def as_thermo(thermo, chemicals):
    try:
        thermo = settings.get_default_thermo(thermo)
    except:
        thermo = tmo.Thermo(chemicals)
    else:
        thermo = tmo.Thermo(chemicals,
                            Gamma=thermo.Gamma,
                            Phi=thermo.Phi,
                            PCF=thermo.PCF)
    return thermo
def test_reaction():
    # Test corners in code
    tmo.settings.set_thermo(['H2O', 'H2', 'O2'], cache=True)
    reaction = tmo.Reaction('', reactant='H2O', X=1.,
                            correct_atomic_balance=True)
    assert not reaction.stoichiometry.any()
    
    # Test math cycles, making sure they balance out
    reaction = tmo.Reaction('2H2O -> 2H2 + O2', reactant='H2O',
                            correct_atomic_balance=True, X=0.5)
    same_reaction = reaction.copy()
    reaction += same_reaction
    reaction -= same_reaction
    assert_allclose(reaction.X, same_reaction.X)
    reaction *= 2.
    reaction /= 2.
    assert_allclose(reaction.X, same_reaction.X)
    
    # Test negative math
    negative_reaction = 2 * -reaction
    assert_allclose(negative_reaction.X, -1.)
    
    # Test errors with incompatible phases
    reaction = tmo.Reaction('H2O,l -> H2,g + O2,g', reactant='H2O',
                            correct_atomic_balance=True, X=0.7)
    stream = tmo.MultiStream(None, l=[('H2O', 10)], phases='lL')
    with pytest.raises(ValueError): reaction(stream)
    
    # Test errors with incompatible chemicals
    stream = tmo.MultiStream(None, l=[('Water', 10)], 
                             thermo=tmo.Thermo(['Water', 'Ethanol']),
                             phases='gl')
    with pytest.raises(tmo.exceptions.UndefinedChemical): reaction(stream)
Ejemplo n.º 3
0
 def set_thermo(self, thermo, cache=None):
     """
     Set the default Thermo object. If `thermo` is not a Thermo object,
     an attempt is made to convert it to one.
     
     Parameters
     ----------
     thermo : Thermo or Iterable[Chemical or str]
         A Thermo object or iterable of chemicals or chemical IDs.
     cache : bool, optional
         Wether or not to use cached chemicals.
         
     """
     if not isinstance(thermo, tmo.Thermo):
         thermo = tmo.Thermo(thermo, cache=cache)
     self._thermo = thermo
 def set_thermo(self, thermo, cache=None, skip_checks=False):
     """
     Set the default Thermo object. If `thermo` is not a Thermo object,
     an attempt is made to convert it to one.
     
     Parameters
     ----------
     thermo : Thermo or Iterable[Chemical or str]
         A Thermo object or iterable of chemicals or chemical IDs.
     cache : bool, optional
         Wether or not to use cached chemicals.
     skip_checks : bool, optional
         Whether to skip checks for missing or invalid properties.
         
     """
     if not isinstance(thermo, (tmo.Thermo, tmo.IdealThermo)):
         thermo = tmo.Thermo(thermo, cache=cache, skip_checks=skip_checks)
     self._thermo = thermo
Ejemplo n.º 5
0
# %% Facilities

# tmo.Stream.default_ID_number = 500
J7_1 = bst.Junction('J7_1', upstream=S402 - 0, downstream=Stream())
BT = bst.facilities.BoilerTurbogenerator('BT',
                                         ins=(J7_1 - 0),
                                         turbogenerator_efficiency=0.85)
BT.outs[-1].T = 373.15

# tmo.Stream.default_ID_number = 700

CWP = bst.facilities.ChilledWaterPackage('CWP')
CT = bst.facilities.CoolingTower('CT')
CT.outs[1].T = 273.15 + 28
water_thermo = tmo.Thermo(tmo.Chemicals(['Water']))
process_water = tmo.Stream(ID='process_water', thermo=water_thermo)

process_water_streams = (caustic, stripping_water, process_water1,
                         process_water2, steam, BT - 1, CT - 1)


def update_water_loss():
    process_water.imol['Water'] = sum(
        [i.imol['Water'] for i in process_water_streams])


makeup_water = Stream('makeup_water',
                      thermo=water_thermo,
                      price=price['Makeup water'])
def test_stream():
    import thermosteam as tmo
    tmo.settings.set_thermo(['Water'], cache=True)
    stream = tmo.Stream(None, Water=1, T=300)
    assert [stream.chemicals.Water] == stream.available_chemicals
    assert_allclose(stream.epsilon, 77.70030000000003)
    assert_allclose(stream.alpha * 1e6, 0.14330776454124503)
    assert_allclose(stream.nu, 8.799123532986536e-07)
    assert_allclose(stream.Pr, 6.14001869413997)
    assert_allclose(stream.Cn, 75.29555729396768)
    assert_allclose(stream.C, 75.29555729396768)
    assert_allclose(stream.Cp, 4.179538552493643)
    assert_allclose(stream.P_vapor, 3533.918074415897)
    assert_allclose(stream.mu, 0.0008766363688287887)
    assert_allclose(stream.kappa, 0.5967303492959747)
    assert_allclose(stream.rho, 996.2769195618362)
    assert_allclose(stream.V, 1.80826029854462e-05)
    assert_allclose(stream.H, 139.31398526921475)
    assert_allclose(stream.S, 70.46581776376684)
    assert_allclose(stream.sigma, 0.07176932405246211)
    assert_allclose(stream.z_mol, [1.0])
    assert_allclose(stream.z_mass, [1.0])
    assert_allclose(stream.z_vol, [1.0])
    assert not stream.source
    assert not stream.sink
    assert stream.main_chemical == 'Water'
    assert not stream.isfeed()
    assert not stream.isproduct()
    assert stream.vapor_fraction == 0.
    with pytest.raises(ValueError):
        stream.get_property('isfeed', 'kg/hr')
    with pytest.raises(ValueError):
        stream.set_property('invalid property', 10, 'kg/hr')
    with pytest.raises(ValueError):
        tmo.Stream(None, Water=1, units='kg')

