Ejemplo n.º 1
0
    def run_gradinput(self, inputs_shape, filters_shape, subsample=(1, 1, 1)):
        inputs_shape = [inputs_shape[i] for i in (0, 4, 1, 2, 3)]
        filters_shape = [filters_shape[i] for i in (0, 4, 1, 2, 3)]

        inputs_val = np.random.random(inputs_shape).astype(config.floatX)
        filters_val = np.random.random(filters_shape).astype(config.floatX)
        inputs = gpuarray_shared_constructor(inputs_val)
        filters = gpuarray_shared_constructor(filters_val)

        bottom_height = (inputs_shape[2] - 1) * subsample[0] + filters_shape[2]
        bottom_width = (inputs_shape[3] - 1) * subsample[1] + filters_shape[3]
        bottom_depth = (inputs_shape[4] - 1) * subsample[2] + filters_shape[4]
        bottom_shape = gpuarray_shared_constructor(
            np.array([bottom_height, bottom_width, bottom_depth]))

        if subsample == (1, 1, 1):
            conv_ref = Corr3dMMGradInputs(subsample=subsample)(
                kern=ref_cast(filters), topgrad=ref_cast(inputs))
            conv_gemm = GpuCorr3dMM_gradInputs(subsample=subsample)(
                kern=filters, topgrad=inputs)
        else:
            conv_ref = Corr3dMMGradInputs(subsample=subsample)(
                kern=ref_cast(filters),
                topgrad=ref_cast(inputs),
                shape=bottom_shape)
            conv_gemm = GpuCorr3dMM_gradInputs(subsample=subsample)(
                kern=filters, topgrad=inputs, shape=bottom_shape)

        f_ref = theano.function([], conv_ref, mode=mode_without_gpu)
        f = theano.function([], conv_gemm, mode=mode_with_gpu)

        res_ref = f_ref()
        res = f()
        utt.assert_allclose(res_ref, res)
Ejemplo n.º 2
0
def local_abstractconv3d_gradinputs_gemm(node):
    # If theano.config.blas.ldflags is empty, Theano will use
    # a NumPy C implementation of [sd]gemm_.
    if theano.config.cxx == "" or node.inputs[0].dtype == "float16":
        return
    if not isinstance(node.op, AbstractConv3d_gradInputs):
        return None
    kern, topgrad, shape = node.inputs
    if not isinstance(kern.type, TensorType) or not isinstance(
        topgrad.type, TensorType
    ):
        return None

    # need to flip the kernel if necessary
    if node.op.filter_flip:
        kern = kern[:, :, ::-1, ::-1, ::-1]
    rval = Corr3dMMGradInputs(
        border_mode=node.op.border_mode,
        subsample=node.op.subsample,
        filter_dilation=node.op.filter_dilation,
        num_groups=node.op.num_groups,
    )(kern, topgrad, shape)
    copy_stack_trace(node.outputs[0], rval)

    return [rval]