Ejemplo n.º 1
0
 def write_trees_or_tokens(output_file, das, gen_trees, base_doc, language, selector):
     """Decide to write t-trees or tokens based on the output file name."""
     if output_file.endswith('.txt'):
         gen_toks = [t.to_tok_list() for t in gen_trees]
         postprocess_tokens(gen_toks, das)
         write_tokens(gen_toks, output_file)
     else:
         write_ttrees(create_ttree_doc(gen_trees, base_doc, language, selector), output_file)
Ejemplo n.º 2
0
def eval_tokens(das, eval_tokens, gen_tokens):
    """Evaluate generated tokens and print out statistics."""
    postprocess_tokens(eval_tokens, das)
    postprocess_tokens(gen_tokens, das)

    evaluator = BLEUMeasure()
    for pred_sent, gold_sents in zip(gen_tokens, eval_tokens):
        evaluator.append(pred_sent, gold_sents)
    log_info("BLEU score: %.4f" % (evaluator.bleu() * 100))

    evaluator = Evaluator()
    for pred_sent, gold_sents in zip(gen_tokens, eval_tokens):
        for gold_sent in gold_sents:  # effectively an average over all gold paraphrases
            evaluator.append(gold_sent, pred_sent)

    log_info("TOKEN precision: %.4f, Recall: %.4f, F1: %.4f" % evaluator.p_r_f1(EvalTypes.TOKEN))
    log_info("Sentence length stats:\n * GOLD %s\n * PRED %s\n * DIFF %s" % evaluator.size_stats())
    log_info("Common subphrase stats:\n -- SIZE: %s\n -- ΔGLD: %s\n -- ΔPRD: %s" %
             evaluator.common_substruct_stats())
Ejemplo n.º 3
0
def eval_tokens(das, eval_tokens, gen_tokens):
    """Evaluate generated tokens and print out statistics."""
    postprocess_tokens(eval_tokens, das)
    postprocess_tokens(gen_tokens, das)

    evaluator = BLEUMeasure()
    for pred_sent, gold_sents in zip(gen_tokens, eval_tokens):
        evaluator.append(pred_sent, gold_sents)
    log_info("BLEU score: %.4f" % (evaluator.bleu() * 100))

    evaluator = Evaluator()
    for pred_sent, gold_sents in zip(gen_tokens, eval_tokens):
        for gold_sent in gold_sents:  # effectively an average over all gold paraphrases
            evaluator.append(gold_sent, pred_sent)

    log_info("TOKEN precision: %.4f, Recall: %.4f, F1: %.4f" % evaluator.p_r_f1(EvalTypes.TOKEN))
    log_info("Sentence length stats:\n * GOLD %s\n * PRED %s\n * DIFF %s" % evaluator.size_stats())
    log_info("Common subphrase stats:\n -- SIZE: %s\n -- ΔGLD: %s\n -- ΔPRD: %s" %
             evaluator.common_substruct_stats())
Ejemplo n.º 4
0
def seq2seq_gen(args):
    """Sequence-to-sequence generation"""

    ap = ArgumentParser()

    ap.add_argument('-e',
                    '--eval-file',
                    type=str,
                    help='A ttree/text file for evaluation')
    ap.add_argument(
        '-a',
        '--abstr-file',
        type=str,
        help=
        'Lexicalization file (a.k.a. abstraction instructions, for postprocessing)'
    )
    ap.add_argument('-r',
                    '--ref-selector',
                    type=str,
                    default='',
                    help='Selector for reference trees in the evaluation file')
    ap.add_argument(
        '-t',
        '--target-selector',
        type=str,
        default='',
        help='Target selector for generated trees in the output file')
    ap.add_argument('-d',
                    '--debug-logfile',
                    type=str,
                    help='Debug output file name')
    ap.add_argument('-w',
                    '--output-file',
                    type=str,
                    help='Output tree/text file')
    ap.add_argument('-b',
                    '--beam-size',
                    type=int,
                    help='Override beam size for beam search decoding')
    ap.add_argument('-c',
                    '--context-file',
                    type=str,
                    help='Input ttree/text file with context utterances')

    ap.add_argument('seq2seq_model_file',
                    type=str,
                    help='Trained Seq2Seq generator model')
    ap.add_argument('da_test_file', type=str, help='Input DAs for generation')

    args = ap.parse_args(args)

    if args.debug_logfile:
        set_debug_stream(file_stream(args.debug_logfile, mode='w'))

    # load the generator
    tgen = Seq2SeqBase.load_from_file(args.seq2seq_model_file)
    if args.beam_size is not None:
        tgen.beam_size = args.beam_size

    # read input files
    das = read_das(args.da_test_file)
    if args.context_file:
        if not tgen.use_context and not tgen.context_bleu_weight:
            log_warn(
                'Generator is not trained to use context, ignoring context input file.'
            )
        else:
            if args.context_file.endswith('.txt'):
                contexts = read_tokens(args.context_file)
            else:
                contexts = tokens_from_doc(read_ttrees(args.context_file),
                                           tgen.language, tgen.selector)
            das = [(context, da) for context, da in zip(contexts, das)]

    # generate
    log_info('Generating...')
    gen_trees = []
    for num, da in enumerate(das, start=1):
        log_debug("\n\nTREE No. %03d" % num)
        gen_trees.append(tgen.generate_tree(da))
    log_info(tgen.get_slot_err_stats())

