Ejemplo n.º 1
0
 def grad(self, inp, grads):
     softmaxes, y_idxes, y_lengths, y_startidxes = inp
     g_costs, = grads
     return [masked_loss_dx(softmaxes, y_idxes, y_lengths, y_startidxes, g_costs),
             grad_not_implemented(self, 1, y_idxes),
             grad_not_implemented(self, 1, y_lengths),
             grad_not_implemented(self, 1, y_startidxes)]
Ejemplo n.º 2
0
 def grad(self, inp, grads):
     softmaxes, y_idxes, y_lengths, y_startidxes = inp
     g_costs, = grads
     return [masked_loss_dx(softmaxes, y_idxes, y_lengths, y_startidxes, g_costs),
             grad_not_implemented(self, 1, y_idxes),
             grad_not_implemented(self, 1, y_lengths),
             grad_not_implemented(self, 1, y_startidxes)]
Ejemplo n.º 3
0
 def grad(self, inp, grads):
     y, y_starts, y_lengths, = inp
     g_costs, = grads
     return [
         masked_sum_dx(y, y_starts, y_lengths, g_costs),
         grad_not_implemented(self, 1, y_starts),
         grad_not_implemented(self, 1, y_lengths)
     ]
Ejemplo n.º 4
0
 def grad(self, inputs, gradients):
     x, new_length, nonconstants = inputs
     d_out = gradients[0]
     swap = range(self.ndim)
     swap.remove(self.axis)
     swap.insert(0, self.axis)
     return [d_out.dimshuffle(swap)[nonconstants].dimshuffle(swap),
             grad_not_implemented(self, 1, new_length),
             grad_not_implemented(self, 2, nonconstants)]
Ejemplo n.º 5
0
 def grad(self, inputs, gradients):
     x, new_length, nonconstants = inputs
     d_out = gradients[0]
     swap = range(self.ndim)
     swap.remove(self.axis)
     swap.insert(0, self.axis)
     return [
         d_out.dimshuffle(swap)[nonconstants].dimshuffle(swap),
         grad_not_implemented(self, 1, new_length),
         grad_not_implemented(self, 2, nonconstants),
     ]
Ejemplo n.º 6
0
    def grad(self, inp, grads):
        kerns, top, output, desc, alpha, beta = inp
        img, = grads

        img = gpu_contiguous(img)

        d_kerns = GpuDnnConvGradW()(img, top, empty_like(kerns), desc)
        d_top = GpuDnnConv()(img, kerns, empty_like(top), desc)
        d_alpha = grad_not_implemented(self, 4, alpha)
        d_beta = grad_not_implemented(self, 5, beta)

        return (d_kerns * alpha, d_top * alpha, img * beta, DisconnectedType()(), d_alpha, d_beta)
Ejemplo n.º 7
0
    def grad(self, inp, grads):
        kerns, top, output, desc, alpha, beta = inp
        img, = grads

        img = gpu_contiguous(img)

        d_kerns = GpuDnn3dConvGradW()(img, top, gpu_alloc_empty(*kerns.shape), desc)
        d_top = GpuDnn3dConv()(img, kerns, gpu_alloc_empty(*top.shape), desc)
        d_alpha = grad_not_implemented(self, 4, alpha)
        d_beta = grad_not_implemented(self, 5, beta)
        return (d_kerns * alpha, d_top * alpha, img * beta,
                DisconnectedType()(), d_alpha, d_beta)
Ejemplo n.º 8
0
    def grad(self, inp, grads):
        img, kerns, output, desc, alpha, beta = inp
        top, = grads

        top = gpu_contiguous(top)

        d_img = GpuDnnConvGradI()(kerns, top, empty_like(img), desc)
        d_kerns = GpuDnnConvGradW()(img, top, empty_like(kerns), desc)
        d_alpha = grad_not_implemented(self, 4, alpha)
        d_beta = grad_not_implemented(self, 5, beta)