    stream.mol = 0.
    stream.mass = 0.
    stream.vol = 0.

    with pytest.raises(AttributeError):
        stream.F_mol = 1.
    with pytest.raises(AttributeError):
        stream.F_mass = 1.
    with pytest.raises(AttributeError):
        stream.F_vol = 1.

    # Make sure energy balance is working correctly with mix_from and vle
    chemicals = tmo.Chemicals(['Water', 'Ethanol'])
    thermo = tmo.Thermo(chemicals)
    tmo.settings.set_thermo(thermo)
    s3 = tmo.Stream('s3', T=300, P=1e5, Water=10, units='kg/hr')
    s4 = tmo.Stream('s4', phase='g', T=400, P=1e5, Water=10, units='kg/hr')
    s_eq = tmo.Stream('s34_mixture')
    s_eq.mix_from([s3, s4])
    s_eq.vle(H=s_eq.H, P=1e5)
    H_sum = s3.H + s4.H
    H_eq = s_eq.H
    assert_allclose(H_eq, H_sum, rtol=1e-3)
    s_eq.vle(H=s3.H + s4.H, P=1e5)
    assert_allclose(s_eq.H, H_sum, rtol=1e-3)
Ejemplo n.º 7
0
def create_system(ID='wheatstraw_sys'):
    System.maxiter = 400
    System.converge_method = 'Aitken'
    System.molar_tolerance = 0.01

    ### Streams ###
    chemicals = bst.settings.get_chemicals()
    non_soluble = [
        'Xylan', 'Glucan', 'Arabinan', 'Lignin', 'Extract', 'Ash', 'Mannan',
        'Galactan', 'Acetate'
    ]
    # feed flow
    drycomposition = chemicals.kwarray(
        dict(Glucan=0.3342,
             Xylan=0.2330,
             Arabinan=0.0420,
             Lignin=0.2260,
             Extract=0.1330,
             Ash=0.0180,
             Acetate=0.0130))
    TS = 0.95
    moisture_content = chemicals.kwarray(dict(Water=1 - TS))
    dryflow = 83333.0
    netflow = dryflow / TS
    feedflow = netflow * (drycomposition * TS + moisture_content)
    process_water_over_dryflow = 19.96
    sulfuric_acid_over_dryflow = 0.04

    wheatstraw = Stream('wheatstraw',
                        feedflow,
                        units='kg/hr',
                        price=price['Feedstock'] * TS)

    # %% Pretreatment system

    process_water1 = Stream(
        'process_water1',
        T=25 + 273.15,
        P=1 * 101325,
        Water=process_water_over_dryflow * dryflow,  #only an initialization
        units='kg/hr')

    sulfuric_acid = Stream('sulfuric_acid',
                           P=1 * 101325,
                           T=25 + 273.15,
                           Water=0.05 * sulfuric_acid_over_dryflow * dryflow,
                           SulfuricAcid=0.95 * sulfuric_acid_over_dryflow *
                           dryflow,
                           units='kg/hr',
                           price=price['Sulfuric acid'] * 0.95)
    steam = Stream(
        'steam',
        phase='g',
        T=212 + 273.15,
        P=20 * 101325,
        Water=dryflow * 0.5,  #This is just a guess
        units='kg/hr')

    U101 = units.FeedStockHandling('U101', ins=wheatstraw)
    U101.cost_items['System'].cost = 0
    T201 = units.SulfuricAcidTank('T201', ins=sulfuric_acid)
    M201 = bst.Mixer('M201', ins=(process_water1, T201 - 0, Stream()))
    M202 = units.WashingTank('M202', ins=(M201 - 0, U101 - 0))
    S200 = units.SieveFilter('S200',
                             ins=(M202 - 0),
                             outs=(Stream('feed_20TS'),
                                   Stream('recycled_water1')),
                             moisture_content=1 - 0.20,
                             split=find_split_solids(M202 - 0, non_soluble))
    S201 = units.PressureFilter('S201',
                                ins=(S200 - 0),
                                outs=(Stream('feed_50TS'),
                                      Stream('recycled_water2')),
                                moisture_content=0.5,
                                split=find_split_solids(S200 - 0, non_soluble))
    M200 = bst.Mixer('M200', ins=(S200 - 1, S201 - 1), outs='recycled_water')
    M200 - 0 - 2 - M201
    recycled_water = M200 - 0

    def update_process_water1():
        process_water1.imass[
            'Water'] = process_water_over_dryflow * dryflow - recycled_water.imass[
                'Water']
        sulfuric_acid.imass[
            'SulfuricAcid'] = 0.95 * sulfuric_acid_over_dryflow * dryflow - recycled_water.imass[
                'SulfuricAcid']
        sulfuric_acid.imass[
            'Water'] = 0.05 / 0.95 * sulfuric_acid.imass['SulfuricAcid']

    water_recycle_sys = System('water_recycle_sys',
                               path=(U101, T201, M201, M202, S200, S201, M200,
                                     update_process_water1),
                               recycle=M201 - 0)
    M205 = bst.Mixer('M205', ins=(S201 - 0, None))

