def test_bpr_train_and_test(): bpr = BPR(10, 200, 50) train_data = zip(randint(100, size=1000), randint(50, size=1000)) bpr.train(train_data, batch_size=50) assert(bpr.test(train_data) > 0.8) test_data = zip(randint(100, size=1000), randint(50, size=1000)) assert(bpr.test(test_data) > 0.4 and bpr.test(test_data) < 0.6)
def test_bpr_predictions(): bpr = BPR(10, 100, 50) train_data = zip(randint(100, size=1000), randint(50, size=1000)) bpr.train(train_data, epochs=1) assert_equal(bpr.predictions(0).shape, (50,)) assert_equal(bpr.prediction(0,0), bpr.predictions(0)[0]) assert_equal(len(bpr.top_predictions(0, topn=20)), 20)
def test_bpr_train_stores_data(): bpr = BPR(1, 2, 3) bpr.train([ (0, 1), (0, 2), (1, 0), (1, 2), ], batch_size=4) assert_equal(bpr._train_users, set([0, 1])) assert_equal(bpr._train_items, set([0, 1, 2])) assert_equal(bpr._train_dict, { 0: [ 1, 2 ], 1: [ 0, 2 ], })
def test_bpr_train_no_epochs(): bpr = BPR(10, 100, 50) train_data = zip(randint(100, size=1000), randint(50, size=1000)) bpr.train(train_data, epochs=0) assert(bpr.test(train_data) > 0.4 and bpr.test(train_data) < 0.6)
session_batch = [[event[1] for event in session] for session in session_batch] for s in range(len(session_batch)): session = session_batch[s] for i in range(len(session)): item = session[i] if item != 0: item = iti[item] session_batch[s][i] = item x = [session[:-1] for session in session_batch] y = [session[1:] for session in session_batch] for epoch in range(max_epochs): runtime = time.time() bpr.train(training_array[:split1], epochs=1) bpr.train(training_array[split1:split2], epochs=1) bpr.train(training_array[split2:split3], epochs=1) bpr.train(training_array[split3:], epochs=1) #bpr.train(training_array, epochs=4) print(" epoch", epoch, " took ", str(time.time() - runtime), "seconds to run..") print("testing") tester = Tester() prediction_batch = [] print("getting user predictions for testing") runtime = time.time()
# You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from theano_bpr.utils import load_data_from_csv from theano_bpr import BPR import sys if len(sys.argv) != 3: print "Usage: ./example.py training_data.csv testing_data.csv" sys.exit(1) # Loading train data train_data, users_to_index, items_to_index = load_data_from_csv(sys.argv[1]) # Loading test data test_data, users_to_index, items_to_index = load_data_from_csv( sys.argv[2], users_to_index, items_to_index) # Initialising BPR model, 10 latent factors bpr = BPR(10, len(users_to_index.keys()), len(items_to_index.keys())) # Training model, 30 epochs bpr.train(train_data, epochs=30) # Testing model print bpr.test(test_data)
# you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from theano_bpr.utils import load_data_from_csv from theano_bpr import BPR import sys if len(sys.argv) != 3: print "Usage: ./example.py training_data.csv testing_data.csv" sys.exit(1) # Loading train data train_data, users_to_index, items_to_index = load_data_from_csv(sys.argv[1]) # Loading test data test_data, users_to_index, items_to_index = load_data_from_csv(sys.argv[2], users_to_index, items_to_index) # Initialising BPR model, 10 latent factors bpr = BPR(10, len(users_to_index.keys()), len(items_to_index.keys())) # Training model, 30 epochs bpr.train(train_data, epochs=30) # Testing model print bpr.test(test_data)