def as_thermo(thermo, chemicals): try: thermo = settings.get_default_thermo(thermo) except: thermo = tmo.Thermo(chemicals) else: thermo = tmo.Thermo(chemicals, Gamma=thermo.Gamma, Phi=thermo.Phi, PCF=thermo.PCF) return thermo
def test_reaction(): # Test corners in code tmo.settings.set_thermo(['H2O', 'H2', 'O2'], cache=True) reaction = tmo.Reaction('', reactant='H2O', X=1., correct_atomic_balance=True) assert not reaction.stoichiometry.any() # Test math cycles, making sure they balance out reaction = tmo.Reaction('2H2O -> 2H2 + O2', reactant='H2O', correct_atomic_balance=True, X=0.5) same_reaction = reaction.copy() reaction += same_reaction reaction -= same_reaction assert_allclose(reaction.X, same_reaction.X) reaction *= 2. reaction /= 2. assert_allclose(reaction.X, same_reaction.X) # Test negative math negative_reaction = 2 * -reaction assert_allclose(negative_reaction.X, -1.) # Test errors with incompatible phases reaction = tmo.Reaction('H2O,l -> H2,g + O2,g', reactant='H2O', correct_atomic_balance=True, X=0.7) stream = tmo.MultiStream(None, l=[('H2O', 10)], phases='lL') with pytest.raises(ValueError): reaction(stream) # Test errors with incompatible chemicals stream = tmo.MultiStream(None, l=[('Water', 10)], thermo=tmo.Thermo(['Water', 'Ethanol']), phases='gl') with pytest.raises(tmo.exceptions.UndefinedChemical): reaction(stream)
def set_thermo(self, thermo, cache=None): """ Set the default Thermo object. If `thermo` is not a Thermo object, an attempt is made to convert it to one. Parameters ---------- thermo : Thermo or Iterable[Chemical or str] A Thermo object or iterable of chemicals or chemical IDs. cache : bool, optional Wether or not to use cached chemicals. """ if not isinstance(thermo, tmo.Thermo): thermo = tmo.Thermo(thermo, cache=cache) self._thermo = thermo
def set_thermo(self, thermo, cache=None, skip_checks=False): """ Set the default Thermo object. If `thermo` is not a Thermo object, an attempt is made to convert it to one. Parameters ---------- thermo : Thermo or Iterable[Chemical or str] A Thermo object or iterable of chemicals or chemical IDs. cache : bool, optional Wether or not to use cached chemicals. skip_checks : bool, optional Whether to skip checks for missing or invalid properties. """ if not isinstance(thermo, (tmo.Thermo, tmo.IdealThermo)): thermo = tmo.Thermo(thermo, cache=cache, skip_checks=skip_checks) self._thermo = thermo
# %% Facilities # tmo.Stream.default_ID_number = 500 J7_1 = bst.Junction('J7_1', upstream=S402 - 0, downstream=Stream()) BT = bst.facilities.BoilerTurbogenerator('BT', ins=(J7_1 - 0), turbogenerator_efficiency=0.85) BT.outs[-1].T = 373.15 # tmo.Stream.default_ID_number = 700 CWP = bst.facilities.ChilledWaterPackage('CWP') CT = bst.facilities.CoolingTower('CT') CT.outs[1].T = 273.15 + 28 water_thermo = tmo.Thermo(tmo.Chemicals(['Water'])) process_water = tmo.Stream(ID='process_water', thermo=water_thermo) process_water_streams = (caustic, stripping_water, process_water1, process_water2, steam, BT - 1, CT - 1) def update_water_loss(): process_water.imol['Water'] = sum( [i.imol['Water'] for i in process_water_streams]) makeup_water = Stream('makeup_water', thermo=water_thermo, price=price['Makeup water'])
def test_stream(): import thermosteam as tmo tmo.settings.set_thermo(['Water'], cache=True) stream = tmo.Stream(None, Water=1, T=300) assert [stream.chemicals.Water] == stream.available_chemicals assert_allclose(stream.epsilon, 77.70030000000003) assert_allclose(stream.alpha * 1e6, 0.14330776454124503) assert_allclose(stream.nu, 8.799123532986536e-07) assert_allclose(stream.Pr, 6.14001869413997) assert_allclose(stream.Cn, 