Ejemplo n.º 1
0
def get_subjectivity_score_tr(user):
    # Gets polarity score for TR tweets
    # -100 is the negative end, 100 is the positive end
    tr = Translator()
    tweets = get_tweets(user)
    tweets_text = tweets_to_string(tweets)
    tr_text = tr.translate(tweets_text).text
    return int(TextBlob(tr_text).sentiment.subjectivity * 100)
Ejemplo n.º 2
0
def get_gender_pred_tr(user):
    # We only have male and female for the turkish model
    model_path = f"{URL_ROOT}models/tr/gender_model_tr.pkl"
    model = pickle.load(open(model_path, "rb"))
    tweets = tweets_to_string(get_tweets(user))
    gender_pred = model.predict_proba((pd.Series(tweets)))
    male_pred = gender_pred[:, 0]
    male_score = int(male_pred * 100)
    female_score = 100 - male_score
    return {"male": male_score, "female": female_score}
Ejemplo n.º 3
0
def get_gender_pred_en(user):
    model_path = f"{URL_ROOT}models/en/gender_model_en.pkl"
    model = pickle.load(open(model_path, "rb"))
    tweets = tweets_to_string(get_tweets(user))
    gender_pred = model.predict_proba((pd.Series(tweets)))
    male_pred = gender_pred[:, 0]
    brand_pred = gender_pred[:, 2]
    male_score = int(male_pred * 100)
    brand_score = int(brand_pred * 100)
    female_score = 100 - male_score - brand_score
    return {"male": male_score, "female": female_score, "brand": brand_score}
Ejemplo n.º 4
0
def create_wordclouds(user):
    # Returns the path for wordclouds for tweets and mentioned
    path_tw = f"{URL_ROOT}static/images/{user.username}_tw_wordcloud.png"
    path_ment = f"{URL_ROOT}static/images/{user.username}_ment_wordcloud.png"
    path_stopwords_tr = f"{URL_ROOT}models/datasets/stopwords-tr.txt"
    stopwords_tr = txt_to_list(path_stopwords_tr) \
        + ["bi", "var", "yok", "sadece", "bence", "sence", "bi", "evet", "hayır", "peki", "tamam",
            "başka", "aynı", "lazım", "yav", "lan", "la", "olm"]
    stopwords_tr_en = list(STOPWORDS) + stopwords_tr
    if os.path.isfile(path_tw):
        os.remove(path_tw)
    if os.path.isfile(path_ment):
        os.remove(path_ment)
    tw_str = tweets_to_string(get_tweets(user))
    ment_str = tweets_to_string(get_mentioned(user))
    cloud_tw = WordCloud(stopwords=set(stopwords_tr_en))
    cloud_tw.generate(tw_str)
    cloud_tw.to_file(path_tw)
    ment_tw = WordCloud(stopwords=set(stopwords_tr_en))
    ment_tw.generate(ment_str)
    ment_tw.to_file(path_ment)
    return {"tweet_wordcloud": path_tw, "ment_wordcloud": path_ment}
Ejemplo n.º 5
0
def get_subjectivity_score_tr(user):
    # Gets subjectivity score for TR tweets
    # -100 is the negative end, 100 is the positive end
    tr = Translator()
    score = 0
    tweets = get_tweets(user)
    tweets_text = tweets_to_string(tweets)
    text_list = []
    for i in range(0, len(tweets_text), 15000):
        text_list.append(tweets_text[i:i + 15000])
    translations = tr.translate(text_list)
    for translation in translations:
        score += int(TextBlob(translation.text).sentiment.subjectivity * 100)
    score = int(score / len(text_list))
    return score
Ejemplo n.º 6
0
def get_subjectivity_score_en(user):
    # Gets subjectivity score for EN tweets
    # 0 is the factual end, 100 is the subjective end
    tweets = get_tweets(user)
    tweets_text = tweets_to_string(tweets)
    return int(TextBlob(tweets_text).sentiment.subjectivity * 100)
Ejemplo n.º 7
0
def get_polarity_score_en(user):
    # Gets polarity score (is the tweet negative, positive or neutral?) for EN tweets
    # -100 is the negative end, 100 is the positive end
    tweets = get_tweets(user)
    tweets_text = tweets_to_string(tweets)
    return int(TextBlob(tweets_text).sentiment.polarity * 100)