Ejemplo n.º 1
0
def remove_grism_sky(flt='ibhm46ioq_flt.fits', list=['sky_cosmos.fits', 'sky_goodsn_lo.fits', 'sky_goodsn_hi.fits', 'sky_goodsn_vhi.fits'],  path_to_sky = '../CONF/', out_path='./', verbose=False, plot=False, flat_correct=True, sky_subtract=True, second_pass=True, overall=True, combine_skies=False, sky_components=True, add_constant=True):
    """ 
    Process a (G141) grism exposure by dividing by the F140W imaging flat-field
    and then subtracting by a master sky image.  
    
    v1.6: list=['sky_cosmos.fits', 'sky_goodsn_lo.fits', 'sky_goodsn_hi.fits', 'sky_goodsn_vhi.fits']
    
    testing: list=['sky.G141.set001.fits','sky.G141.set002.fits','sky.G141.set003.fits','sky.G141.set004.fits','sky.G141.set005.fits','sky.G141.set025.fits','sky.G141.set120.fits']
    
    list=['zodi_G102_clean.fits', 'excess_G102_clean.fits']
    """
    
    import threedhst.grism_sky as bg
    #import scipy.signal as sign
    
    # flt = '../../GOODS-N/RAW/ib3708ilq_flt.fits.gz'
    im = pyfits.open(flt)
    bg.set_grism_flat(grism=im[0].header['FILTER'], verbose=True)
    
    segfile = os.path.basename(flt.replace('.fits','.seg.fits')).replace('.gz','')
    if os.path.exists(segfile):
        seg = pyfits.open(segfile)[0].data
        use_biweight=False
    else:
        seg = np.zeros(im[1].data.shape)
        use_biweight=True
    
    xin, yin = bg.profile(flt, extension=1, flatcorr=True, biweight=use_biweight)
    #yin /= threedhst.utils.biweight(yin[(np.abs(xin-507) < 50) & np.isfinite(yin)])
    
    if plot:
        plt.plot(xin, yin, color='black', linewidth=2)
    
    #### Loop through sky images and find the one whose column profile most
    #### closely matches the input image
    chi2 = 1.e10
    keep = None
    for sky in list:
        xsky, ysky = bg.profile(flt=path_to_sky+sky, extension=0, flatcorr=False, biweight=True)
        ysky /= np.mean(ysky[np.abs(xsky-507) < 50])
        #
        ok = np.isfinite(ysky) & np.isfinite(yin) & (yin*ysky != 0)
        a = np.sum((ysky*yin)[ok])/np.sum((ysky*ysky)[ok])
        if plot:
            plt.plot(xsky, ysky*a)
        #
        chi2_i = np.sum((ysky[ok]*a-yin[ok])**2)
        if verbose:
            print sky, chi2_i
        #
        if chi2_i < chi2:
            chi2 = chi2_i*1
            keep = sky
     
    if keep is None:
        keep = 'sky_goodsn_vhi.fits'
            
    #### The best sky image
    sk = pyfits.open(path_to_sky+keep)
    sk[0].data[sk[0].data == 0] = 1.
    sk[0].data[~np.isfinite(sk[0].data)] = 1.
    
    flat = bg.flat*1.
    
    #### Only flat correction
    dq_ok = (im[3].data & (4+32+16+512+2048+4096)) == 0
    mask = (seg == 0) & dq_ok
    if plot:
        corr = im[1].data*flat#/sk[0].data
        corr -= threedhst.utils.biweight(corr[mask], mean=True)
        ds9.frame(1)
        ds9.v(corr, vmin=-0.5,vmax=0.5)
    
    if flat_correct is False:
        flat = flat*0+1
    
    if sky_subtract is False:
        sk[0].data = sk[0].data*0+1
        
    #### Divide by the sky flat
    #corr = im[1].data*flat/sk[0].data
    # #### Show the result
    # if plot:
    #     ds9.frame(2)
    #     ds9.v(corr-threedhst.utils.biweight(corr[mask], mean=True), vmin=-0.5,vmax=0.5)

    ### Instead, subtract the sky flat
    sky_stats = threedhst.utils.biweight((im[1].data*flat/sk[0].data)[mask], both=True)
    corr = im[1].data*flat-sky_stats[0]*sk[0].data
    
    #### Get least-sq coeffs of multiple sky components
    if sky_components:
        from scipy.linalg import lstsq
        import scipy.optimize
        import scipy.ndimage as nd
        import copy
        
        #grow_mask = nd.maximum_filter((~mask)*1., size=3) == 0
        
        ims = []
        #skies = ['zodi_G141_clean.fits', 'excess_lo_G141_clean.fits', 'G141_scattered_light.fits']
        skies = copy.deepcopy(list)
        
        for sky in skies:
            ims.append(pyfits.open(path_to_sky + sky)[0].data.flatten())
        
        if add_constant:
            ims.append(im[1].data.flatten()*0.+1)
            skies.append('Constant')
        
        ims = np.array(ims)
                
        seg_mask = nd.maximum_filter((seg > 0), size=18) == 0
                
        #### First iteration, non-weighted least-sq
        mask_full = seg_mask & dq_ok & ((im[1].data*bg.flat) < np.percentile((im[1].data*bg.flat)[mask], 98)) & (im[2].data > 0) & ((im[1].data*bg.flat) > np.percentile((im[1].data*bg.flat)[mask], 1))
        
        data = (im[1].data*bg.flat)[mask_full].flatten()
        xcoeff, resid, rank, ss = lstsq(ims[:, mask_full.flatten()].T, data)
        model = np.dot(xcoeff, ims).reshape((1014,1014))
        corr = im[1].data*flat-model

