Ejemplo n.º 1
0
    def bin_by_bayesian_blocks(self, start, stop, p0, use_background=False):

        events = self._arrival_times[np.logical_and(
            self._arrival_times >= start, self._arrival_times <= stop)]

        #self._temporal_binner = TemporalBinner(events)

        if use_background:

            integral_background = lambda t: self.get_total_poly_count(start, t)

            self._temporal_binner = TemporalBinner.bin_by_bayesian_blocks(
                events, p0, bkg_integral_distribution=integral_background)

        else:

            self._temporal_binner = TemporalBinner.bin_by_bayesian_blocks(
                events, p0)
Ejemplo n.º 2
0
    def bin_by_custom(self, start, stop):
        """
        Interface to temporal binner's custom bin mode


        :param start: start times of the bins
        :param stop:  stop times of the bins
        :return:
        """

        self._temporal_binner = TemporalBinner.bin_by_custom(start, stop)
Ejemplo n.º 3
0
    def bin_by_constant(self, start, stop, dt=1):
        """
        Interface to the temporal binner's constant binning mode

        :param start: start time of the bins
        :param stop: stop time of the bins
        :param dt: temporal spacing of the bins
        :return:
        """

        events = self._arrival_times[np.logical_and(self._arrival_times >= start, self._arrival_times <= stop)]

        self._temporal_binner = TemporalBinner.bin_by_constant(events, dt)
Ejemplo n.º 4
0
    def bin_by_significance(self, start, stop, sigma, mask=None, min_counts=1):
        """

        Interface to the temporal binner's significance binning model

         :param start: start of the interval to bin on
         :param stop:  stop of the interval ot bin on
         :param sigma: sigma-level of the bins
         :param mask: (bool) use the energy mask to decide on ,significance
         :param min_counts:  minimum number of counts per bin
         :return:
        """

        if mask is not None:

            # create phas to check
            phas = np.arange(self._first_channel, self._n_channels)[mask]

            this_mask = np.zeros_like(self._arrival_times, dtype=bool)

            for channel in phas:
                this_mask = np.logical_or(this_mask,
                                          self._measurement == channel)

            events = self._arrival_times[this_mask]

        else:

            events = copy.copy(self._arrival_times)

        events = events[np.logical_and(events <= stop, events >= start)]

        def tmp_bkg_getter(a, b):
            return self.get_total_poly_count(a, b, mask)

        def tmp_err_getter(a, b):
            return self.get_total_poly_error(a, b, mask)

        # self._temporal_binner.bin_by_significance(tmp_bkg_getter,
        #                                           background_error_getter=tmp_err_getter,
        #                                           sigma_level=sigma,
        #                                           min_counts=min_counts)

        self._temporal_binner = TemporalBinner.bin_by_significance(
            events,
            tmp_bkg_getter,
            background_error_getter=tmp_err_getter,
            sigma_level=sigma,
            min_counts=min_counts,
        )