    M203 = units.SteamMixer('M203',
                            ins=(M205 - 0, steam),
                            P=steam.chemicals.Water.Psat(190.0 + 273.15))
    R201 = units.PretreatmentReactorSystem(
        'R201',
        ins=M203 - 0,
        outs=(Stream('pretreatment_steam'), Stream('pretreatment_effluent')))
    P201 = units.BlowdownDischargePump('P201', ins=R201 - 1)
    T202 = units.OligomerConversionTank('T202', ins=P201 - 0)
    F201 = units.PretreatmentFlash('F201',
                                   ins=T202 - 0,
                                   outs=(Stream('flash_steam'),
                                         Stream('flash_effluent')),
                                   P=101325,
                                   Q=0)
    M204 = bst.Mixer('M204', ins=(R201 - 0, F201 - 0))
    S202 = units.PressureFilter('S202',
                                ins=(F201 - 1),
                                outs=(Stream('pretreated_stream'),
                                      Stream('pretreated_liquid')),
                                moisture_content=0.5,
                                split=find_split_solids(F201 - 1, non_soluble))
    S203 = bst.Splitter('S203',
                        ins=M204 - 0,
                        outs=(Stream('steam_back'), Stream('residual_steam')),
                        split=0.25)
    H201 = units.WasteVaporCondenser('H201',
                                     ins=S203 - 1,
                                     outs=Stream('condensed_steam'),
                                     T=99 + 273.15,
                                     V=0)
    S203 - 0 - 1 - M205

    steam_out1 = S203 - 1
    steam_inS203 = 0 - S203
    steam_out0 = S203 - 0

    def update_split():
        steam_out1.mol[:] = steam_inS203.mol[:] - steam_out0.mol[:]

    pretreatment_sys = System(
        'pretreatment_sys',
        path=(
            water_recycle_sys, M205, M203, R201, P201, T202, F201, M204, S202,
            S203, update_split,
            H201),  # TODO: H201 moved to the end, no need to resimulate system
        recycle=M204 - 0)

    ### TODO: There is a bug in original code; for now spec is constant
    #    S203.split[:] = 0.5
    T90 = 90 + 273.15

    def f_DSpret(split):
        S203.split[:] = split
        for i in range(3):
            pretreatment_sys.simulate()
        sobj = M205 - 0
        return sobj.T - T90

    pretreatment_sys.specification = BoundedNumericalSpecification(
        f_DSpret, 0.10, 0.70)

    ### Fermentation system ###

    cellulase_conc = 0.05
    cellulase = Stream('cellulase', units='kg/hr', price=price['Enzyme'])

    ammonia = Stream(
        'ammonia',
        Ammonia=1051 / 1000 * dryflow,  #This is just a initialization
        units='kg/hr',
        phase='l',
        price=price['Ammonia'])

    process_water2 = Stream(
        'process_water2',
        T=10 + 273.15,
        P=1 * 101325,
        Water=1664.8 / 1000 * dryflow,  #This is just a guess
        units='kg/hr')
    ammonia1 = Stream(
        'ammonia1',
        Ammonia=26 / 1000 * dryflow,  #This is just a initialization
        units='kg/hr',
        price=price['Ammonia'])
    ammonia2 = Stream(
        'ammonia2',
        Ammonia=116 / 1000 * dryflow,  #This is just a initialization
        units='kg/hr',
        price=price['Ammonia'])

    ammonia_fresh = Stream('ammonia_fresh',
                           units='kg/hr',
                           price=price['Ammonia'])

    ammonia_storage = units.DAPTank('Ammonia_storage',
                                    ins=ammonia_fresh,
                                    outs='Ammonia_fermentation')

    S301 = bst.ReversedSplitter('S301',
                                ins=ammonia_storage - 0,
                                outs=(ammonia, ammonia1, ammonia2))

    air1 = Stream('air_lagoon1', O2=51061, N2=168162, phase='g', units='kg/hr')
    air2 = Stream('air_lagoon2', O2=51061, N2=168162, phase='g', units='kg/hr')

    J1 = bst.Junction('J1', upstream=S202 - 0, downstream=Stream())

    sacch_split = 0.05  #This is just a initialization

    ammonia_zmass = 0.0052

    M301 = bst.Mixer('M301', ins=(ammonia, process_water2))
    M302 = bst.Mixer('M302', ins=(J1 - 0, M301 - 0))
    S303 = units.PressureFilter('S303',
                                ins=(M302 - 0),
                                outs=(Stream('cooled_hydrolysate'),
                                      Stream('residual_water')),
                                moisture_content=0.4,
                                split=find_split_solids(M302 - 0, non_soluble))
    WIS_prehyd = 0.20
    cooled_hydrolyzate_pre = M302.outs[0]
    S303_out0 = S303.outs[0]
    S303_out1 = S303.outs[1]

    def update_moisture_content():
        F_non_sol_S303in = find_WIS(
            cooled_hydrolyzate_pre,
            non_soluble) * cooled_hydrolyzate_pre.F_mass
        F_sol_S303in = cooled_hydrolyzate_pre.F_mass - F_non_sol_S303in
        F_sol_S303out = F_non_sol_S303in / WIS_prehyd - cellulase.F_mass - F_non_sol_S303in
        split_soluble = F_sol_S303out / F_sol_S303in
        new_split = find_split_solids(cooled_hydrolyzate_pre, non_soluble)
        new_split[new_split == 0] = split_soluble
        S303_out0.mass[:] = cooled_hydrolyzate_pre.mass[:] * new_split
        S303_out1.mass[:] = cooled_hydrolyzate_pre.mass[:] * (1 - new_split)