        #### Second iteration: improved mask, weighted lstsq
        mask_full = seg_mask & dq_ok & (corr < np.percentile(corr[mask], 98)) & (im[2].data > 0) & (corr > np.percentile(corr[mask], 1))
        
        data = (im[1].data*bg.flat)[mask_full].flatten()
        wht = 1./(im[2].data)[mask_full].flatten()
        p0 = np.ones(ims.shape[0])
        popt = scipy.optimize.leastsq(bg.obj_lstsq, p0, args=(data, ims[:, mask_full.flatten()], wht), full_output=True, ftol=1.49e-8/1000., xtol=1.49e-8/1000.)
        xcoeff = popt[0]
        model = np.dot(xcoeff, ims).reshape((1014,1014))
        corr = im[1].data*flat-model
        
        #### Use the new mask
        mask = mask_full
        
        #### 1D column averages
        if True:            
            yres = np.zeros(1014)
            yfull = np.zeros(1014)
            ydat = np.zeros(1014)
            fcorr = (im[1].data*flat)
            xfull = yfull*0.
            for i in range(1014):
                ymsk = mask_full[:,i] > 0
                ydat[i] = np.median(fcorr[ymsk,i])
                yfull[i] = np.median(model[ymsk,i])
                yres[i] = np.median(corr[ymsk,i])
                #
                xmsk = mask_full[i,:] > 0
                xfull[i] = np.median(model[i,xmsk])
                
                #print i
                
            yres_sm = threedhst.utils.medfilt(yres, 41)
            
            ### Make figure
            from matplotlib.figure import Figure
            from matplotlib.backends.backend_agg import FigureCanvasAgg
            
            fig = Figure(figsize=[8,4], dpi=100)

            fig.subplots_adjust(wspace=0.25,hspace=0.02,left=0.1,
                                bottom=0.08,right=0.99,top=0.92)

            ax = fig.add_subplot(121)
            ax.plot(ydat, color='black')
            ax.plot(yfull, color='red')
            ax.plot(xfull, color='green')

            ax.set_xlim(0,1014)
            ax.set_title(flt)
            
            ax = fig.add_subplot(122)
            ax.plot(yres, color='black')
            ax.plot(yres_sm, color='red', linewidth=2)
            ax.set_xlim(0,1014)
            
            canvas = FigureCanvasAgg(fig)
            canvas.print_figure(flt.split('.fits')[0] + '.multisky.png', dpi=100, transparent=False)
            
            
        #### Update header keywords    
        print 'Simultaneous sky components:'
        for i in range(len(skies)):
            print '   %s %.3f' %(skies[i], xcoeff[i])
            im[0].header.update('GSKY%02d' %(i+1), xcoeff[i], comment='Grism sky: %s' %(skies[i]))
            
    # #### Show the result
    # if plot:
    #     ds9.frame(3)
    #     ds9.v(corr, vmin=-0.5,vmax=0.5)
    
    #### Put the result in the FLT data extension
    im[1].data = corr*1.
     
    #### Need to write an output file to use `profile`
    im.writeto(out_path+os.path.basename(flt).replace('.gz',''), clobber=True)
    xin, yin = bg.profile(out_path+os.path.basename(flt).replace('.gz',''), extension=1, flatcorr=False, biweight=True)
        
    im = pyfits.open(out_path+os.path.basename(flt).replace('.gz',''), mode='update')

    if second_pass:
        #### Subtract the residual difference between the observed and master sky
        if sky_components:
            ### Use column average found earlier
            resid = np.dot(np.ones((1014,1)), yres_sm.reshape(1,1014))
        else:
            resid = np.dot(np.ones((1014,1)), threedhst.utils.medfilt(yin, 41).reshape(1,1014))

        im[1].data -= resid
    
    #### Subtract the overall biweight mean
    if overall:
        full_mean = threedhst.utils.biweight(im[1].data[mask], mean=True)
        im[1].data -= full_mean
        print 'overall: %.4f' %(full_mean)
        
    #### Add a header keyword and write to the output image
    im[0].header.update('GRISMSKY',keep,comment='Image used for sky subtraction')
    im[0].header.update('SKYSCALE',sky_stats[0],comment='Scale factor of sky')
    
    #### Sky flat keyword
    if 'SKYFLAT' in im[0].header.keys():
        im[0].header['SKYFLAT'] = (flat_correct | im[0].header['SKYFLAT'], 'Direct image flat applied')
    else:
        im[0].header['SKYFLAT'] = (flat_correct, 'Direct image flat applied')
        
    bad = ~np.isfinite(im[1].data)
    im[1].data[bad] = 1
    im[3].data[bad] = im[3].data[bad] | 32
    im.flush()
    
    #### Show the final result, compare to the earlier version in PREP_FLT
    if plot:
        ds9.frame(3)
        ds9.v(im[1].data, vmin=-0.5,vmax=0.5)
    
        chk = pyfits.open(threedhst.utils.find_fits_gz(flt.replace('RAW','PREP_FLT').replace('.gz','')))
        ds9.frame(4)
        ds9.v(chk[1].data, vmin=-0.5,vmax=0.5)
Ejemplo n.º 2
0
def remove_visit_sky(asn_file='GDN12-G102_asn.fits', list=['zodi_G102_clean.fits', 'excess_G102_clean.fits'], add_constant=False, column_average=True, mask_grow=18, flat_correct=True):
    """
    Require that all exposures in a visit have the same zodi component.
    """
    from scipy.linalg import lstsq
    import scipy.optimize
    import scipy.ndimage as nd
    import astropy.io.fits as pyfits
    