        return [d_img * alpha, d_kerns * alpha, top * beta, DisconnectedType()(), d_alpha, d_beta]
Ejemplo n.º 9
0
    def grad(self, inp, grads):
        img, top, output, desc, alpha, beta = inp
        kerns, = grads

        kerns = gpu_contiguous(kerns)

        d_img = GpuDnn3dConvGradI()(kerns, top, gpu_alloc_empty(*img.shape), desc)
        d_top = GpuDnn3dConv()(img, kerns, gpu_alloc_empty(*top.shape), desc)
        d_alpha = grad_not_implemented(self, 4, alpha)
        d_beta = grad_not_implemented(self, 5, beta)

        return (d_img * alpha, d_top * alpha, kerns * beta,
                DisconnectedType()(), d_alpha, d_beta)
Ejemplo n.º 10
0
Archivo: dnn.py Proyecto: orhanf/Theano
    def grad(self, inp, grads):
        kerns, top, output, desc, alpha, beta = inp
        img, = grads

        img = gpu_contiguous(img)

        d_kerns = GpuDnnConvGradW()(img, top, empty_like(kerns), desc)
        d_top = GpuDnnConv()(img, kerns, empty_like(top), desc)
        d_alpha = grad_not_implemented(self, 4, alpha)
        d_beta = grad_not_implemented(self, 5, beta)

        return (d_kerns * alpha, d_top * alpha, img * beta,
                DisconnectedType()(), d_alpha, d_beta)
Ejemplo n.º 11
0
Archivo: dnn.py Proyecto: orhanf/Theano
    def grad(self, inp, grads):
        img, kerns, output, desc, alpha, beta = inp
        top, = grads

        top = gpu_contiguous(top)

        d_img = GpuDnnConvGradI()(kerns, top, empty_like(img), desc)
        d_kerns = GpuDnnConvGradW()(img, top, empty_like(kerns), desc)
        d_alpha = grad_not_implemented(self, 4, alpha)
        d_beta = grad_not_implemented(self, 5, beta)

        return [d_img * alpha, d_kerns * alpha, top * beta,
                DisconnectedType()(), d_alpha, d_beta]
Ejemplo n.º 12
0
 def grad(self, inputs, grads):
     v, x = inputs
     (gz, ) = grads
     return [
         grad_not_implemented(self, 0, v),
         gz * (jv(v - 1, x) - jv(v + 1, x)) / 2.0,
     ]
Ejemplo n.º 13
0
    def grad(self, inp, grads):
        x, neib_shape, neib_step = inp
        gz, = grads

        if self.mode in ['valid', 'ignore_borders']:
            if (neib_shape is neib_step or neib_shape == neib_step or
                    # Theano Constant == do not compare the data
                    # the equals function do that.
                (hasattr(neib_shape, "equals") and neib_shape.equals(neib_step)
                 )):
                return [
                    neibs2images(gz, neib_shape, x.shape, mode=self.mode),
                    grad_undefined(self, 1, neib_shape),
                    grad_undefined(self, 2, neib_step)
                ]

        if self.mode in ['valid']:
            # Iterate over neighborhood positions, summing contributions.
            def pos2map(pidx, pgz, prior_result, neib_shape, neib_step):
                '''
                Helper function that adds gradient contribution from a single
                neighborhood position i,j.
                pidx = Index of position within neighborhood.
                pgz  = Gradient of shape (batch_size*num_channels*neibs)
                prior_result  = Shape (batch_size, num_channnels, rows, cols)
                neib_shape = Number of rows, cols in a neighborhood.
                neib_step  = Step sizes from image2neibs.
                '''
                nrows, ncols = neib_shape
                rstep, cstep = neib_step
                batch_size, num_channels, rows, cols = prior_result.shape
                i = pidx // ncols
                j = pidx - (i * ncols)
                # This position does not touch some img pixels in valid mode.
                result_indices = prior_result[:, :,
                                              i:(rows - nrows + i + 1):rstep,
                                              j:(cols - ncols + j + 1):cstep]
                newshape = (batch_size, num_channels) + \
                           ((rows - nrows) // rstep + 1,) + \
                           ((cols - ncols) // cstep + 1,)
                return T.inc_subtensor(result_indices, pgz.reshape(newshape))