    T203 = units.AmmoniaAdditionTank('T203', ins=S303 - 0)
    M303 = units.EnzymeHydrolysateMixer('M303', ins=(T203 - 0, cellulase))

    cellulase_over_WIS = 0.05 * cellulase_conc
    water_over_WIS = 0.05 * (1 - cellulase_conc)

    def update_cellulase_and_nutrient_loading():
        WIS_premixer = cooled_hydrolyzate_pre.F_mass * find_WIS(
            cooled_hydrolyzate_pre, non_soluble)
        cellulase_mass = cellulase_over_WIS * WIS_premixer
        water_mass = water_over_WIS * WIS_premixer
        cellulase.imass['Cellulase'] = cellulase_mass * 1.1
        cellulase.imass['Water'] = water_mass * 1.1
        # Note: An additional 10% is produced for the media glucose/sophorose mixture
        # Humbird (2011) p[g. 37

    def update_ammonia_loading():
        water_cooled_hydrolyzate = cooled_hydrolyzate_pre.imass['Water']
        ammonia.F_mass = water_cooled_hydrolyzate * ammonia_zmass

    M304 = bst.Mixer('M304', ins=(M303 - 0, None))
    R301 = units.SaccharificationAndCoFermentation(
        'R301',
        ins=(M304 - 0, ammonia1, air1),
        outs=(Stream('CO2_1'), Stream('fermentation_slurry'),
              Stream('saccharified_to_seed')),
        saccharified_slurry_split=sacch_split)
    M305 = bst.Mixer('M305', ins=(R301 - 2, ammonia2, air2))
    R302 = units.SeedTrain('R302',
                           ins=M305 - 0,
                           outs=(Stream('CO2_2'), Stream('effluent')))
    T301 = units.SeedHoldTank('T301', ins=R302 - 1)
    T301 - 0 - 1 - M304

    air2_over_glucose = (R302.reactions.X[1] * 2.17 + R302.reactions.X[3] *
                         1.5 / 2 - R302.reactions.X[2]) * 1.1
    ammonia2_over_glucose = R302.reactions.X[1] * 0.62 * 1.1

    preseed = M305 - 0

    def update_nutrient_loading2():
        glucose_preseed = preseed.imol['Glucose']

        air2.imol['O2'] = air2_over_glucose * glucose_preseed
        air2.imol['N2'] = (air2_over_glucose * glucose_preseed) / 0.21 * 0.79
        ammonia2_mol = ammonia2_over_glucose * glucose_preseed - preseed.imol[
            'Ammonia']
        if ammonia2_mol < 0:
            ammonia2.imol['NH3'] = 0
        else:
            ammonia2.imol['NH3'] = ammonia2_mol

    air1_over_glucose = (R301.cofermentation.X[1] * 2.17 +
                         R301.cofermentation.X[3] * 1.5 / 2 -
                         R301.cofermentation.X[2]) * 1.2
    ammonia1_over_glucose = R301.cofermentation.X[1] * 0.62 * 1.1

    preferm = M304 - 0
    glucose_over_glucan = R301.saccharification.X[
        0] + R301.saccharification.X[1] * 0.5 + R301.saccharification.X[2]

    def update_nutrient_loading1():
        glucose_preferm = preferm.imol['Glucan'] * glucose_over_glucan * (
            1 - R301.saccharified_slurry_split)
        air1.imol['O2'] = air1_over_glucose * glucose_preferm
        air1.imol['N2'] = (air1_over_glucose * glucose_preferm) / 0.21 * 0.79
        ammonia1_mol = ammonia1_over_glucose * glucose_preferm - preferm.imol[
            'Ammonia'] * (1 - R301.saccharified_slurry_split)
        if ammonia1_mol < 0:
            ammonia1.imol['NH3'] = 0
        else:
            ammonia1.imol['NH3'] = ammonia1_mol

    # TODO: Bug in update nutrient loading (not enough O2 to run R301 and R302 seed train)
    # TODO: so just ignore negative flow in the meanwhile
#    def ignore_negative_O2_flow():
#        for i in (R301.outs + R302.outs): i.imol['O2'] = 0

    seed_recycle_sys = System('seed_recycle_sys',
                              path=(M304, update_nutrient_loading1, R301, M305,
                                    update_nutrient_loading2, R302, T301),
                              recycle=M304 - 0)
    conc_yeast = 3.0

    def f_DSferm1(x):
        sacch_split = x
        R301.saccharified_slurry_split = sacch_split
        for i in range(3):
            seed_recycle_sys.simulate()
        s_obj2 = R301 - 1
        light_ind = s_obj2.chemicals._light_indices
        l = [a for a in s_obj2.vol[light_ind] if not a == 0]
        v_0 = s_obj2.F_vol - sum(l)
        conc_yeast_obtained = s_obj2.imass['S_cerevisiae'] / v_0
        return ((conc_yeast_obtained - conc_yeast) / conc_yeast)