    import copy
    
    import threedhst.grism_sky as bg
    
    asn = threedhst.utils.ASNFile(asn_file)
    
    flt = pyfits.open('%s_flt.fits' %(asn.exposures[0]))
    bg.set_grism_flat(grism=flt[0].header['FILTER'], verbose=True)
    
    if flat_correct:
        flat = bg.flat*1.
    else:
        flat = bg.flat*0.+1
        
    data = []
    whts = []
    masks = []
    for exp in asn.exposures:
        flt = pyfits.open('%s_flt.fits' %(exp))
        segfile = '%s_flt.seg.fits' %(exp)
        seg = pyfits.open(segfile)[0].data
        seg_mask = nd.maximum_filter((seg > 0), size=18) == 0
        dq_ok = (flt[3].data & (4+32+16+512+2048+4096)) == 0
        #
        flat_corr = flt[1].data*flat
        mask = seg_mask & dq_ok 
        mask &= (flat_corr < np.percentile(flat_corr[mask], 98)) & (flt[2].data > 0) & (flat_corr > np.percentile(flat_corr[mask], 1))
        #
        data.append(flat_corr.flatten())
        whts.append(1/flt[2].data.flatten()**2)
        masks.append(mask.flatten())
    
    data = np.array(data)
    whts = np.array(whts)
    masks = np.array(masks)
    
    #### Read in the master skies    
    ims = []
    skies = copy.deepcopy(list)
    
    for sky in skies:
        ims.append(pyfits.open(os.getenv('THREEDHST') + '/CONF/' + sky)[0].data.flatten())
    
    if add_constant:
        ims.append(flt[1].data.flatten()*0.+1)
        skies.append('Constant')
    
    ims = np.array(ims)

    #### Do the fit
    tol=1.49e-8  # not sure what this controls
    
    p0 = np.ones((ims.shape[0]-1)*len(asn.exposures)+1)
    popt = scipy.optimize.leastsq(bg.obj_lstsq_visit, p0, args=(data, ims, whts, masks), full_output=True, ftol=tol/1000., xtol=tol/1000.)
    xcoeff = popt[0]
    
    sh_temp = ims.shape
    logstr = 'Master grism sky: %s\n\n FLT   %s\n' %(asn_file, '  '.join(skies))
    
    for i in range(len(asn.exposures)):
        coeff = np.zeros(sh_temp[0])
        coeff[0] = xcoeff[0]
        coeff[1:] = xcoeff[1+i*(sh_temp[0]-1):1+(i+1)*(sh_temp[0]-1)]
        bg_model = np.dot(coeff, ims).reshape((1014,1014))
        logstr += '%s  %s\n' %(asn.exposures[i], ''.join([' %9.4f' %(c) for c in coeff]))
        flt = pyfits.open('%s_flt.fits' %(asn.exposures[i]), mode='update')
        flt[1].data = flt[1].data*flat - bg_model
        for j in range(sh_temp[0]):
            if 'GSKY%02d' %(j) in flt[0].header:
                flt[0].header['GSKY%02d' %(j)] += coeff[j]
            else:
                flt[0].header['GSKY%02d' %(j)] = (coeff[j], 'Master sky: %s' %(skies[j]))
        #
        flt[1].header['MDRIZSKY'] = 0.
        if 'SKYFLAT' in flt[0].header.keys():
            flt[0].header['SKYFLAT'] = (flat_correct | flt[0].header['SKYFLAT'], 'Direct image flat applied')
        else:
            flt[0].header['SKYFLAT'] = (flat_correct, 'Direct image flat applied')
        flt.flush()
        
    threedhst.showMessage(logstr)
    
    if column_average:
        #for iter in range(2):
        #grism_sky_column_average(asn_file=asn_file, mask_grow=mask_grow)
        grism_sky_column_average_GP(asn_file=asn_file, mask_grow=mask_grow)
Ejemplo n.º 3
0
def remove_grism_sky(
    flt="ibhm46ioq_flt.fits",
    list=["sky_cosmos.fits", "sky_goodsn_lo.fits", "sky_goodsn_hi.fits", "sky_goodsn_vhi.fits"],
    path_to_sky="../CONF/",
    out_path="./",
    verbose=False,
    plot=False,
    flat_correct=True,
    sky_subtract=True,
    second_pass=True,
    overall=True,
):
    """ 
    Process a (G141) grism exposure by dividing by the F140W imaging flat-field
    and then subtracting by a master sky image.  
    
    v1.6: list=['sky_cosmos.fits', 'sky_goodsn_lo.fits', 'sky_goodsn_hi.fits', 'sky_goodsn_vhi.fits']
    
    testing: list=['sky.G141.set001.fits','sky.G141.set002.fits','sky.G141.set003.fits','sky.G141.set004.fits','sky.G141.set005.fits','sky.G141.set025.fits','sky.G141.set120.fits']
    """

    import threedhst.grism_sky as bg

    # import scipy.signal as sign

    # flt = '../../GOODS-N/RAW/ib3708ilq_flt.fits.gz'
    im = pyfits.open(flt)
    bg.set_grism_flat(grism=im[0].header["FILTER"])

    segfile = os.path.basename(flt.replace(".fits", ".seg.fits")).replace(".gz", "")
    if os.path.exists(segfile):
        seg = pyfits.open(segfile)[0].data
        use_biweight = False
    else:
        seg = np.zeros(im[1].data.shape)
        use_biweight = True

    xin, yin = bg.profile(flt, extension=1, flatcorr=True, biweight=use_biweight)
    # yin /= threedhst.utils.biweight(yin[(np.abs(xin-507) < 50) & np.isfinite(yin)])

    if plot:
        plt.plot(xin, yin, color="black", linewidth=2)