            indices = T.arange(neib_shape[0] * neib_shape[1])
            pgzs = gz.dimshuffle((1, 0))
            result, _ = theano.scan(fn=pos2map,
                                    sequences=[indices, pgzs],
                                    outputs_info=T.zeros(x.shape),
                                    non_sequences=[neib_shape, neib_step])
            grad_input = result[-1]
            return [
                grad_input,
                grad_undefined(self, 1, neib_shape),
                grad_undefined(self, 2, neib_step)
            ]

        return [
            grad_not_implemented(self, 0, x),
            grad_undefined(self, 1, neib_shape),
            grad_undefined(self, 2, neib_step)
        ]
Ejemplo n.º 14
0
 def grad(self, inputs, grads):
     v, x = inputs
     gz, = grads
     return [
         grad_not_implemented(self, 0, v),
         gz * (iv(v - 1, x) + iv(v + 1, x)) / 2.
     ]
 def grad(self, inp, grads):
     coding, one_of_n = inp
     g_y, = grads
     return [
         hierarchical_crossentropy_categorical_1hot_grad(
             g_y, coding, one_of_n, self._hierarchy, self._inv_hierarchy,
             self._level_list),
         grad_not_implemented(self, 1, one_of_n)
     ]
Ejemplo n.º 16
0
    def grad(self, inp, grads):
        x, neib_shape, neib_step = inp
        gz, = grads

        if self.mode in ['valid', 'ignore_borders']:
            if (neib_shape is neib_step or
                neib_shape == neib_step or
                # Theano Constant == do not compare the data
                # the equals function do that.
                (hasattr(neib_shape, "equals") and
                 neib_shape.equals(neib_step))):
                return [neibs2images(gz, neib_shape, x.shape, mode=self.mode),
                        grad_undefined(self, 1, neib_shape),
                        grad_undefined(self, 2, neib_step)]

        if self.mode in ['valid']:
            # Iterate over neighborhood positions, summing contributions.
            def pos2map(pidx, pgz, prior_result, neib_shape, neib_step):
                '''
                Helper function that adds gradient contribution from a single
                neighborhood position i,j.
                pidx = Index of position within neighborhood.
                pgz  = Gradient of shape (batch_size*num_channels*neibs)
                prior_result  = Shape (batch_size, num_channnels, rows, cols)
                neib_shape = Number of rows, cols in a neighborhood.
                neib_step  = Step sizes from image2neibs.
                '''
                nrows, ncols = neib_shape
                rstep, cstep = neib_step
                batch_size, num_channels, rows, cols = prior_result.shape
                i = pidx // ncols
                j = pidx - (i * ncols)
                # This position does not touch some img pixels in valid mode.
                result_indices = prior_result[:, :,
                                              i:(rows - nrows + i + 1):rstep,
                                              j:(cols - ncols + j + 1):cstep]
                newshape = (batch_size, num_channels) + \
                           ((rows - nrows) // rstep + 1,) + \
                           ((cols - ncols) // cstep + 1,)
                return T.inc_subtensor(result_indices, pgz.reshape(newshape))
            indices = T.arange(neib_shape[0] * neib_shape[1])
            pgzs = gz.dimshuffle((1, 0))
            result, _ = theano.scan(fn=pos2map,
                                    sequences=[indices, pgzs],
                                    outputs_info=T.zeros(x.shape),
                                    non_sequences=[neib_shape, neib_step])
            grad_input = result[-1]
            return [grad_input,
                    grad_undefined(self, 1, neib_shape),
                    grad_undefined(self, 2, neib_step)]

        return [grad_not_implemented(self, 0, x),
                grad_undefined(self, 1, neib_shape),
                grad_undefined(self, 2, neib_step)]
Ejemplo n.º 17
0
    def grad(self, inp, grads):
        x, neib_shape, neib_step = inp
        gz, = grads