    seed_recycle_sys.specification = BoundedNumericalSpecification(
        f_DSferm1, 0.01, 0.35)

    fermentation_sys = System(
        'fermentation_sys',
        path=(J1, M301, M302, S303, update_ammonia_loading, T203,
              update_cellulase_and_nutrient_loading, update_moisture_content,
              M303, seed_recycle_sys))  #update_moisture_content,
    T_solid_cool = 50.0 + 273.15

    def f_DSferm2(x):
        mass_water = x
        process_water2.F_mass = mass_water
        for i in range(3):
            fermentation_sys.simulate()
        s_obj1 = M302 - 0
        return ((s_obj1.T - T_solid_cool) / T_solid_cool)

    fermentation_sys.specification = BoundedNumericalSpecification(
        f_DSferm2, process_water2.F_mass / 2, process_water2.F_mass * 2)

    ### Ethanol purification ###

    stripping_water = Stream(
        'stripping_water',
        Water=26836,  #This is just a initialization
        units='kg/hr')

    M306 = bst.Mixer('M306', ins=(R302 - 0, R301 - 0))
    T302 = units.BeerTank('T302', outs=Stream('cool_feed'))

    # tmo.Stream.default_ID_number = 400

    M401 = bst.Mixer('M401', ins=(R301 - 1, None))
    M401 - 0 - T302

    D401 = bst.VentScrubber('D401',
                            ins=(stripping_water, M306 - 0),
                            outs=(Stream('CO2_purified'),
                                  Stream('bottom_liquid')),
                            gas=('CO2', 'NH3', 'O2', 'N2'))
    D401 - 1 - 1 - M401

    # Heat up before beer column
    # Exchange heat with stillage

    mid_eth_massfrac = 0.50
    high_eth_massfrac = 0.915
    bott_eth_massfrac = 0.00001
    dist_high_pres = 2 * 101325

    high_dist_stream = Stream('high_eth_stream',
                              Ethanol=high_eth_massfrac,
                              Water=1 - high_eth_massfrac,
                              units='kg/hr')

    mid_dist_stream = Stream('mid_eth_stream',
                             Ethanol=mid_eth_massfrac,
                             Water=1 - mid_eth_massfrac,
                             units='kg/hr')

    bottom_stream = Stream(
        'bottom_stream',
        Ethanol=
        bott_eth_massfrac,  #only an initialization. Later it gets updated with the real composition
        Water=1 - bott_eth_massfrac,
        units='kg/hr')

    dist_high_dp = high_dist_stream.dew_point_at_P(dist_high_pres)
    bott_mid_dp = bottom_stream.dew_point_at_T(dist_high_dp.T - 5)
    dist_mid_dp = mid_dist_stream.dew_point_at_P(bott_mid_dp.P)
    bott_low_dp = bottom_stream.dew_point_at_T(dist_mid_dp.T - 5)
    dist_low_dp = mid_dist_stream.dew_point_at_P(bott_low_dp.P)

    S401 = bst.Splitter('S401',
                        ins=(T302 - 0),
                        outs=(Stream('feed_low_pressure', P=bott_low_dp.P),
                              Stream('feed_mid_pressure', P=bott_mid_dp.P)),
                        split=0.5)

    H402 = bst.HXprocess('H402',
                         ins=(S401 - 0, None),
                         outs=(Stream('warmed_feed_lp'),
                               Stream('cooled_bottom_water_lp')),
                         U=1.28)
    H403 = bst.HXprocess('H403',
                         ins=(S401 - 1, None),
                         outs=(Stream('warmed_feed_mp'),
                               Stream('cooled_bottom_water_mp')),
                         U=1.28)

    # Beer column

    Ethanol_MW = chemicals.Ethanol.MW
    Water_MW = chemicals.Water.MW

    def Ethanol_molfrac(e):
        """Return ethanol mol fraction in a ethanol water mixture"""
        return e / Ethanol_MW / (e / Ethanol_MW + (1 - e) / Water_MW)

    xbot = Ethanol_molfrac(bott_eth_massfrac)
    ytop = Ethanol_molfrac(mid_eth_massfrac)

    D402 = units.DistillationColumn('D402',
                                    ins=H402 - 0,
                                    P=bott_low_dp.P,
                                    y_top=ytop,
                                    x_bot=xbot,
                                    k=1.5,
                                    LHK=('Ethanol', 'Water'),
                                    energy_integration=True)
    D402.tray_material = 'Stainless steel 304'
    D402.vessel_material = 'Stainless steel 304'
    D402.BM = 2.4
    D402.boiler.U = 1.85
    # Condense distillate
    H402_dist = bst.HXutility('H402_dist',
                              ins=D402 - 0,
                              V=0,
                              T=dist_low_dp.T - 1)

    P402_2 = bst.Pump('P402_2', ins=H402_dist - 0, P=bott_mid_dp.P)
    P402_2.BM = 3.1

    D402 - 1 - 1 - H402

    LP_dist_sys = System('LP_dist_sys',
                         path=(H402, D402, H402_dist),
                         recycle=H402 - 0)