75.29555729396768) assert_allclose(stream.C, 75.29555729396768) assert_allclose(stream.Cp, 4.179538552493643) assert_allclose(stream.P_vapor, 3533.918074415897) assert_allclose(stream.mu, 0.0008766363688287887) assert_allclose(stream.kappa, 0.5967303492959747) assert_allclose(stream.rho, 996.2769195618362) assert_allclose(stream.V, 1.80826029854462e-05) assert_allclose(stream.H, 139.31398526921475) assert_allclose(stream.S, 70.46581776376684) assert_allclose(stream.sigma, 0.07176932405246211) assert_allclose(stream.z_mol, [1.0]) assert_allclose(stream.z_mass, [1.0]) assert_allclose(stream.z_vol, [1.0]) assert not stream.source assert not stream.sink assert stream.main_chemical == 'Water' assert not stream.isfeed() assert not stream.isproduct() assert stream.vapor_fraction == 0. with pytest.raises(ValueError): stream.get_property('isfeed', 'kg/hr') with pytest.raises(ValueError): stream.set_property('invalid property', 10, 'kg/hr') with pytest.raises(ValueError): tmo.Stream(None, Water=1, units='kg') stream.mol = 0. stream.mass = 0. stream.vol = 0. with pytest.raises(AttributeError): stream.F_mol = 1. with pytest.raises(AttributeError): stream.F_mass = 1. with pytest.raises(AttributeError): stream.F_vol = 1. # Make sure energy balance is working correctly with mix_from and vle chemicals = tmo.Chemicals(['Water', 'Ethanol']) thermo = tmo.Thermo(chemicals) tmo.settings.set_thermo(thermo) s3 = tmo.Stream('s3', T=300, P=1e5, Water=10, units='kg/hr') s4 = tmo.Stream('s4', phase='g', T=400, P=1e5, Water=10, units='kg/hr') s_eq = tmo.Stream('s34_mixture') s_eq.mix_from([s3, s4]) s_eq.vle(H=s_eq.H, P=1e5) H_sum = s3.H + s4.H H_eq = s_eq.H assert_allclose(H_eq, H_sum, rtol=1e-3) s_eq.vle(H=s3.H + s4.H, P=1e5) assert_allclose(s_eq.H, H_sum, rtol=1e-3)
def create_system(ID='wheatstraw_sys'): System.maxiter = 400 System.converge_method = 'Aitken' System.molar_tolerance = 0.01 ### Streams ### chemicals = bst.settings.get_chemicals() non_soluble = [ 'Xylan', 'Glucan', 'Arabinan', 'Lignin', 'Extract', 'Ash', 'Mannan', 'Galactan', 'Acetate' ] # feed flow drycomposition = chemicals.kwarray( dict(Glucan=0.3342, Xylan=0.2330, Arabinan=0.0420, Lignin=0.2260, Extract=0.1330, Ash=0.0180, Acetate=0.0130)) TS = 0.95 moisture_content = chemicals.kwarray(dict(Water=1 - TS)) dryflow = 83333.0 netflow = dryflow / TS feedflow = netflow * (drycomposition * TS + moisture_content) process_water_over_dryflow = 19.96 sulfuric_acid_over_dryflow = 0.04 wheatstraw = Stream('wheatstraw', feedflow, units='kg/hr', price=price['Feedstock'] * TS) # %% Pretreatment system process_water1 = Stream( 'process_water1', T=25 + 273.15, P=1 * 101325, Water=process_water_over_dryflow * dryflow, #only an initialization units='kg/hr') sulfuric_acid = Stream('sulfuric_acid', P=1 * 101325, T=25 + 273.15, Water=0.05 * sulfuric_acid_over_dryflow * dryflow, SulfuricAcid=0.95 * sulfuric_acid_over_dryflow * dryflow, units='kg/hr', price=price['Sulfuric acid'] * 0.95) steam = Stream( 'steam', phase='g', T=212 + 273.15, P=20 * 101325, Water=dryflow * 0.5, #This is just a guess units='kg/hr') U101 = units.FeedStockHandling('U101', ins=wheatstraw) U101.cost_items['System'].cost = 0 T201 = units.SulfuricAcidTank('T201', ins=sulfuric_acid) M201 = bst.Mixer('M201', ins=(process_water1, T201 - 0, Stream())) M202 = units.WashingTank('M202', ins=(M201 - 0, U101 - 0)) S200 = units.SieveFilter('S200', ins=(M202 - 0), outs=(Stream('feed_20TS'), Stream('recycled_water1')), moisture_content=1 - 0.20, split=find_split_solids(M202 - 0, non_soluble)) S201 = units.PressureFilter('S201', ins=(S200 - 0), outs=(Stream('feed_50TS'), Stream('recycled_water2')), moisture_content=0.5, split=find_split_solids(S200 - 0, non_soluble)) M200 = bst.Mixer('M200', ins=(S200 - 1, S201 - 1), outs='recycled_water') M200 - 0 - 2 - M201 recycled_water = M200 - 0 def update_process_water1(): process_water1.imass[ 'Water'] = process_water_over_dryflow * dryflow - recycled_water.imass[ 'Water'] sulfuric_acid.imass[ 'SulfuricAcid'] = 0.95 * sulfuric_acid_over_dryflow * dryflow - recycled_water.imass[ 'SulfuricAcid'] sulfuric_acid.imass[ 'Water'] = 0.05 / 0.95 * sulfuric_acid.imass['SulfuricAcid'] water_recycle_sys = System('water_recycle_sys', path=(U101, T201, M201, M202, S200, S201, M200, update_process_water1), recycle=M201 - 0) M205 = bst.Mixer('M205', ins=(S201 - 0, None)) M203 = units.SteamMixer('M203', ins=(M205 - 0, steam), P=steam.chemicals.Water.Psat(190.0 + 273.15)) R201 = units.PretreatmentReactorSystem( 'R201', ins=M203 - 0, outs=(Stream('pretreatment_steam'), Stream('pretreatment_effluent'))) P201 = units.BlowdownDischargePump('P201', ins=R201 - 1) T202 = units.OligomerConversionTank('T202', ins=P201 - 0) F201 = units.PretreatmentFlash('F201', ins=T202 - 0, outs=(Stream('flash_steam'), Stream('flash_effluent')), P=101325, Q=0) M204 = bst.Mixer('M204', ins=(R201 - 0, F201 - 0)) S202 = units.PressureFilter('S202', ins=(F201 - 1), outs=(Stream('pretreated_stream'), Stream('pretreated_liquid')), moisture_content=0.5, split=find_split_solids(F201 - 1, non_soluble)) S203 = bst.Splitter('S203', ins=M204 - 0, outs=(Stream('steam_back'), Stream('residual_steam')), split=0.25) H201 = units.WasteVaporCondenser('H201', ins=S203 - 1, outs=Stream('condensed_steam'), T=99 + 273.15, V=0) S203 - 0 - 1 - M205 steam_out1 = S203 - 1 steam_inS203 = 0 - S203 steam_out0 = S203 - 0 def update_split(): steam_out1.mol[:] = steam_inS203.mol[:] - steam_out0.mol[:] pretreatment_sys = System( 'pretreatment_sys', path=( water_recycle_sys, M205, M203, R201, P201, T202, F201, M204, S202, S203, update_split, H201), # TODO: H201 moved to the end, no need to resimulate system recycle=M204 - 0) ### TODO: There is a bug in original code; for now spec is constant # S203.split[:] = 0.5 T90 = 90 + 273.15 def f_DSpret(split): S203.split[:] = split for i in range(3): pretreatment_sys.simulate() sobj = M205 - 0 return sobj.T - T90 pretreatment_sys.specification = BoundedNumericalSpecification( f_DSpret, 0.10, 0.70) ### Fermentation system ### cellulase_conc = 0.05 cellulase = Stream('cellulase', units='kg/hr', price=price['Enzyme']) ammonia = Stream( 'ammonia', Ammonia=1051 / 1000 * dryflow, #This is just a initialization units='kg/hr', phase='l', price=price['Ammonia']) process_water2 = Stream( 'process_water2', T=10 + 273.15, P=1 * 101325, Water=1664.8 / 1000 * dryflow, #This is just a guess units='kg/hr') ammonia1 = Stream( 'ammonia1', Ammonia=26 / 1000 * dryflow, #This is just a initialization units='kg/hr', price=price['Ammonia']) ammonia2 = Stream( 'ammonia2', Ammonia=116 / 1000 * dryflow, #This is just a initialization units='kg/hr', price=price['Ammonia']) ammonia_fresh = Stream('ammonia_fresh', units='kg/hr', price=price['Ammonia']) ammonia_storage = units.DAPTank('Ammonia_storage', ins=ammonia_fresh, outs='Ammonia_fermentation') S301 = bst.ReversedSplitter('S301', ins=ammonia_storage - 0, outs=(ammonia, ammonia1, ammonia2)) air1 = Stream('air_lagoon1', O2=51061, N2=168162, phase='g', units='kg/hr') air2 = Stream('air_lagoon2', O2=51061, N2=168162, phase='g', units='kg/hr') J1 = bst.Junction('J1', upstream=S202 - 0, downstream=Stream()) sacch_split = 0.05 #This is just a initialization ammonia_zmass = 0.0052 M301 = bst.Mixer('M301', ins=(ammonia, process_water2)) M302 = bst.Mixer('M302', ins=(J1 - 0, M301 - 0)) S303 = units.PressureFilter('S303', ins=(M302 - 0), outs=(Stream('cooled_hydrolysate'), Stream('residual_water')), moisture_content=0.4, split=find_split_solids(M302 - 0, non_soluble)) WIS_prehyd = 0.20 cooled_hydrolyzate_pre = M302.outs[0] S303_out0 = S303.outs[0] S303_out1 = S303.outs[1] def update_moisture_content(): F_non_sol_S303in = find_WIS( cooled_hydrolyzate_pre, non_soluble) * cooled_hydrolyzate_pre.F_mass F_sol_S303in = cooled_hydrolyzate_pre.F_mass - F_non_sol_S303in F_sol_S303out = F_non_sol_S303in / WIS_prehyd - cellulase.F_mass - F_non_sol_S303in split_soluble = F_sol_S303out / F_sol_S303in new_split = find_split_solids(cooled_hydrolyzate_pre, non_soluble) new_split[new_split == 0] = split_soluble S303_out0.mass[:] = cooled_hydrolyzate_pre.mass[:] * new_split S303_out1.mass[:] = cooled_hydrolyzate_pre.mass[:] * (1 - new_split) T203 = units.AmmoniaAdditionTank('T203', ins=S303 - 0) M303 = units.EnzymeHydrolysateMixer('M303', ins=(T203 - 0, cellulase)) cellulase_over_WIS = 0.05 * cellulase_conc water_over_WIS = 0.05 * (1 - cellulase_conc) def update_cellulase_and_nutrient_loading(): WIS_premixer = cooled_hydrolyzate_pre.F_mass * find_WIS( cooled_hydrolyzate_pre, non_soluble) cellulase_mass = cellulase_over_WIS * WIS_premixer water_mass = water_over_WIS * WIS_premixer cellulase.imass['Cellulase'] = cellulase_mass * 1.1 cellulase.imass['Water'] = water_mass * 1.1 # Note: An additional 10% is produced for the media glucose/sophorose mixture # Humbird (2011) p[g. 37 def update_ammonia_loading(): water_cooled_hydrolyzate = cooled_hydrolyzate_pre.imass['Water'] ammonia.F_mass = water_cooled_hydrolyzate * ammonia_zmass M304 = bst.Mixer('M304', ins=(M303 - 0, None)) R301 = units.SaccharificationAndCoFermentation( 'R301', ins=(M304 - 0, ammonia1, air1), outs=(Stream('CO2_1'), Stream('fermentation_slurry'), Stream('saccharified_to_seed')), saccharified_slurry_split=sacch_split) M305 = bst.Mixer('M305', ins=(R301 - 2, ammonia2, air2)) R302 = units.SeedTrain('R302', ins=M305 - 0, outs=(Stream('CO2_2'), Stream('effluent'))) T301 = units.SeedHoldTank('T301', ins=R302 - 1) T301 - 0 - 1 - M304 air2_over_glucose = (R302.reactions.X[1] * 2.17 + R302.reactions.X[3] * 1.5 / 2 - R302.reactions.X[2]) * 1.1 ammonia2_over_glucose = R302.reactions.X[1] * 0.62 * 1.1 preseed = M305 - 0 def update_nutrient_loading2(): glucose_preseed = preseed.imol['Glucose'] air2.imol['O2'] = air2_over_glucose * glucose_preseed air2.imol['N2'] = (air2_over_glucose * glucose_preseed) / 0.21 * 0.79 ammonia2_mol = ammonia2_over_glucose * glucose_preseed - preseed.imol[ 'Ammonia'] if ammonia2_mol < 0: ammonia2.imol['NH3'] = 0 else: ammonia2.imol['NH3'] = ammonia2_mol air1_over_glucose = (R301.cofermentation.X[1] * 2.17 + R301.cofermentation.X[3] * 1.5 / 2 - R301.cofermentation.X[2]) * 1.2 ammonia1_over_glucose = R301.cofermentation.X[1] * 0.62 * 1.1 preferm = M304 - 0 glucose_over_glucan = R301.saccharification.X[ 0] + R301.saccharification.X[1] * 0.5 + R301.saccharification.X[2] def update_nutrient_loading1(): glucose_preferm = preferm.imol['Glucan'] * glucose_over_glucan * ( 1 - R301.saccharified_slurry_split) air1.imol['O2'] = air1_over_glucose * glucose_preferm air1.imol['N2'] = (air1_over_glucose * glucose_preferm) / 0.21 * 0.79 ammonia1_mol = ammonia1_over_glucose * glucose_preferm - preferm.imol[ 'Ammonia'] * (1 - R301.saccharified_slurry_split) if ammonia1_mol < 0: ammonia1.imol['NH3'] = 0 else: ammonia1.imol['NH3'] = ammonia1_mol # TODO: Bug in update nutrient loading (not enough O2 to run R301 and R302 seed train) # TODO: so just ignore negative flow in the meanwhile # def ignore_negative_O2_flow(): # for i in (R301.outs + R302.outs): i.imol['O2'] = 0 seed_recycle_sys = System('seed_recycle_sys', path=(M304, update_nutrient_loading1, R301, M305, update_nutrient_loading2, R302, T301), recycle=M304 - 0) conc_yeast = 3.0 def f_DSferm1(x): sacch_split = x R301.saccharified_slurry_split = sacch_split for i in range(3): seed_recycle_sys.simulate() s_obj2 = R301 - 1 light_ind = s_obj2.chemicals._light_indices l = [a for a in s_obj2.vol[light_ind] if not a == 0] v_0 = s_obj2.F_vol - sum(l) conc_yeast_obtained = s_obj2.imass['S_cerevisiae'] / v_0 return ((conc_yeast_obtained - conc_yeast) / conc_yeast) seed_recycle_sys.specification = BoundedNumericalSpecification( f_DSferm1, 0.01, 0.35) fermentation_sys = System( 'fermentation_sys', path=(J1, M301, M302, S303, update_ammonia_loading, T203, update_cellulase_and_nutrient_loading, update_moisture_content, M303, seed_recycle_sys)) #update_moisture_content, T_solid_cool = 50.0 + 273.15 def f_DSferm2(x): mass_water = x process_water2.F_mass = mass_water for i in range(3): fermentation_sys.simulate() s_obj1 = M302 - 0 return ((s_obj1.T - T_solid_cool) / T_solid_cool) fermentation_sys.specification = BoundedNumericalSpecification( f_DSferm2, process_water2.F_mass / 2, process_water2.F_mass * 2) ### Ethanol purification ### stripping_water = Stream( 'stripping_water', Water=26836, #This is just a initialization units='kg/hr') M306 = bst.Mixer('M306', ins=(R302 - 0, R301 - 0)) T302 = units.BeerTank('T302', outs=Stream('cool_feed')) # tmo.Stream.default_ID_number = 400 M401 = bst.Mixer('M401', ins=(R301 - 1, None)) M401 - 0 - T302 D401 = bst.VentScrubber('D401', ins=(stripping_water, M306 - 0), outs=(Stream('CO2_purified'), Stream('bottom_liquid')), gas=('CO2', 'NH3', 'O2', 'N2')) D401 - 1 - 1 - M401 # Heat up before beer column # Exchange heat with stillage mid_eth_massfrac = 0.50 high_eth_massfrac = 0.915 bott_eth_massfrac = 0.00001 dist_high_pres = 2 * 101325 high_dist_stream = Stream('high_eth_stream', Ethanol=high_eth_massfrac, Water=1 - high_eth_massfrac, units='kg/hr') mid_dist_stream = Stream('mid_eth_stream', Ethanol=mid_eth_massfrac, Water=1 - mid_eth_massfrac, units='kg/hr') bottom_stream = Stream( 'bottom_stream', Ethanol= bott_eth_massfrac, #only an initialization. Later it gets updated with the real composition Water=1 - bott_eth_massfrac, units='kg/hr') dist_high_dp = high_dist_stream.dew_point_at_P(dist_high_pres) bott_mid_dp = bottom_stream.dew_point_at_T(dist_high_dp.T - 5) dist_mid_dp = mid_dist_stream.dew_point_at_P(bott_mid_dp.P) bott_low_dp = bottom_stream.dew_point_at_T(dist_mid_dp.T - 5) dist_low_dp = mid_dist_stream.dew_point_at_P(bott_low_dp.P) S401 = bst.Splitter('S401', ins=(T302 - 0), outs=(Stream('feed_low_pressure', P=bott_low_dp.P), Stream('feed_mid_pressure', P=bott_mid_dp.P)), split=0.5) H402 = bst.HXprocess('H402', ins=(S401 - 0, None), outs=(Stream('warmed_feed_lp'), Stream('cooled_bottom_water_lp')), U=1.28) H403 = bst.HXprocess('H403', ins=(S401 - 1, None), outs=(Stream('warmed_feed_mp'), Stream('cooled_bottom_water_mp')), U=1.28) # Beer column Ethanol_MW = chemicals.Ethanol.MW Water_MW = chemicals.Water.MW def Ethanol_molfrac(e): """Return ethanol mol fraction in a ethanol water mixture""" return e / Ethanol_MW / (e / Ethanol_MW + (1 - e) / Water_MW) xbot = Ethanol_molfrac(bott_eth_massfrac) ytop = Ethanol_molfrac(mid_eth_massfrac) D402 = units.DistillationColumn('D402', ins=H402 - 0, P=bott_low_dp.P, y_top=ytop, x_bot=xbot, k=1.5, LHK=('Ethanol', 'Water'), energy_integration=True) D402.tray_material = 'Stainless steel 304' D402.vessel_material = 'Stainless steel 304' D402.BM = 2.4 D402.boiler.U = 1.85 # Condense distillate H402_dist = bst.HXutility('H402_dist', ins=D402 - 0, V=0, T=dist_low_dp.T - 1) P402_2 = bst.Pump('P402_2', ins=H402_dist - 0, P=bott_mid_dp.P) P402_2.BM = 3.1 D402 - 1 - 1 - H402 LP_dist_sys = System('LP_dist_sys', path=(H402, D402, H402_dist), recycle=H402 - 0) D403 = units.DistillationColumn('D403', ins=H403 - 0, P=bott_mid_dp.P, y_top=ytop, x_bot=xbot, k=1.5, LHK=('Ethanol', 'Water'), energy_integration=True) D403.tray_material = 'Stainless steel 304' D403.vessel_material = 'Stainless steel 304' D403.BM = 2.4 D403.boiler.U = 1.85 # Condense distillate H403_dist = bst.HXutility('H403_dist', ins=D403 - 0, V=0, T=dist_mid_dp.T - 1) D403 - 1 - 1 - H403 MP_dist_sys = System('MP_dist_sys', path=(H403, D403, H403_dist), recycle=H403 - 0) M402 = bst.Mixer('M402', ins=(P402_2 - 0, H403_dist - 0), outs=Stream(P=bott_mid_dp.P)) P404 = bst.Pump('P404', ins=M402 - 0, P=dist_high_pres) M403 = bst.Mixer('M403', ins=(H402 - 1, H403 - 1), outs=Stream('bottom_water')) S402 = units.PressureFilter('S402', ins=(M403 - 0), outs=(Stream('Lignin'), Stream('Thin_spillage')), flux=1220.6 * 0.8, moisture_content=0.35, split=find_split_solids(M403 - 0, non_soluble)) # Mix ethanol Recycle (Set-up) M404 = bst.Mixer('M404', ins=(P404 - 0, None), outs=Stream(P=dist_high_pres)) ytop = Ethanol_molfrac(high_eth_massfrac) D404 = units.DistillationColumn('D404', ins=M404 - 0, P=dist_high_pres, y_top=ytop, x_bot=xbot, k=1.5, LHK=('Ethanol', 'Water'), energy_integration=True) D404.tray_material = 'Stainless steel 304' D404.vessel_material = 'Stainless steel 304' D404.BM = 2.4 D404.boiler.U = 1.85 P405 = bst.Pump('P405', ins=D404 - 1, outs=Stream('bottom_water')) # Superheat vapor for mol sieve H404 = bst.HXutility('H404', ins=D404 - 0, T=dist_high_dp.T + 37.0, V=1) # Molecular sieve U401 = bst.MolecularSieve('U401', ins=H404 - 0, split=(2165.14 / 13356.04, 1280.06 / 1383.85), order=('Ethanol', 'Water')) U401 - 0 - 1 - M404 ethanol_recycle_sys = System('ethanol_recycle_sys', path=(M404, D404, H404, U401), recycle=M404 - 0) # Condense ethanol product H405 = bst.HXutility('H405', ins=U401 - 1, V=0, T=dist_high_dp.T - 1) T701 = bst.StorageTank('T701', ins=H405 - 0, tau=7 * 24, vessel_type='Floating roof', vessel_material='Carbon steel') ethanol = Stream('ethanol', price=price['Ethanol']) P701 = bst.Pump('P701', ins=T701 - 0, outs=ethanol) P701.BM = 3.1 T701.BM = 1.7 vent_stream = M306 - 0 stripping_water_over_vent = stripping_water.mol / 21202.490455845436 def update_stripping_water(): stripping_water.mol[:] = stripping_water_over_vent * vent_stream.F_mass purification_sys = System( 'purification_sys', path=(M306, update_stripping_water, D401, M401, T302, S401, MP_dist_sys, LP_dist_sys, P402_2, M402, P404, M403, S402, ethanol_recycle_sys, P405, H405, T701, P701)) def f_DSpur(split): S401.split[:] = split for i in range(3): purification_sys.simulate() heat_cond = D403.condenser.Q + H403_dist.Q heat_boil = D402.boiler.Q return heat_boil + heat_cond #heat_boil and heat_cond have different signs purification_sys.specification = BoundedNumericalSpecification( f_DSpur, 0.10, 0.70) ### Biogas production organic_groups = [ 'OtherSugars', 'SugarOligomers', 'OrganicSolubleSolids', 'Furfurals', 'OtherOrganics', 'Protein', 'CellMass' ] organics = list( sum([chemical_groups[i] for i in organic_groups], ('Ethanol', 'AceticAcid', 'Xylose', 'Glucose', 'ExtractVol', 'ExtractNonVol'))) organics.remove('WWTsludge') P_sludge = 0.05 / 0.91 / chemicals.WWTsludge.MW MW = np.array([chemicals.CH4.MW, chemicals.CO2.MW]) CH4_molcomp = 0.60 mass = np.array([CH4_molcomp, 1 - CH4_molcomp]) * MW mass /= mass.sum() mass *= 0.381 / (0.91) P_ch4, P_co2 = mass / MW def anaerobic_rxn(reactant): MW = getattr(chemicals, reactant).MW return rxn.Reaction( f"{1/MW}{reactant} -> {P_ch4}CH4 + {P_co2}CO2 + {P_sludge}WWTsludge", reactant, 0.91) anaerobic_digestion = rxn.ParallelReaction( [anaerobic_rxn(i) for i in organics] + [rxn.Reaction(f"H2SO4 -> H2S + 2O2", 'H2SO4', 1.)]) well_water1 = Stream('well_water1', Water=1, T=15 + 273.15) J5_1 = bst.Junction('J5_1', upstream=S303 - 1, downstream=Stream()) J5_2 = bst.Junction('J5_2', upstream=S402 - 1, downstream=Stream()) J5_3 = bst.Junction('J5_3', upstream=S202 - 1, downstream=Stream()) J5_4 = bst.Junction('J5_4', upstream=H201 - 0, downstream=Stream()) J5_5 = bst.Junction('J5_5', upstream=P405 - 0, downstream=Stream()) M501 = bst.Mixer('M501', ins=(J5_1 - 0, J5_2 - 0, J5_3 - 0, J5_4 - 0, J5_5 - 0)) splits = [('Ethanol', 1, 15), ('Water', 27158, 356069), ('Glucose', 3, 42), ('Xylose', 7, 85), ('OtherSugars', 13, 175), ('SugarOligomers', 10, 130), ('OrganicSolubleSolids', 182, 2387), ('InorganicSolubleSolids', 8, 110), ('Ammonia', 48, 633), ('AceticAcid', 0, 5), ('Furfurals', 5, 70), ('OtherOrganics', 9, 113), ('Cellulose', 19, 6), ('Xylan', 6, 2), ('OtherStructuralCarbohydrates', 1, 0), ('Lignin', 186, 64), ('Protein', 51, 18), ('CellMass', 813, 280), ('OtherInsolubleSolids', 68, 23)] raw_biogas = Stream('raw_biogas', price=price['Pure biogas'] * 0.33) Tin_digestor = 37 + 273.15 R501 = units.AnaerobicDigestion('R501', ins=(M501 - 0, well_water1), outs=(raw_biogas, 'waste_effluent', 'sludge_effluent', ''), reactions=anaerobic_digestion, sludge_split=find_split(*zip(*splits)), T=Tin_digestor) digestor_sys = System('digestor_sys', path=(J5_1, J5_2, J5_3, J5_4, J5_5, M501, R501)) ### Waste water treatment combustion = chemicals.get_combustion_reactions() def growth(reactant): f = chemicals.WWTsludge.MW / getattr(chemicals, reactant).MW return rxn.Reaction(f"{f}{reactant} -> WWTsludge", reactant, 1.) # Note, nitrogenous species included here, but most of it removed in R601 digester aerobic_digestion = rxn.ParallelReaction([ i * 0.74 + 0.22 * growth(i.reactant) for i in combustion if (i.reactant in organics) ]) aerobic_digestion.X[:] = 0.96 # tmo.Stream.default_ID_number = 600 well_water = Stream('well_water', Water=1, T=15 + 273.15) raw_biogas2 = Stream('raw_biogas2', price=price['Pure biogas'] * 0.33) WWTC = units.WasteWaterSystemCost('WWTC', ins=R501 - 1) R601 = units.AnaerobicDigestionWWT('R601', ins=(WWTC - 0, well_water), outs=(raw_biogas2, '', '', ''), reactions=anaerobic_digestion, sludge_split=find_split(*zip(*splits)), T=Tin_digestor - 2) air = Stream('air_lagoon', O2=51061, N2=168162, phase='g', units='kg/hr') caustic = Stream('WWT_caustic', Water=2252, NaOH=2252, units='kg/hr', price=price['Caustic'] * 0.5) # polymer = Stream('WWT polymer') # Empty in humbird report :-/ M602 = bst.Mixer('M602', ins=(R601 - 1, None)) caustic_over_waste = caustic.mol / 2544300.6261793654 air_over_waste = air.mol / 2544300.6261793654 waste = M602 - 0 def update_aerobic_input_streams(): F_mass_waste = waste.F_mass caustic.mol[:] = F_mass_waste * caustic_over_waste air.mol[:] = F_mass_waste * air_over_waste R602 = units.AerobicDigestionWWT('R602', ins=(waste, air, caustic), outs=('evaporated_water', ''), reactions=aerobic_digestion) splits = [('Ethanol', 0, 1), ('Water', 381300, 2241169), ('Glucose', 0, 2), ('Xylose', 1, 3), ('OtherSugars', 1, 7), ('SugarOligomers', 1, 6), ('OrganicSolubleSolids', 79, 466), ('InorganicSolubleSolids', 4828, 28378), ('Ammonia', 3, 16), ('Furfurals', 0, 3), ('OtherOrganics', 1, 7), ('CarbonDioxide', 6, 38), ('O2', 3, 17), ('N2', 5, 32), ('Cellulose', 0, 194), ('Xylan', 0, 65), ('OtherStructuralCarbohydrates', 0, 15), ('Lignin', 