    #### Loop through sky images and find the one whose column profile most
    #### closely matches the input image
    chi2 = 1.0e10
    keep = None
    for sky in list:
        xsky, ysky = bg.profile(flt=path_to_sky + sky, extension=0, flatcorr=False, biweight=True)
        ysky /= np.mean(ysky[np.abs(xsky - 507) < 50])
        #
        ok = np.isfinite(ysky) & np.isfinite(yin) & (yin * ysky != 0)
        a = np.sum((ysky * yin)[ok]) / np.sum((ysky * ysky)[ok])
        if plot:
            plt.plot(xsky, ysky * a)
        #
        chi2_i = np.sum((ysky[ok] * a - yin[ok]) ** 2)
        if verbose:
            print sky, chi2_i
        #
        if chi2_i < chi2:
            chi2 = chi2_i * 1
            keep = sky

    if keep is None:
        keep = "sky_goodsn_vhi.fits"

    #### The best sky image
    sk = pyfits.open(path_to_sky + keep)
    sk[0].data[sk[0].data == 0] = 1.0
    sk[0].data[~np.isfinite(sk[0].data)] = 1.0

    flat = bg.flat * 1.0

    #### Only flat correction
    dq_ok = (im[3].data & (4 + 32 + 16 + 512 + 2048 + 4096)) == 0
    mask = (seg == 0) & dq_ok
    if plot:
        corr = im[1].data * flat  # /sk[0].data
        corr -= threedhst.utils.biweight(corr[mask], mean=True)
        ds9.frame(1)
        ds9.v(corr, vmin=-0.5, vmax=0.5)

    if flat_correct is False:
        flat = flat * 0 + 1

    if sky_subtract is False:
        sk[0].data = sk[0].data * 0 + 1

    #### Divide by the sky flat
    # corr = im[1].data*flat/sk[0].data
    # #### Show the result
    # if plot:
    #     ds9.frame(2)
    #     ds9.v(corr-threedhst.utils.biweight(corr[mask], mean=True), vmin=-0.5,vmax=0.5)

    ### Instead, subtract the sky flat
    sky_stats = threedhst.utils.biweight((im[1].data * flat / sk[0].data)[mask], both=True)
    corr = im[1].data * flat - sky_stats[0] * sk[0].data
    # #### Show the result
    # if plot:
    #     ds9.frame(3)
    #     ds9.v(corr, vmin=-0.5,vmax=0.5)

    #### Put the result in the FLT data extension
    im[1].data = corr * 1.0

    #### Need to write an output file to use `profile`
    im.writeto(out_path + os.path.basename(flt).replace(".gz", ""), clobber=True)
    xin, yin = bg.profile(
        out_path + os.path.basename(flt).replace(".gz", ""), extension=1, flatcorr=False, biweight=True
    )

    im = pyfits.open(out_path + os.path.basename(flt).replace(".gz", ""), mode="update")

    #### Subtract the residual difference between the observed and master sky
    resid = np.dot(np.ones((1014, 1)), threedhst.utils.medfilt(yin, 41).reshape(1, 1014))
    if second_pass:
        im[1].data -= resid

    #### Subtract the overall biweight mean
    if overall:
        im[1].data -= threedhst.utils.biweight(im[1].data[mask], mean=True)

    #### Add a header keyword and write to the output image
    im[0].header.update("GRISMSKY", keep, comment="Image used for sky subtraction")
    im[0].header.update("SKYSCALE", sky_stats[0], comment="Scale factor of sky")
    bad = ~np.isfinite(im[1].data)
    im[1].data[bad] = 1
    im[3].data[bad] = im[3].data[bad] | 32
    im.flush()

    #### Show the final result, compare to the earlier version in PREP_FLT
    if plot:
        ds9.frame(3)
        ds9.v(im[1].data, vmin=-0.5, vmax=0.5)

        chk = pyfits.open(threedhst.utils.find_fits_gz(flt.replace("RAW", "PREP_FLT").replace(".gz", "")))
        ds9.frame(4)
        ds9.v(chk[1].data, vmin=-0.5, vmax=0.5)
Ejemplo n.º 4
0
def remove_grism_sky(flt='ibhm46ioq_flt.fits',
                     list=[
                         'sky_cosmos.fits', 'sky_goodsn_lo.fits',
                         'sky_goodsn_hi.fits', 'sky_goodsn_vhi.fits'
                     ],
                     path_to_sky='../CONF/',
                     out_path='./',
                     verbose=False,
                     plot=False,
                     flat_correct=True,
                     sky_subtract=True,
                     second_pass=True,
                     overall=True,
                     combine_skies=False,
                     sky_components=True,
                     add_constant=True):
    """ 
    Process a (G141) grism exposure by dividing by the F140W imaging flat-field
    and then subtracting by a master sky image.  
    