    D403 = units.DistillationColumn('D403',
                                    ins=H403 - 0,
                                    P=bott_mid_dp.P,
                                    y_top=ytop,
                                    x_bot=xbot,
                                    k=1.5,
                                    LHK=('Ethanol', 'Water'),
                                    energy_integration=True)
    D403.tray_material = 'Stainless steel 304'
    D403.vessel_material = 'Stainless steel 304'
    D403.BM = 2.4
    D403.boiler.U = 1.85
    # Condense distillate
    H403_dist = bst.HXutility('H403_dist',
                              ins=D403 - 0,
                              V=0,
                              T=dist_mid_dp.T - 1)

    D403 - 1 - 1 - H403

    MP_dist_sys = System('MP_dist_sys',
                         path=(H403, D403, H403_dist),
                         recycle=H403 - 0)

    M402 = bst.Mixer('M402',
                     ins=(P402_2 - 0, H403_dist - 0),
                     outs=Stream(P=bott_mid_dp.P))
    P404 = bst.Pump('P404', ins=M402 - 0, P=dist_high_pres)

    M403 = bst.Mixer('M403',
                     ins=(H402 - 1, H403 - 1),
                     outs=Stream('bottom_water'))

    S402 = units.PressureFilter('S402',
                                ins=(M403 - 0),
                                outs=(Stream('Lignin'),
                                      Stream('Thin_spillage')),
                                flux=1220.6 * 0.8,
                                moisture_content=0.35,
                                split=find_split_solids(M403 - 0, non_soluble))

    # Mix ethanol Recycle (Set-up)
    M404 = bst.Mixer('M404',
                     ins=(P404 - 0, None),
                     outs=Stream(P=dist_high_pres))

    ytop = Ethanol_molfrac(high_eth_massfrac)
    D404 = units.DistillationColumn('D404',
                                    ins=M404 - 0,
                                    P=dist_high_pres,
                                    y_top=ytop,
                                    x_bot=xbot,
                                    k=1.5,
                                    LHK=('Ethanol', 'Water'),
                                    energy_integration=True)
    D404.tray_material = 'Stainless steel 304'
    D404.vessel_material = 'Stainless steel 304'

    D404.BM = 2.4
    D404.boiler.U = 1.85

    P405 = bst.Pump('P405', ins=D404 - 1, outs=Stream('bottom_water'))

    # Superheat vapor for mol sieve
    H404 = bst.HXutility('H404', ins=D404 - 0, T=dist_high_dp.T + 37.0, V=1)

    # Molecular sieve
    U401 = bst.MolecularSieve('U401',
                              ins=H404 - 0,
                              split=(2165.14 / 13356.04, 1280.06 / 1383.85),
                              order=('Ethanol', 'Water'))

    U401 - 0 - 1 - M404

    ethanol_recycle_sys = System('ethanol_recycle_sys',
                                 path=(M404, D404, H404, U401),
                                 recycle=M404 - 0)

    # Condense ethanol product
    H405 = bst.HXutility('H405', ins=U401 - 1, V=0, T=dist_high_dp.T - 1)

    T701 = bst.StorageTank('T701',
                           ins=H405 - 0,
                           tau=7 * 24,
                           vessel_type='Floating roof',
                           vessel_material='Carbon steel')

    ethanol = Stream('ethanol', price=price['Ethanol'])
    P701 = bst.Pump('P701', ins=T701 - 0, outs=ethanol)

    P701.BM = 3.1
    T701.BM = 1.7

    vent_stream = M306 - 0
    stripping_water_over_vent = stripping_water.mol / 21202.490455845436

    def update_stripping_water():
        stripping_water.mol[:] = stripping_water_over_vent * vent_stream.F_mass

    purification_sys = System(
        'purification_sys',
        path=(M306, update_stripping_water, D401, M401, T302, S401,
              MP_dist_sys, LP_dist_sys, P402_2, M402, P404, M403, S402,
              ethanol_recycle_sys, P405, H405, T701, P701))

    def f_DSpur(split):
        S401.split[:] = split
        for i in range(3):
            purification_sys.simulate()
        heat_cond = D403.condenser.Q + H403_dist.Q
        heat_boil = D402.boiler.Q
        return heat_boil + heat_cond  #heat_boil and heat_cond have different signs

    purification_sys.specification = BoundedNumericalSpecification(
        f_DSpur, 0.10, 0.70)

    ### Biogas production

    organic_groups = [
        'OtherSugars', 'SugarOligomers', 'OrganicSolubleSolids', 'Furfurals',
        'OtherOrganics', 'Protein', 'CellMass'
    ]
    organics = list(
        sum([chemical_groups[i] for i in organic_groups],
            ('Ethanol', 'AceticAcid', 'Xylose', 'Glucose', 'ExtractVol',
             'ExtractNonVol')))
    organics.remove('WWTsludge')

    P_sludge = 0.05 / 0.91 / chemicals.WWTsludge.MW
    MW = np.array([chemicals.CH4.MW, chemicals.CO2.MW])
    CH4_molcomp = 0.60
    mass = np.array([CH4_molcomp, 1 - CH4_molcomp]) * MW
    mass /= mass.sum()
    mass *= 0.381 / (0.91)
    P_ch4, P_co2 = mass / MW

    def anaerobic_rxn(reactant):
        MW = getattr(chemicals, reactant).MW
        return rxn.Reaction(
            f"{1/MW}{reactant} -> {P_ch4}CH4 + {P_co2}CO2 + {P_sludge}WWTsludge",
            reactant, 0.91)

    anaerobic_digestion = rxn.ParallelReaction(
        [anaerobic_rxn(i) for i in organics] +
        [rxn.Reaction(f"H2SO4 -> H2S + 2O2", 'H2SO4', 1.)])

