Ejemplo n.º 1
0
 def mp(input, grad):
     out = DownsampleFactorMax(maxpoolshp,
                               ignore_border=ignore_border,
                               st=stride)(input)
     grad_op = MaxPoolGrad(maxpoolshp,
                           ignore_border=ignore_border,
                           st=stride)
     return grad_op(input, out, grad)
Ejemplo n.º 2
0
    def test_infer_shape(self):
        image = tensor.dtensor4()
        maxout = tensor.dtensor4()
        gz = tensor.dtensor4()
        rng = numpy.random.RandomState(utt.fetch_seed())
        maxpoolshps = ((1, 1), (2, 2), (3, 3), (2, 3), (3, 2))

        image_val = rng.rand(4, 6, 7, 9)
        out_shapes = [[[[4, 6, 7, 9], [4, 6, 7, 9]],
                       [[4, 6, 3, 4], [4, 6, 4, 5]],
                       [[4, 6, 2, 3], [4, 6, 3, 3]],
                       [[4, 6, 3, 3], [4, 6, 4, 3]],
                       [[4, 6, 2, 4], [4, 6, 3, 5]]],
                      [[None, None],
                       [[4, 6, 4, 5], None],
                       [[4, 6, 3, 3], None],
                       [[4, 6, 4, 3], None],
                       [[4, 6, 3, 5], None]],
                      [[None, None],
                       [None, None],
                       [[4, 6, 3, 4], None],
                       [[4, 6, 4, 4], None],
                       [None, None]]]

        for i, maxpoolshp in enumerate(maxpoolshps):
            for j, ignore_border in enumerate([True, False]):
                for k, padding in enumerate([(0, 0), (1, 1), (1, 2)]):
                    if out_shapes[k][i][j] is None:
                        continue
                    # checking shapes generated by DownsampleFactorMax
                    self._compile_and_check([image],
                                            [DownsampleFactorMax(maxpoolshp,
                                                                 ignore_border=ignore_border,
                                                                 padding=padding)(image)],
                                            [image_val], DownsampleFactorMax)

                    # checking shapes generated by MaxPoolGrad
                    maxout_val = rng.rand(*out_shapes[k][i][j])
                    gz_val = rng.rand(*out_shapes[k][i][j])
                    self._compile_and_check([image, maxout, gz],
                                            [MaxPoolGrad(maxpoolshp,
                                                         ignore_border=ignore_border,
                                                         padding=padding)
                                            (image, maxout, gz)],
                                            [image_val, maxout_val, gz_val],
                                            MaxPoolGrad,
                                            warn=False)
        # checking with broadcastable input
        image = tensor.tensor(dtype='float64',
                              broadcastable=(False, False, True, True))
        image_val = rng.rand(4, 6, 1, 1)
        self._compile_and_check(
            [image],
            [DownsampleFactorMax((2, 2),
                                 ignore_border=True,
                                 padding=(0, 0))(image)],
            [image_val], DownsampleFactorMax)
Ejemplo n.º 3
0
 def mp(input, grad):
     out = DownsampleFactorMax(
         maxpoolsize, ignore_border=True,
         st=stridesize,
         padding=paddingsize,
         )(input)
     grad_op = MaxPoolGrad(maxpoolsize, ignore_border=True,
                           st=stridesize, padding=paddingsize)
     return grad_op(input, out, grad)