    v1.6: list=['sky_cosmos.fits', 'sky_goodsn_lo.fits', 'sky_goodsn_hi.fits', 'sky_goodsn_vhi.fits']
    
    testing: list=['sky.G141.set001.fits','sky.G141.set002.fits','sky.G141.set003.fits','sky.G141.set004.fits','sky.G141.set005.fits','sky.G141.set025.fits','sky.G141.set120.fits']
    
    list=['zodi_G102_clean.fits', 'excess_G102_clean.fits']
    """

    import threedhst.grism_sky as bg
    #import scipy.signal as sign

    # flt = '../../GOODS-N/RAW/ib3708ilq_flt.fits.gz'
    im = pyfits.open(flt)
    bg.set_grism_flat(grism=im[0].header['FILTER'], verbose=True)

    segfile = os.path.basename(flt.replace('.fits',
                                           '.seg.fits')).replace('.gz', '')
    if os.path.exists(segfile):
        seg = pyfits.open(segfile)[0].data
        use_biweight = False
    else:
        seg = np.zeros(im[1].data.shape)
        use_biweight = True

    xin, yin = bg.profile(flt,
                          extension=1,
                          flatcorr=True,
                          biweight=use_biweight)
    #yin /= threedhst.utils.biweight(yin[(np.abs(xin-507) < 50) & np.isfinite(yin)])

    if plot:
        plt.plot(xin, yin, color='black', linewidth=2)

    #### Loop through sky images and find the one whose column profile most
    #### closely matches the input image
    chi2 = 1.e10
    keep = None
    for sky in list:
        xsky, ysky = bg.profile(flt=path_to_sky + sky,
                                extension=0,
                                flatcorr=False,
                                biweight=True)
        ysky /= np.mean(ysky[np.abs(xsky - 507) < 50])
        #
        ok = np.isfinite(ysky) & np.isfinite(yin) & (yin * ysky != 0)
        a = np.sum((ysky * yin)[ok]) / np.sum((ysky * ysky)[ok])
        if plot:
            plt.plot(xsky, ysky * a)
        #
        chi2_i = np.sum((ysky[ok] * a - yin[ok])**2)
        if verbose:
            print sky, chi2_i
        #
        if chi2_i < chi2:
            chi2 = chi2_i * 1
            keep = sky

    if keep is None:
        keep = 'sky_goodsn_vhi.fits'

    #### The best sky image
    sk = pyfits.open(path_to_sky + keep)
    sk[0].data[sk[0].data == 0] = 1.
    sk[0].data[~np.isfinite(sk[0].data)] = 1.

    flat = bg.flat * 1.

    #### Only flat correction
    dq_ok = (im[3].data & (4 + 32 + 16 + 512 + 2048 + 4096)) == 0
    mask = (seg == 0) & dq_ok
    if plot:
        corr = im[1].data * flat  #/sk[0].data
        corr -= threedhst.utils.biweight(corr[mask], mean=True)
        ds9.frame(1)
        ds9.v(corr, vmin=-0.5, vmax=0.5)

    if flat_correct is False:
        flat = flat * 0 + 1

    if sky_subtract is False:
        sk[0].data = sk[0].data * 0 + 1

    #### Divide by the sky flat
    #corr = im[1].data*flat/sk[0].data
    # #### Show the result
    # if plot:
    #     ds9.frame(2)
    #     ds9.v(corr-threedhst.utils.biweight(corr[mask], mean=True), vmin=-0.5,vmax=0.5)

    ### Instead, subtract the sky flat
    sky_stats = threedhst.utils.biweight(
        (im[1].data * flat / sk[0].data)[mask], both=True)
    corr = im[1].data * flat - sky_stats[0] * sk[0].data

    #### Get least-sq coeffs of multiple sky components
    if sky_components:
        from scipy.linalg import lstsq
        import scipy.optimize
        import scipy.ndimage as nd
        import copy

        #grow_mask = nd.maximum_filter((~mask)*1., size=3) == 0

        ims = []
        #skies = ['zodi_G141_clean.fits', 'excess_lo_G141_clean.fits', 'G141_scattered_light.fits']
        skies = copy.deepcopy(list)

        for sky in skies:
            ims.append(pyfits.open(path_to_sky + sky)[0].data.flatten())

        if add_constant:
            ims.append(im[1].data.flatten() * 0. + 1)
            skies.append('Constant')

        ims = np.array(ims)

        seg_mask = nd.maximum_filter((seg > 0), size=18) == 0

        #### First iteration, non-weighted least-sq
        mask_full = seg_mask & dq_ok & ((im[1].data * bg.flat) < np.percentile(
            (im[1].data * bg.flat)[mask], 98)) & (im[2].data > 0) & (
                (im[1].data * bg.flat) > np.percentile(
                    (im[1].data * bg.flat)[mask], 1))

        data = (im[1].data * bg.flat)[mask_full].flatten()
        xcoeff, resid, rank, ss = lstsq(ims[:, mask_full.flatten()].T, data)
        model = np.dot(xcoeff, ims).reshape((1014, 1014))
        corr = im[1].data * flat - model

        #### Second iteration: improved mask, weighted lstsq
        mask_full = seg_mask & dq_ok & (corr < np.percentile(
            corr[mask], 98)) & (im[2].data > 0) & (corr > np.percentile(
                corr[mask], 1))

        data = (im[1].data * bg.flat)[mask_full].flatten()
        wht = 1. / (im[2].data)[mask_full].flatten()
        p0 = np.ones(ims.shape[0])
        popt = scipy.optimize.leastsq(bg.obj_lstsq,
                                      p0,
                                      args=(data, ims[:,
                                                      mask_full.flatten()],
                                            wht),
                                      full_output=True,
                                      ftol=1.49e-8 / 1000.,
                                      xtol=1.49e-8 / 1000.)
        xcoeff = popt[0]
        model = np.dot(xcoeff, ims).reshape((1014, 1014))
        corr = im[1].data * flat - model