        if self.mode in ['valid', 'ignore_borders']:
            if (neib_shape is neib_step or
                neib_shape == neib_step or
                # Theano Constant == do not compare the data
                # the equals function do that.
                (hasattr(neib_shape, "equals") and
                 neib_shape.equals(neib_step))):
                return [neibs2images(gz, neib_shape, x.shape, mode=self.mode),
                        grad_undefined(self, 1, neib_shape),
                        grad_undefined(self, 2, neib_step)]
        return [grad_not_implemented(self, 0, x),
                grad_undefined(self, 1, neib_shape),
                grad_undefined(self, 2, neib_step)]
Ejemplo n.º 18
0
    def grad(self, inp, grads):
        x, neib_shape, neib_step = inp
        gz, = grads

        if self.mode in ['valid', 'ignore_borders']:
            if (neib_shape is neib_step or
                neib_shape == neib_step or
                # Theano Constant == do not compare the data
                # the equals function do that.
                (hasattr(neib_shape, "equals") and
                 neib_shape.equals(neib_step))):
                return [neibs2images(gz, neib_shape, x.shape, mode=self.mode),
                        grad_undefined(self, 1, neib_shape),
                        grad_undefined(self, 2, neib_step)]
        return [grad_not_implemented(self, 0, x),
                grad_undefined(self, 1, neib_shape),
                grad_undefined(self, 2, neib_step)]
Ejemplo n.º 19
0
 def grad(self, inp, grads):
     return [grad_not_implemented(self, i, inp[i]) for i in range(2)]
Ejemplo n.º 20
0
 def grad(self, inputs, gout):
     (input_x,) = inputs
     return [grad_not_implemented(self, 0, input_x)]
Ejemplo n.º 21
0
 def grad(self, inputs, ograds):
     return [
         grad_not_implemented(self, i, inputs[i])
         for i in xrange(len(inputs))
     ]
Ejemplo n.º 22
0
 def grad(self, inputs, ograds):
     return [grad_not_implemented(self, i, inputs[i]) for i in xrange(len(inputs))]
Ejemplo n.º 23
0
 def grad(self, inp, grads):
     y, y_starts, y_lengths, = inp
     g_costs, = grads
     return [masked_sum_dx(y, y_starts, y_lengths, g_costs),
             grad_not_implemented(self, 1, y_starts),
             grad_not_implemented(self, 1, y_lengths)]
Ejemplo n.º 24
0
 def grad(self, inputs, grads):
     y_true, y_score = inputs
     g_y, = grads
     roc_grad = rocGrad()
     return [roc_grad(g_y, y_true, y_score),
             grad_not_implemented(self, 1, y_score)]
Ejemplo n.º 25
0
 def grad(self, inputs, grads):
     v, x = inputs
     gz, = grads
     return [grad_not_implemented(self, 0, v),
             gz * (iv(v - 1, x) + iv(v + 1, x)) / 2.]
Ejemplo n.º 26
0
 def grad(self, inp, grads):
     return [GpuExtractDiag2D(keepdims=(inp[0].ndim==2))(grads[0], inp[1])] + [grad_not_implemented(self, i, inp[i]) for i in range(1,4)]
Ejemplo n.º 27
0
 def grad(self, inputs, gout):
     (input_x,) = inputs
     return [grad_not_implemented(self, 0, input_x)]
Ejemplo n.º 28
0
 def grad(self, inp, grads):
     return [GpuAllocDiag2D()(grads[0], inp[1], *(inp[0].shape)), grad_not_implemented(self, 1, inp[1])]
Ejemplo n.º 29
0
 def grad(self, inp, grads):
     coding, one_of_n = inp
     g_y, = grads
     crossentropy_categorical_1hot_grad = rocGrad()
     return [crossentropy_categorical_1hot_grad(g_y, coding, one_of_n),
             grad_not_implemented(self, 1, one_of_n)]