Model):
            def __init__(self, inference_model):
                super(TestKerasModel, self).__init__(name='test_keras_model')
                self.inference_model = inference_model

            @tf.function(input_signature=[
                tf.TensorSpec(shape=[None], dtype=tf.string, name='inputs')
            ])
            def call(self, serialized_example):
                features = {
                    'input1':
                    tf.compat.v1.io.FixedLenFeature([1],
                                                    dtype=tf.float32,
                                                    default_value=0)
                }
                input_tensor_dict = tf.io.parse_example(
                    serialized_example, features)
                return inference_model(input_tensor_dict['input1'])

        model = TestKerasModel(inference_model)
        model.compile(optimizer=tf.keras.optimizers.Adam(lr=.001),
                      loss=tf.keras.losses.binary_crossentropy,
                      metrics=['accuracy'])

        model_path = self._get_output_data_dir('model')
        tf.compat.v1.keras.experimental.export_saved_model(model,
                                                           model_path,
                                                           serving_only=True)

        example_path = self._get_output_data_dir('examples')
        self._prepare_predict_examples(example_path)
        prediction_log_path = self._get_output_data_dir('predictions')
        self._run_inference_with_beam(
            example_path,
            model_spec_pb2.InferenceEndpoint(
                saved_model_spec=model_spec_pb2.SavedModelSpec(
                    model_path=model_path)), prediction_log_path)

        results = self._get_results(prediction_log_path)
        self.assertLen(results, 2)
Ejemplo n.º 5
0
    def testTelemetry(self):
        example_path = self._get_output_data_dir('examples')
        self._prepare_multihead_examples(example_path)
        model_path = self._get_output_data_dir('model')
        self._build_multihead_model(model_path)
        inference_endpoint = model_spec_pb2.InferenceEndpoint(
            saved_model_spec=model_spec_pb2.SavedModelSpec(
                model_path=model_path, signature_name=['classify_sum']))
        pipeline = beam.Pipeline()
        _ = (
            pipeline | 'ReadExamples' >> beam.io.ReadFromTFRecord(example_path)
            | 'ParseExamples' >> beam.Map(tf.train.Example.FromString)
            | 'RunInference' >> run_inference.RunInference(inference_endpoint))
        run_result = pipeline.run()
        run_result.wait_until_finish()

        num_inferences = run_result.metrics().query(
            MetricsFilter().with_name('num_inferences'))
        self.assertTrue(num_inferences['counters'])
        self.assertEqual(num_inferences['counters'][0].result, 2)
        num_instances = run_result.metrics().query(
            MetricsFilter().with_name('num_instances'))
        self.assertTrue(num_instances['counters'])
        self.assertEqual(num_instances['counters'][0].result, 2)
        inference_request_batch_size = run_result.metrics().query(
            MetricsFilter().with_name('inference_request_batch_size'))
        self.assertTrue(inference_request_batch_size['distributions'])
        self.assertEqual(
            inference_request_batch_size['distributions'][0].result.sum, 2)
        inference_request_batch_byte_size = run_result.metrics().query(
            MetricsFilter().with_name('inference_request_batch_byte_size'))
        self.assertTrue(inference_request_batch_byte_size['distributions'])
        self.assertEqual(
            inference_request_batch_byte_size['distributions'][0].result.sum,
            sum(element.ByteSize() for element in self._multihead_examples))
        inference_batch_latency_micro_secs = run_result.metrics().query(
            MetricsFilter().with_name('inference_batch_latency_micro_secs'))
        self.assertTrue(inference_batch_latency_micro_secs['distributions'])
        self.assertGreaterEqual(
            inference_batch_latency_micro_secs['distributions'][0].result.sum,
            0)
        load_model_latency_milli_secs = run_result.metrics().query(
            MetricsFilter().with_name('load_model_latency_milli_secs'))
        self.assertTrue(load_model_latency_milli_secs['distributions'])
        self.assertGreaterEqual(
            load_model_latency_milli_secs['distributions'][0].result.sum, 0)
Ejemplo n.º 6
0
    def _run_model_inference(self, model_path: Text,
                             example_uris: Mapping[Text,
                                                   Text], output_path: Text,
                             model_spec: bulk_inferrer_pb2.ModelSpec) -> None:
        """Runs model inference on given example data.

    Args:
      model_path: Path to model.
      example_uris: Mapping of example split name to example uri.
      output_path: Path to output generated prediction logs.
      model_spec: bulk_inferrer_pb2.ModelSpec instance.

    Returns:
      None
    """

        saved_model_spec = model_spec_pb2.SavedModelSpec(
            model_path=model_path,
            tag=model_spec.tag,
            signature_name=model_spec.model_signature_name)
        inference_endpoint = model_spec_pb2.InferenceEndpoint()
        inference_endpoint.saved_model_spec.CopyFrom(saved_model_spec)
        with self._make_beam_pipeline() as pipeline:
            data_list = []
            for split, example_uri in example_uris.items():
                data = (
                    pipeline
                    | 'ReadData[{}]'.format(split) >> beam.io.ReadFromTFRecord(
                        file_pattern=io_utils.all_files_pattern(example_uri)))
                data_list.append(data)
            _ = ([data for data in data_list]
                 | 'FlattenExamples' >> beam.Flatten(pipeline=pipeline)
                 | 'ParseExamples' >> beam.Map(tf.train.Example.FromString)
                 | 'RunInference' >>
                 run_inference.RunInference(inference_endpoint)
                 | 'WritePredictionLogs' >> beam.io.WriteToTFRecord(
                     output_path,
                     file_name_suffix='.gz',
                     coder=beam.coders.ProtoCoder(
                         prediction_log_pb2.PredictionLog)))
        logging.info('Inference result written to %s.', output_path)
Ejemplo n.º 7
0
 def testMultiInferenceModel(self):
     example_path = self._get_output_data_dir('examples')
     self._prepare_multihead_examples(example_path)
     model_path = self._get_output_data_dir('model')
     self._build_multihead_model(model_path)
     prediction_log_path = self._get_output_data_dir('predictions')
     self._run_inference_with_beam(
         example_path,
         model_spec_pb2.InferenceEndpoint(
             saved_model_spec=model_spec_pb2.SavedModelSpec(
                 model_path=model_path,
                 signature_name=['regress_diff', 'classify_sum'])),
         prediction_log_path)
     results = self._get_results(prediction_log_path)
     self.assertLen(results, 2)
     multi_inference_log = results[0].multi_inference_log
     self.assertLen(multi_inference_log.request.input.example_list.examples,
                    1)
     self.assertEqual(
         multi_inference_log.request.input.example_list.examples[0],
         self._multihead_examples[0])
     self.assertLen(multi_inference_log.response.results, 2)
     signature_names = []
     for result in multi_inference_log.response.results:
         signature_names.append(result.model_spec.signature_name)
     self.assertIn('regress_diff', signature_names)
     self.assertIn('classify_sum', signature_names)
     result = multi_inference_log.response.results[0]
     self.assertEqual(result.model_spec.signature_name, 'regress_diff')
     self.assertLen(result.regression_result.regressions, 1)
     self.assertAlmostEqual(result.regression_result.regressions[0].value,
                            0.6)
     result = multi_inference_log.response.results[1]
     self.assertEqual(result.model_spec.signature_name, 'classify_sum')
     self.assertLen(result.classification_result.classifications, 1)
     self.assertLen(result.classification_result.classifications[0].classes,
                    1)
     self.assertAlmostEqual(
         result.classification_result.classifications[0].classes[0].score,
         1.0)