        #### Use the new mask
        mask = mask_full

        #### 1D column averages
        if True:
            yres = np.zeros(1014)
            yfull = np.zeros(1014)
            ydat = np.zeros(1014)
            fcorr = (im[1].data * flat)
            xfull = yfull * 0.
            for i in range(1014):
                ymsk = mask_full[:, i] > 0
                ydat[i] = np.median(fcorr[ymsk, i])
                yfull[i] = np.median(model[ymsk, i])
                yres[i] = np.median(corr[ymsk, i])
                #
                xmsk = mask_full[i, :] > 0
                xfull[i] = np.median(model[i, xmsk])

                #print i

            yres_sm = threedhst.utils.medfilt(yres, 41)

            ### Make figure
            from matplotlib.figure import Figure
            from matplotlib.backends.backend_agg import FigureCanvasAgg

            fig = Figure(figsize=[8, 4], dpi=100)

            fig.subplots_adjust(wspace=0.25,
                                hspace=0.02,
                                left=0.1,
                                bottom=0.08,
                                right=0.99,
                                top=0.92)

            ax = fig.add_subplot(121)
            ax.plot(ydat, color='black')
            ax.plot(yfull, color='red')
            ax.plot(xfull, color='green')

            ax.set_xlim(0, 1014)
            ax.set_title(flt)

            ax = fig.add_subplot(122)
            ax.plot(yres, color='black')
            ax.plot(yres_sm, color='red', linewidth=2)
            ax.set_xlim(0, 1014)

            canvas = FigureCanvasAgg(fig)
            canvas.print_figure(flt.split('.fits')[0] + '.multisky.png',
                                dpi=100,
                                transparent=False)

        #### Update header keywords
        print 'Simultaneous sky components:'
        for i in range(len(skies)):
            print '   %s %.3f' % (skies[i], xcoeff[i])
            im[0].header.update('GSKY%02d' % (i + 1),
                                xcoeff[i],
                                comment='Grism sky: %s' % (skies[i]))

    # #### Show the result
    # if plot:
    #     ds9.frame(3)
    #     ds9.v(corr, vmin=-0.5,vmax=0.5)

    #### Put the result in the FLT data extension
    im[1].data = corr * 1.

    #### Need to write an output file to use `profile`
    im.writeto(out_path + os.path.basename(flt).replace('.gz', ''),
               clobber=True)
    xin, yin = bg.profile(out_path + os.path.basename(flt).replace('.gz', ''),
                          extension=1,
                          flatcorr=False,
                          biweight=True)

    im = pyfits.open(out_path + os.path.basename(flt).replace('.gz', ''),
                     mode='update')

    if second_pass:
        #### Subtract the residual difference between the observed and master sky
        if sky_components:
            ### Use column average found earlier
            resid = np.dot(np.ones((1014, 1)), yres_sm.reshape(1, 1014))
        else:
            resid = np.dot(np.ones((1014, 1)),
                           threedhst.utils.medfilt(yin, 41).reshape(1, 1014))

        im[1].data -= resid

    #### Subtract the overall biweight mean
    if overall:
        full_mean = threedhst.utils.biweight(im[1].data[mask], mean=True)
        im[1].data -= full_mean
        print 'overall: %.4f' % (full_mean)

    #### Add a header keyword and write to the output image
    im[0].header.update('GRISMSKY',
                        keep,
                        comment='Image used for sky subtraction')
    im[0].header.update('SKYSCALE',
                        sky_stats[0],
                        comment='Scale factor of sky')

    #### Sky flat keyword
    if 'SKYFLAT' in im[0].header.keys():
        im[0].header['SKYFLAT'] = (flat_correct | im[0].header['SKYFLAT'],
                                   'Direct image flat applied')
    else:
        im[0].header['SKYFLAT'] = (flat_correct, 'Direct image flat applied')

    bad = ~np.isfinite(im[1].data)
    im[1].data[bad] = 1
    im[3].data[bad] = im[3].data[bad] | 32
    im.flush()

    #### Show the final result, compare to the earlier version in PREP_FLT
    if plot:
        ds9.frame(3)
        ds9.v(im[1].data, vmin=-0.5, vmax=0.5)

        chk = pyfits.open(
            threedhst.utils.find_fits_gz(
                flt.replace('RAW', 'PREP_FLT').replace('.gz', '')))
        ds9.frame(4)
        ds9.v(chk[1].data, vmin=-0.5, vmax=0.5)
Ejemplo n.º 5
0
def remove_visit_sky(asn_file='GDN12-G102_asn.fits',
                     list=['zodi_G102_clean.fits', 'excess_G102_clean.fits'],
                     add_constant=False,
                     column_average=True,
                     mask_grow=18,
                     flat_correct=True):
    """
    Require that all exposures in a visit have the same zodi component.
    """
    from scipy.linalg import lstsq
    import scipy.optimize
    import scipy.ndimage as nd
    import astropy.io.fits as pyfits

    import copy

    import threedhst.grism_sky as bg

    asn = threedhst.utils.ASNFile(asn_file)

    flt = pyfits.open('%s_flt.fits' % (asn.exposures[0]))
    bg.set_grism_flat(grism=flt[0].header['FILTER'], verbose=True)

    if flat_correct:
        flat = bg.flat * 1.
    else:
        flat = bg.flat * 0. + 1

    data = []
    whts = []
    masks = []
    for exp in asn.exposures:
        flt = pyfits.open('%s_flt.fits' % (exp))
        segfile = '%s_flt.seg.fits' % (exp)
        seg = pyfits.open(segfile)[0].data
        seg_mask = nd.maximum_filter((seg > 0), size=18) == 0
        dq_ok = (flt[3].data & (4 + 32 + 16 + 512 + 2048 + 4096)) == 0
        #
        flat_corr = flt[1].data * flat
        mask = seg_mask & dq_ok
        mask &= (flat_corr < np.percentile(flat_corr[mask], 98)) & (
            flt[2].data > 0) & (flat_corr > np.percentile(flat_corr[mask], 1))
        #
        data.append(flat_corr.flatten())
        whts.append(1 / flt[2].data.flatten()**2)
        masks.append(mask.flatten())

    data = np.array(data)
    whts = np.array(whts)
    masks = np.array(masks)