    well_water1 = Stream('well_water1', Water=1, T=15 + 273.15)

    J5_1 = bst.Junction('J5_1', upstream=S303 - 1, downstream=Stream())
    J5_2 = bst.Junction('J5_2', upstream=S402 - 1, downstream=Stream())
    J5_3 = bst.Junction('J5_3', upstream=S202 - 1, downstream=Stream())
    J5_4 = bst.Junction('J5_4', upstream=H201 - 0, downstream=Stream())
    J5_5 = bst.Junction('J5_5', upstream=P405 - 0, downstream=Stream())
    M501 = bst.Mixer('M501',
                     ins=(J5_1 - 0, J5_2 - 0, J5_3 - 0, J5_4 - 0, J5_5 - 0))

    splits = [('Ethanol', 1, 15), ('Water', 27158, 356069), ('Glucose', 3, 42),
              ('Xylose', 7, 85), ('OtherSugars', 13, 175),
              ('SugarOligomers', 10, 130), ('OrganicSolubleSolids', 182, 2387),
              ('InorganicSolubleSolids', 8, 110), ('Ammonia', 48, 633),
              ('AceticAcid', 0, 5), ('Furfurals', 5, 70),
              ('OtherOrganics', 9, 113), ('Cellulose', 19, 6), ('Xylan', 6, 2),
              ('OtherStructuralCarbohydrates', 1, 0), ('Lignin', 186, 64),
              ('Protein', 51, 18), ('CellMass', 813, 280),
              ('OtherInsolubleSolids', 68, 23)]

    raw_biogas = Stream('raw_biogas', price=price['Pure biogas'] * 0.33)
    Tin_digestor = 37 + 273.15
    R501 = units.AnaerobicDigestion('R501',
                                    ins=(M501 - 0, well_water1),
                                    outs=(raw_biogas, 'waste_effluent',
                                          'sludge_effluent', ''),
                                    reactions=anaerobic_digestion,
                                    sludge_split=find_split(*zip(*splits)),
                                    T=Tin_digestor)

    digestor_sys = System('digestor_sys',
                          path=(J5_1, J5_2, J5_3, J5_4, J5_5, M501, R501))

    ### Waste water treatment
    combustion = chemicals.get_combustion_reactions()

    def growth(reactant):
        f = chemicals.WWTsludge.MW / getattr(chemicals, reactant).MW
        return rxn.Reaction(f"{f}{reactant} -> WWTsludge", reactant, 1.)

    # Note, nitrogenous species included here, but most of it removed in R601 digester
    aerobic_digestion = rxn.ParallelReaction([
        i * 0.74 + 0.22 * growth(i.reactant) for i in combustion
        if (i.reactant in organics)
    ])
    aerobic_digestion.X[:] = 0.96

    # tmo.Stream.default_ID_number = 600

    well_water = Stream('well_water', Water=1, T=15 + 273.15)
    raw_biogas2 = Stream('raw_biogas2', price=price['Pure biogas'] * 0.33)
    WWTC = units.WasteWaterSystemCost('WWTC', ins=R501 - 1)
    R601 = units.AnaerobicDigestionWWT('R601',
                                       ins=(WWTC - 0, well_water),
                                       outs=(raw_biogas2, '', '', ''),
                                       reactions=anaerobic_digestion,
                                       sludge_split=find_split(*zip(*splits)),
                                       T=Tin_digestor - 2)

    air = Stream('air_lagoon', O2=51061, N2=168162, phase='g', units='kg/hr')
    caustic = Stream('WWT_caustic',
                     Water=2252,
                     NaOH=2252,
                     units='kg/hr',
                     price=price['Caustic'] * 0.5)
    # polymer = Stream('WWT polymer') # Empty in humbird report :-/

    M602 = bst.Mixer('M602', ins=(R601 - 1, None))

    caustic_over_waste = caustic.mol / 2544300.6261793654
    air_over_waste = air.mol / 2544300.6261793654
    waste = M602 - 0

    def update_aerobic_input_streams():
        F_mass_waste = waste.F_mass
        caustic.mol[:] = F_mass_waste * caustic_over_waste
        air.mol[:] = F_mass_waste * air_over_waste

    R602 = units.AerobicDigestionWWT('R602',
                                     ins=(waste, air, caustic),
                                     outs=('evaporated_water', ''),
                                     reactions=aerobic_digestion)

    splits = [('Ethanol', 0, 1), ('Water', 381300, 2241169), ('Glucose', 0, 2),
              ('Xylose', 1, 3), ('OtherSugars', 1, 7),
              ('SugarOligomers', 1, 6), ('OrganicSolubleSolids', 79, 466),
              ('InorganicSolubleSolids', 4828, 28378), ('Ammonia', 3, 16),
              ('Furfurals', 0, 3), ('OtherOrganics', 1, 7),
              ('CarbonDioxide', 6, 38), ('O2', 3, 17), ('N2', 5, 32),
              ('Cellulose', 0, 194), ('Xylan', 0, 65),
              ('OtherStructuralCarbohydrates', 0, 15), ('Lignin', 0, 1925),
              ('Protein', 0, 90), ('CellMass', 0, 19778),
              ('OtherInsolubleSolids', 0, 707)]