    # evaluate the generated trees against golden trees (delexicalized)
    eval_doc = None
    if args.eval_file and not args.eval_file.endswith('.txt'):
        eval_doc = read_ttrees(args.eval_file)
        evaler = Evaluator()
        evaler.process_eval_doc(eval_doc, gen_trees, tgen.language,
                                args.ref_selector, args.target_selector
                                or tgen.selector)

    # lexicalize, if required
    if args.abstr_file and tgen.lexicalizer:
        log_info('Lexicalizing...')
        tgen.lexicalize(gen_trees, args.abstr_file)

    # evaluate the generated & lexicalized tokens (F1 and BLEU scores)
    if args.eval_file and args.eval_file.endswith('.txt'):
        eval_tokens(das, read_tokens(args.eval_file, ref_mode=True),
                    [t.to_tok_list() for t in gen_trees])

    # write output .yaml.gz or .txt
    if args.output_file is not None:
        log_info('Writing output...')
        if args.output_file.endswith('.txt'):
            write_tokens(
                postprocess_tokens([t.to_tok_list() for t in gen_trees], das),
                args.output_file)
        else:
            write_ttrees(
                create_ttree_doc(gen_trees, eval_doc, tgen.language,
                                 args.target_selector or tgen.selector),
                args.output_file)
Ejemplo n.º 5
0
def seq2seq_gen(args):
    """Sequence-to-sequence generation"""

    ap = ArgumentParser(prog=' '.join(sys.argv[0:2]))

    ap.add_argument('-e', '--eval-file', type=str, help='A ttree/text file for evaluation')
    ap.add_argument('-a', '--abstr-file', type=str,
                    help='Lexicalization file (a.k.a. abstraction instructions, for postprocessing)')
    ap.add_argument('-r', '--ref-selector', type=str, default='',
                    help='Selector for reference trees in the evaluation file')
    ap.add_argument('-t', '--target-selector', type=str, default='',
                    help='Target selector for generated trees in the output file')
    ap.add_argument('-d', '--debug-logfile', type=str, help='Debug output file name')
    ap.add_argument('-w', '--output-file', type=str, help='Output tree/text file')
    ap.add_argument('-b', '--beam-size', type=int,
                    help='Override beam size for beam search decoding')
    ap.add_argument('-c', '--context-file', type=str,
                    help='Input ttree/text file with context utterances')

    ap.add_argument('seq2seq_model_file', type=str, help='Trained Seq2Seq generator model')
    ap.add_argument('da_test_file', type=str, help='Input DAs for generation')

    args = ap.parse_args(args)

    if args.debug_logfile:
        set_debug_stream(file_stream(args.debug_logfile, mode='w'))

    # load the generator
    tgen = Seq2SeqBase.load_from_file(args.seq2seq_model_file)
    if args.beam_size is not None:
        tgen.beam_size = args.beam_size

    # read input files (DAs, contexts)
    das = read_das(args.da_test_file)
    if args.context_file:
        if not tgen.use_context and not tgen.context_bleu_weight:
            log_warn('Generator is not trained to use context, ignoring context input file.')
        else:
            if args.context_file.endswith('.txt'):
                contexts = read_tokens(args.context_file)
            else:
                contexts = tokens_from_doc(read_ttrees(args.context_file),
                                           tgen.language, tgen.selector)
            das = [(context, da) for context, da in zip(contexts, das)]
    elif tgen.use_context or tgen.context_bleu_weight:
        log_warn('Generator is trained to use context. ' +
                 'Using empty contexts, expect lower performance.')
        das = [([], da) for da in das]

    # generate
    log_info('Generating...')
    gen_trees = []
    for num, da in enumerate(das, start=1):
        log_debug("\n\nTREE No. %03d" % num)
        gen_trees.append(tgen.generate_tree(da))
        if num % 100 == 0:
            log_info("Generated tree %d" % num)
    log_info(tgen.get_slot_err_stats())

    # evaluate the generated trees against golden trees (delexicalized)
    eval_doc = None
    if args.eval_file and not args.eval_file.endswith('.txt'):
        eval_doc = read_ttrees(args.eval_file)
        evaler = Evaluator()
        evaler.process_eval_doc(eval_doc, gen_trees, tgen.language, args.ref_selector,
                                args.target_selector or tgen.selector)

    # lexicalize, if required
    if args.abstr_file and tgen.lexicalizer:
        log_info('Lexicalizing...')
        tgen.lexicalize(gen_trees, args.abstr_file)

    # we won't need contexts anymore, but we do need DAs
    if tgen.use_context or tgen.context_bleu_weight:
        das = [da for _, da in das]

    # evaluate the generated & lexicalized tokens (F1 and BLEU scores)
    if args.eval_file and args.eval_file.endswith('.txt'):
        eval_tokens(das, read_tokens(args.eval_file, ref_mode=True),
                    [t.to_tok_list() for t in gen_trees])

    # write output .yaml.gz or .txt
    if args.output_file is not None:
        log_info('Writing output...')
        if args.output_file.endswith('.txt'):
            gen_toks = [t.to_tok_list() for t in gen_trees]
            postprocess_tokens(gen_toks, das)
            write_tokens(gen_toks, args.output_file)
        else:
            write_ttrees(create_ttree_doc(gen_trees, eval_doc, tgen.language,
                                          args.target_selector or tgen.selector),
                         args.output_file)