    #### Read in the master skies
    ims = []
    skies = copy.deepcopy(list)

    for sky in skies:
        ims.append(
            pyfits.open(os.getenv('THREEDHST') + '/CONF/' +
                        sky)[0].data.flatten())

    if add_constant:
        ims.append(flt[1].data.flatten() * 0. + 1)
        skies.append('Constant')

    ims = np.array(ims)

    #### Do the fit
    tol = 1.49e-8  # not sure what this controls

    p0 = np.ones((ims.shape[0] - 1) * len(asn.exposures) + 1)
    popt = scipy.optimize.leastsq(bg.obj_lstsq_visit,
                                  p0,
                                  args=(data, ims, whts, masks),
                                  full_output=True,
                                  ftol=tol / 1000.,
                                  xtol=tol / 1000.)
    xcoeff = popt[0]

    sh_temp = ims.shape
    logstr = 'Master grism sky: %s\n\n FLT   %s\n' % (asn_file,
                                                      '  '.join(skies))

    for i in range(len(asn.exposures)):
        coeff = np.zeros(sh_temp[0])
        coeff[0] = xcoeff[0]
        coeff[1:] = xcoeff[1 + i * (sh_temp[0] - 1):1 + (i + 1) *
                           (sh_temp[0] - 1)]
        bg_model = np.dot(coeff, ims).reshape((1014, 1014))
        logstr += '%s  %s\n' % (asn.exposures[i], ''.join(
            [' %9.4f' % (c) for c in coeff]))
        flt = pyfits.open('%s_flt.fits' % (asn.exposures[i]), mode='update')
        flt[1].data = flt[1].data * flat - bg_model
        for j in range(sh_temp[0]):
            if 'GSKY%02d' % (j) in flt[0].header:
                flt[0].header['GSKY%02d' % (j)] += coeff[j]
            else:
                flt[0].header['GSKY%02d' % (j)] = (coeff[j], 'Master sky: %s' %
                                                   (skies[j]))
        #
        flt[1].header['MDRIZSKY'] = 0.
        if 'SKYFLAT' in flt[0].header.keys():
            flt[0].header['SKYFLAT'] = (flat_correct
                                        | flt[0].header['SKYFLAT'],
                                        'Direct image flat applied')
        else:
            flt[0].header['SKYFLAT'] = (flat_correct,
                                        'Direct image flat applied')
        flt.flush()

    threedhst.showMessage(logstr)

    if column_average:
        #for iter in range(2):
        grism_sky_column_average(asn_file=asn_file, mask_grow=mask_grow)
Ejemplo n.º 6
0
def subtract_grism_background(asn_file='GDN1-G102_asn.fits', PATH_TO_RAW='../RAW/', final_scale=0.06, visit_sky=True, column_average=True, mask_grow=18, first_run=True, sky_iter=1):
    """
    Subtract master grism sky from FLTs
    """
    import os
    import scipy.ndimage as nd
    import pyregion
    
    from drizzlepac import astrodrizzle
    import drizzlepac
    
    from stwcs import updatewcs
    import stwcs
    
    import threedhst.grism_sky as bg
    
    asn = threedhst.utils.ASNFile(asn_file)
    root = asn_file.split('_asn')[0]
            
    sky_images = {'G141':['zodi_G141_clean.fits', 'excess_lo_G141_clean.fits', 'G141_scattered_light.fits'],
                  'G102':['zodi_G102_clean.fits', 'excess_G102_clean.fits']}
    #
    # sky_images = {'G141':['zodi_G141_clean.fits', 'excess_lo_G141_clean.fits', 'G141_scattered_light_v2.fits'],
    #               'G102':['zodi_G102_clean.fits', 'excess_G102_clean.fits']}
    
    # ### Don't use scattered light
    # sky_images = {'G141':['zodi_G141_clean.fits', 'excess_lo_G141_clean.fits'],
    #               'G102':['zodi_G102_clean.fits', 'excess_G102_clean.fits']}
    # 
    # ## Use aXe images
    # sky_images = {'G141':['WFC3.IR.G141.sky.V1.0.flat.fits', 'WFC3.IR.G141.sky.V1.0.flat.fits'],
    #               'G102':['zodi_G102_clean.fits', 'excess_G102_clean.fits']}
    
    if first_run:
        ### Rough background subtraction
        threedhst.process_grism.fresh_flt_files(asn_file, from_path=PATH_TO_RAW, preserve_dq=False)
        flt = pyfits.open('%s_flt.fits' %(asn.exposures[0]))
        GRISM = flt[0].header['FILTER']
        bg.set_grism_flat(grism=GRISM, verbose=True)
    
        zodi = pyfits.open(os.getenv('THREEDHST')+'/CONF/%s' %(sky_images[GRISM][0]))[0].data
    
        for exp in asn.exposures:
            updatewcs.updatewcs('%s_flt.fits' %(exp))
            flt = pyfits.open('%s_flt.fits' %(exp), mode='update')
            #flt = pyfits.open('%s_flt.fits' %(exp))
            flt[1].data *= bg.flat
            #
            mask = (flt['DQ'].data == 0)
            data_range = np.percentile(flt[1].data[mask], [20, 80])
            mask &= (flt[1].data >= data_range[0]) & (flt[1].data <= data_range[1]) & (flt[2].data != 0) & np.isfinite(flt[1].data) & np.isfinite(flt[2].data)
            ### Least-sq fit for component normalizations
            data = flt[1].data[mask].flatten()
            wht = (1./flt[2].data[mask].flatten())**2
            zodi_mask = zodi[mask].flatten()
            coeff_zodi = np.sum(data*zodi_mask*wht)/np.sum(zodi_mask**2*wht)
            flt[1].data -= zodi*coeff_zodi
            flt.flush()
            threedhst.showMessage('Rough background for %s (zodi): %0.4f' %(exp, coeff_zodi))
            #templates = bg_flat[:, mask.flatten()]
        
