Ejemplo n.º 1
0
 def mp(input, grad):
     out = Pool(
         maxpoolshp, ignore_border=ignore_border,
         st=stride)(input)
     grad_op = MaxPoolGrad(
         maxpoolshp, ignore_border=ignore_border,
         st=stride)
     return grad_op(input, out, grad)
Ejemplo n.º 2
0
 def mp(input, grad):
     out = Pool(
         ndim=len(maxpoolshp),
         ignore_border=True,
     )(input, maxpoolshp, stridesize, paddingsize)
     grad_op = MaxPoolGrad(ndim=len(maxpoolshp), ignore_border=True)
     return grad_op(input, out, grad, maxpoolshp, stridesize,
                    paddingsize)
Ejemplo n.º 3
0
            def mp(input, grad):
                out = Pool(ndim=len(maxpoolshp),
                           ignore_border=ignore_border)(input, maxpoolshp,
                                                        stride)
                grad_op = MaxPoolGrad(ndim=len(maxpoolshp),
                                      ignore_border=ignore_border)
                return grad_op(input, out, grad, maxpoolshp, stride)

                utt.verify_grad(mp, [imval, grad_val], rng=rng)
Ejemplo n.º 4
0
    def test_infer_shape(self):
        image = tensor.dtensor4()
        maxout = tensor.dtensor4()
        gz = tensor.dtensor4()
        rng = numpy.random.RandomState(utt.fetch_seed())
        maxpoolshps = ((1, 1), (2, 2), (3, 3), (2, 3), (3, 2))

        image_val = rng.rand(4, 6, 7, 9)
        out_shapes = [[[[4, 6, 7, 9], [4, 6, 7, 9]],
                       [[4, 6, 3, 4], [4, 6, 4, 5]],
                       [[4, 6, 2, 3], [4, 6, 3, 3]],
                       [[4, 6, 3, 3], [4, 6, 4, 3]],
                       [[4, 6, 2, 4], [4, 6, 3, 5]]],
                      [[None, None],
                       [[4, 6, 4, 5], None],
                       [[4, 6, 3, 3], None],
                       [[4, 6, 4, 3], None],
                       [[4, 6, 3, 5], None]],
                      [[None, None],
                       [None, None],
                       [[4, 6, 3, 4], None],
                       [[4, 6, 4, 4], None],
                       [None, None]]]

        for i, maxpoolshp in enumerate(maxpoolshps):
            for j, ignore_border in enumerate([True, False]):
                for k, padding in enumerate([(0, 0), (1, 1), (1, 2)]):
                    if out_shapes[k][i][j] is None:
                        continue
                    # checking shapes generated by Pool
                    self._compile_and_check([image],
                                            [Pool(maxpoolshp,
                                                  ignore_border=ignore_border,
                                                  padding=padding)(image)],
                                            [image_val], Pool)

                    # checking shapes generated by MaxPoolGrad
                    maxout_val = rng.rand(*out_shapes[k][i][j])
                    gz_val = rng.rand(*out_shapes[k][i][j])
                    self._compile_and_check([image, maxout, gz],
                                            [MaxPoolGrad(maxpoolshp,
                                                         ignore_border=ignore_border,
                                                         padding=padding)
                                            (image, maxout, gz)],
                                            [image_val, maxout_val, gz_val],
                                            MaxPoolGrad,
                                            warn=False)
        # checking with broadcastable input
        image = tensor.tensor(dtype='float64',
                              broadcastable=(False, False, True, True))
        image_val = rng.rand(4, 6, 1, 1)
        self._compile_and_check(
            [image],
            [Pool((2, 2),
                  ignore_border=True,
                  padding=(0, 0))(image)],
            [image_val], Pool)
Ejemplo n.º 5
0
 def mp(input, grad):
     out = Pool(
         maxpoolsize, ignore_border=True,
         st=stridesize,
         padding=paddingsize,
         )(input)
     grad_op = MaxPoolGrad(maxpoolsize, ignore_border=True,
                           st=stridesize, padding=paddingsize)
     return grad_op(input, out, grad)
Ejemplo n.º 6
0
 def mp(input, grad):
     out = Pool(ndim=len(maxpoolshp),
                ignore_border=ignore_border)(input, maxpoolshp)
     grad_op = MaxPoolGrad(ndim=len(maxpoolshp),
                           ignore_border=ignore_border)
     return grad_op(input, out, grad, maxpoolshp)
Ejemplo n.º 7
0
 def mp(input, grad):
     out = Pool(ignore_border=True)(input, maxpoolsize, stridesize,
                                    paddingsize)
     grad_op = MaxPoolGrad(ignore_border=True)
     return grad_op(input, out, grad, maxpoolsize, stridesize,
                    paddingsize)
Ejemplo n.º 8
0
 def mp(input, grad):
     out = Pool(ignore_border=ignore_border)(input, maxpoolshp,
                                             stride)
     grad_op = MaxPoolGrad(ignore_border=ignore_border)
     return grad_op(input, out, grad, maxpoolshp, stride)
import theano
import numpy as np
import theano.tensor as T
from theano.tensor.signal.pool import max_pool_2d_same_size, pool_2d, MaxPoolGrad

input = T.tensor4()
pool_out = pool_2d(input, ds=(2, 2), ignore_border=True, mode='max')
method = 1

if method == 1:
    #indices = T.grad(None, wrt=input, known_grads={pool_out: T.ones_like(pool_out)})
    indices = MaxPoolGrad((2, 2), True)(input, pool_out, T.ones_like(pool_out))
    unpool = indices * pool_out.repeat(2, axis=2).repeat(2, axis=3)

elif method == 2:
    indices, pool_out = pool_2d(
        input, ds=(2, 2), ignore_border=True,
        mode='max')  #modifiy the code of max_pool_2d, to be completed

elif method == 3:
    pool_same_size = max_pool_2d_same_size(input, (2, 2))
    #indices = pool_same_size>0 #get 0/1 indicating non/argmax
    #unpool = T.set_subtensor(T.flatten(T.zeros_like(input))[T.flatten(indices)],T.flatten(pool_out)).reshape(input.shape)

    #indices = pool_same_size.nonzero() #get an array of the cordinates of argmax
    #unpool = T.set_subtensor(T.zeros_like(input)[indices],T.flatten(pool_out))
f_pool = theano.function([input], pool_out)
f_pool_out_same_size = theano.function([input], pool_out_same_size)
f_index = theano.function([input], indices)
f_unpool = theano.function([input], unpool)
a = np.arange(16).reshape(1, 1, 4, 4)