0, 1925), ('Protein', 0, 90), ('CellMass', 0, 19778), ('OtherInsolubleSolids', 0, 707)] S601 = bst.Splitter('S601', ins=R602 - 1, split=find_split(*zip(*splits))) S602 = bst.Splitter('S602', ins=S601 - 1, split=0.96) M603 = bst.Mixer('M603', ins=(S602 - 0, None)) M603 - 0 - 1 - M602 M604 = bst.Mixer('M604', ins=(R601 - 2, S602 - 1)) centrifuge_species = ('Water', 'Glucose', 'Xylose', 'OtherSugars', 'SugarOligomers', 'OrganicSolubleSolids', 'InorganicSolubleSolids', 'Ammonia', 'Furfurals', 'OtherOrganics', 'CO2', 'COxSOxNOxH2S', 'Cellulose', 'Xylan', 'OtherStructuralCarbohydrates', 'Lignin', 'Protein', 'CellMass', 'OtherInsolubleSolids') S623_flow = np.array( [7708, 0, 0, 1, 1, 13, 75, 3, 0, 1, 1, 2, 25, 8, 2, 250, 52, 1523, 92]) S616_flow = np.array([ 109098, 3, 6, 13, 9, 187, 1068, 46, 5, 8, 14, 31, 1, 0, 0, 13, 3, 80, 5 ]) S603 = bst.Splitter('S603', ins=M604 - 0, outs=('', 'sludge'), split=find_split(centrifuge_species, S616_flow, S623_flow)) S603 - 0 - 1 - M603 S604 = bst.Splitter('S604', ins=S601 - 0, outs=('treated_water', 'waste_brine'), split={'Water': 0.987}) aerobic_recycle_sys = System('aerobic_recycle_sys', path=(M602, update_aerobic_input_streams, R602, S601, S602, M604, S603, M603), recycle=M602 - 0) WWT_sys = System('WWT_sys', path=(WWTC, R601, aerobic_recycle_sys, S604)) ### Facilities # %% Facilities # TODO: Double check that I did is right. # TODO: The BoilerTurbogenerator burns both biogas and lignin # Note that lime and boilerchems cost is taking into account in the # unit operation now # M605 = bst.Mixer('M605', ins=(R501-0, R601-0)) BT = bst.facilities.BoilerTurbogenerator( 'BT', ins=(S402 - 0, '', 'boiler_makeup_water', 'natural_gas', 'lime', 'boilerchems'), turbogenerator_efficiency=0.85) # tmo.Stream.default_ID_number = 700 CWP = bst.facilities.ChilledWaterPackage('CWP') CT = bst.facilities.CoolingTower('CT') CT.outs[1].T = 273.15 + 28 water_thermo = tmo.Thermo(tmo.Chemicals(['Water'])) process_water = tmo.Stream(ID='process_water', thermo=water_thermo) process_water_streams = (caustic, stripping_water, process_water1, process_water2, steam, BT - 1, CT - 1) def update_water_loss(): process_water.imol['Water'] = sum( [i.imol['Water'] for i in process_water_streams]) makeup_water = Stream('makeup_water', thermo=water_thermo, price=price['Makeup water']) PWC = bst.facilities.ProcessWaterCenter( 'PWC', ins=(S604 - 0, makeup_water), outs=(process_water, ''), makeup_water_streams=(makeup_water, ), process_water_streams=process_water_streams) Substance = tmo.Chemical.blank('Substance') Substance.at_state(phase='l') Substance.default() substance_thermo = tmo.Thermo(tmo.Chemicals([Substance])) CIP = Stream('CIP', thermo=substance_thermo, flow=(126 / 83333 * dryflow, )) CIP_package = units.CIPpackage('CIP_package', ins=CIP, thermo=substance_thermo) plant_air = Stream('plant_air', flow=(83333 / 83333 * dryflow, ), thermo=substance_thermo) ADP = bst.facilities.AirDistributionPackage('ADP', ins=plant_air, thermo=substance_thermo) FT = units.FireWaterTank('FT', ins=Stream('fire_water', flow=(8343 / 83333 * dryflow, ), thermo=substance_thermo), thermo=substance_thermo) ### Complete system wheatstraw_sys = System('wheatstraw_sys', path=(pretreatment_sys, fermentation_sys, ammonia_storage, S301, purification_sys, digestor_sys, WWT_sys), facilities=(CWP, BT, CT, update_water_loss, PWC, ADP, CIP_package, S301, ammonia_storage, FT)) return wheatstraw_sys
def set_thermo(self, thermo): """Set the default Thermo object. If `thermo` is not a Thermo object, an attempt is made to convert it to one.""" if not isinstance(thermo, tmo.Thermo): thermo = tmo.Thermo(thermo) self._thermo = thermo