    S601 = bst.Splitter('S601', ins=R602 - 1, split=find_split(*zip(*splits)))

    S602 = bst.Splitter('S602', ins=S601 - 1, split=0.96)

    M603 = bst.Mixer('M603', ins=(S602 - 0, None))
    M603 - 0 - 1 - M602

    M604 = bst.Mixer('M604', ins=(R601 - 2, S602 - 1))

    centrifuge_species = ('Water', 'Glucose', 'Xylose', 'OtherSugars',
                          'SugarOligomers', 'OrganicSolubleSolids',
                          'InorganicSolubleSolids', 'Ammonia', 'Furfurals',
                          'OtherOrganics', 'CO2', 'COxSOxNOxH2S', 'Cellulose',
                          'Xylan', 'OtherStructuralCarbohydrates', 'Lignin',
                          'Protein', 'CellMass', 'OtherInsolubleSolids')
    S623_flow = np.array(
        [7708, 0, 0, 1, 1, 13, 75, 3, 0, 1, 1, 2, 25, 8, 2, 250, 52, 1523, 92])
    S616_flow = np.array([
        109098, 3, 6, 13, 9, 187, 1068, 46, 5, 8, 14, 31, 1, 0, 0, 13, 3, 80, 5
    ])

    S603 = bst.Splitter('S603',
                        ins=M604 - 0,
                        outs=('', 'sludge'),
                        split=find_split(centrifuge_species, S616_flow,
                                         S623_flow))
    S603 - 0 - 1 - M603

    S604 = bst.Splitter('S604',
                        ins=S601 - 0,
                        outs=('treated_water', 'waste_brine'),
                        split={'Water': 0.987})

    aerobic_recycle_sys = System('aerobic_recycle_sys',
                                 path=(M602, update_aerobic_input_streams,
                                       R602, S601, S602, M604, S603, M603),
                                 recycle=M602 - 0)
    WWT_sys = System('WWT_sys', path=(WWTC, R601, aerobic_recycle_sys, S604))

    ### Facilities

    # %% Facilities

    # TODO: Double check that I did is right.
    # TODO: The BoilerTurbogenerator burns both biogas and lignin
    # Note that lime and boilerchems cost is taking into account in the
    # unit operation now
    #    M605 = bst.Mixer('M605', ins=(R501-0, R601-0))
    BT = bst.facilities.BoilerTurbogenerator(
        'BT',
        ins=(S402 - 0, '', 'boiler_makeup_water', 'natural_gas', 'lime',
             'boilerchems'),
        turbogenerator_efficiency=0.85)

    # tmo.Stream.default_ID_number = 700

    CWP = bst.facilities.ChilledWaterPackage('CWP')
    CT = bst.facilities.CoolingTower('CT')
    CT.outs[1].T = 273.15 + 28
    water_thermo = tmo.Thermo(tmo.Chemicals(['Water']))
    process_water = tmo.Stream(ID='process_water', thermo=water_thermo)

    process_water_streams = (caustic, stripping_water, process_water1,
                             process_water2, steam, BT - 1, CT - 1)

    def update_water_loss():
        process_water.imol['Water'] = sum(
            [i.imol['Water'] for i in process_water_streams])

    makeup_water = Stream('makeup_water',
                          thermo=water_thermo,
                          price=price['Makeup water'])

    PWC = bst.facilities.ProcessWaterCenter(
        'PWC',
        ins=(S604 - 0, makeup_water),
        outs=(process_water, ''),
        makeup_water_streams=(makeup_water, ),
        process_water_streams=process_water_streams)

    Substance = tmo.Chemical.blank('Substance')
    Substance.at_state(phase='l')
    Substance.default()
    substance_thermo = tmo.Thermo(tmo.Chemicals([Substance]))

    CIP = Stream('CIP',
                 thermo=substance_thermo,
                 flow=(126 / 83333 * dryflow, ))
    CIP_package = units.CIPpackage('CIP_package',
                                   ins=CIP,
                                   thermo=substance_thermo)

    plant_air = Stream('plant_air',
                       flow=(83333 / 83333 * dryflow, ),
                       thermo=substance_thermo)

    ADP = bst.facilities.AirDistributionPackage('ADP',
                                                ins=plant_air,
                                                thermo=substance_thermo)

    FT = units.FireWaterTank('FT',
                             ins=Stream('fire_water',
                                        flow=(8343 / 83333 * dryflow, ),
                                        thermo=substance_thermo),
                             thermo=substance_thermo)

    ### Complete system
    wheatstraw_sys = System('wheatstraw_sys',
                            path=(pretreatment_sys, fermentation_sys,
                                  ammonia_storage, S301, purification_sys,
                                  digestor_sys, WWT_sys),
                            facilities=(CWP, BT, CT, update_water_loss, PWC,
                                        ADP, CIP_package, S301,
                                        ammonia_storage, FT))

    return wheatstraw_sys
Ejemplo n.º 8
0
 def set_thermo(self, thermo):
     """Set the default Thermo object. If `thermo` is not a Thermo object,
     an attempt is made to convert it to one."""
     if not isinstance(thermo, tmo.Thermo):
         thermo = tmo.Thermo(thermo)
     self._thermo = thermo