        ### Run astrodrizzle to make DRZ mosaic, grism-SExtractor mask
        drizzlepac.astrodrizzle.AstroDrizzle(asn_file, clean=True, context=False, preserve=False, skysub=True, driz_separate=True, driz_sep_wcs=True, median=True, blot=True, driz_cr=True, driz_combine=True, final_wcs=False, resetbits=4096, final_bits=576, driz_sep_bits=576, driz_cr_snr='8.0 5.0', driz_cr_scale = '2.5 0.7')
                
    else:
        flt = pyfits.open('%s_flt.fits' %(asn.exposures[0]))
        GRISM = flt[0].header['FILTER']
        bg.set_grism_flat(grism=GRISM, verbose=True)
    
        
    se = threedhst.sex.SExtractor()
    se.options['WEIGHT_IMAGE'] = '%s_drz_wht.fits' %(root)
    se.options['WEIGHT_TYPE'] = 'MAP_WEIGHT'
    se.options['CHECKIMAGE_TYPE'] = 'SEGMENTATION'
    se.options['CHECKIMAGE_NAME'] = '%s_drz_seg.fits' %(root)
    #
    se.params['X_IMAGE'] = True; se.params['Y_IMAGE'] = True
    se.params['MAG_AUTO'] = True
    #
    se.options['CATALOG_NAME'] = '%s_drz_sci.cat' %(root)
    se.options['FILTER'] = 'Y'
    se.copyConvFile(grism=True)
    se.options['FILTER_NAME'] = 'grism.conv'
    se.options['DETECT_THRESH'] = '0.7'
    se.options['ANALYSIS_THRESH'] = '0.7'
    #
    se.sextractImage('%s_drz_sci.fits' %(root))
    
    #### Blot segmentation map to FLT images for object mask
    ref = pyfits.open('%s_drz_sci.fits' %(root))
    ref_wcs = stwcs.wcsutil.HSTWCS(ref, ext=0)

    seg = pyfits.open('%s_drz_seg.fits' %(root))
    seg_data = np.cast[np.float32](seg[0].data)
            
    #### Loop through FLTs, blotting reference and segmentation
    threedhst.showMessage('%s: Blotting grism segmentation masks.' %(root))
        
    for exp in asn.exposures:
        flt = pyfits.open('%s_flt.fits' %(exp))
        flt_wcs = stwcs.wcsutil.HSTWCS(flt, ext=1)
        ### segmentation
        #print 'Segmentation image: %s_blot.fits' %(exp)
        blotted_seg = astrodrizzle.ablot.do_blot(seg_data, ref_wcs, flt_wcs, 1, coeffs=True, interp='nearest', sinscl=1.0, stepsize=10, wcsmap=None)
        seg_grow = nd.maximum_filter((blotted_seg > 0)*1, size=8)
        pyfits.writeto('%s_flt.seg.fits' %(exp), header=flt[1].header, data=seg_grow, clobber=True)
        
    if first_run:
        ### Run background subtraction scripts
        threedhst.process_grism.fresh_flt_files(asn_file, from_path=PATH_TO_RAW, preserve_dq=False)
        for exp in asn.exposures:
            updatewcs.updatewcs('%s_flt.fits' %(exp))
            #threedhst.grism_sky.remove_grism_sky(flt=exp+'_flt.fits', list=sky_images[GRISM], path_to_sky=os.getenv('THREEDHST')+'/CONF/', verbose=True, second_pass=True, overall=True)
    
    if visit_sky:
        threedhst.grism_sky.remove_visit_sky(asn_file=asn_file, list=sky_images[GRISM], add_constant=False, column_average=(column_average) & (sky_iter == 1), mask_grow=mask_grow, flat_correct=first_run)
        if (sky_iter > 1) & (~first_run):
            for i in range(1, sky_iter):
                threedhst.grism_sky.remove_visit_sky(asn_file=asn_file, list=sky_images[GRISM], add_constant=False, column_average=column_average & (i == (sky_iter-1)), mask_grow=mask_grow, flat_correct=False)
    else:
        for exp in asn.exposures:
            threedhst.grism_sky.remove_grism_sky(flt='%s_flt.fits' %(exp), list=sky_images[GRISM],  path_to_sky = os.getenv('THREEDHST')+'/CONF/', out_path='./', verbose=False, plot=False, flat_correct=first_run, sky_subtract=True, second_pass=column_average, overall=True, combine_skies=False, sky_components=True, add_constant=False)
            
    ### Astrodrizzle again to reflag CRs and make cleaned mosaic
    drizzlepac.astrodrizzle.AstroDrizzle(asn_file, clean=True, skysub=False, skyuser='******', final_wcs=True, final_scale=final_scale, final_pixfrac=0.8, context=False, resetbits=4096, final_bits=576, driz_sep_bits=576, preserve=False, driz_cr_snr='8.0 5.0', driz_cr_scale='2.5 0.7') # , final_wcs=True, final_rot=0)