def __init__(self, dtype): x = theano.scalar.Scalar(dtype=dtype).make_variable() mean = theano.scalar.Scalar(dtype=dtype).make_variable() std = theano.scalar.Scalar(dtype=dtype).make_variable() gamma = theano.scalar.Scalar(dtype=dtype).make_variable() beta = theano.scalar.Scalar(dtype=dtype).make_variable() o = add(mul(true_div(sub(x, mean), std), gamma), beta) inputs = [x, mean, std, gamma, beta] outputs = [o] super(BNComposite, self).__init__(inputs, outputs)
def __init__(self, dtype): self.dtype = dtype x = theano.scalar.Scalar(dtype=dtype).make_variable() mean = theano.scalar.Scalar(dtype=dtype).make_variable() std = theano.scalar.Scalar(dtype=dtype).make_variable() gamma = theano.scalar.Scalar(dtype=dtype).make_variable() beta = theano.scalar.Scalar(dtype=dtype).make_variable() o = add(mul(true_div(sub(x, mean), std), gamma), beta) inputs = [x, mean, std, gamma, beta] outputs = [o] super().__init__(inputs, outputs)
def fn(): x,s = T.scalars('xs') fn = function([In(x, update=mul(s,s)+x)], x)