Ejemplo n.º 1
0
def test_ppo(args=get_args()):
    env = create_atari_environment(args.task)
    args.state_shape = env.observation_space.shape or env.observation_space.n
    args.action_shape = env.action_space().shape or env.action_space().n
    # train_envs = gym.make(args.task)
    train_envs = SubprocVectorEnv([
        lambda: create_atari_environment(args.task)
        for _ in range(args.training_num)])
    # test_envs = gym.make(args.task)
    test_envs = SubprocVectorEnv([
        lambda: create_atari_environment(args.task)
        for _ in range(args.test_num)])
    # seed
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    train_envs.seed(args.seed)
    test_envs.seed(args.seed)
    # model
    net = Net(args.layer_num, args.state_shape, device=args.device)
    actor = Actor(net, args.action_shape).to(args.device)
    critic = Critic(net).to(args.device)
    optim = torch.optim.Adam(list(
        actor.parameters()) + list(critic.parameters()), lr=args.lr)
    dist = torch.distributions.Categorical
    policy = PPOPolicy(
        actor, critic, optim, dist, args.gamma,
        max_grad_norm=args.max_grad_norm,
        eps_clip=args.eps_clip,
        vf_coef=args.vf_coef,
        ent_coef=args.ent_coef,
        action_range=None)
    # collector
    train_collector = Collector(
        policy, train_envs, ReplayBuffer(args.buffer_size),
        preprocess_fn=preprocess_fn)
    test_collector = Collector(policy, test_envs, preprocess_fn=preprocess_fn)
    # log
    writer = SummaryWriter(args.logdir + '/' + 'ppo')

    def stop_fn(x):
        if env.env.spec.reward_threshold:
            return x >= env.spec.reward_threshold
        else:
            return False

    # trainer
    result = onpolicy_trainer(
        policy, train_collector, test_collector, args.epoch,
        args.step_per_epoch, args.collect_per_step, args.repeat_per_collect,
        args.test_num, args.batch_size, stop_fn=stop_fn, writer=writer)
    train_collector.close()
    test_collector.close()
    if __name__ == '__main__':
        pprint.pprint(result)
        # Let's watch its performance!
        env = create_atari_environment(args.task)
        collector = Collector(policy, env, preprocess_fn=preprocess_fn)
        result = collector.collect(n_step=2000, render=args.render)
        print(f'Final reward: {result["rew"]}, length: {result["len"]}')
        collector.close()
Ejemplo n.º 2
0
def data():
    np.random.seed(0)
    env = SimpleEnv()
    env.seed(0)
    env_vec = DummyVectorEnv([lambda: SimpleEnv() for _ in range(100)])
    env_vec.seed(np.random.randint(1000, size=100).tolist())
    env_subproc = SubprocVectorEnv([lambda: SimpleEnv() for _ in range(8)])
    env_subproc.seed(np.random.randint(1000, size=100).tolist())
    env_subproc_init = SubprocVectorEnv(
        [lambda: SimpleEnv() for _ in range(8)])
    env_subproc_init.seed(np.random.randint(1000, size=100).tolist())
    buffer = ReplayBuffer(50000)
    policy = SimplePolicy()
    collector = Collector(policy, env, ReplayBuffer(50000))
    collector_vec = Collector(policy, env_vec, ReplayBuffer(50000))
    collector_subproc = Collector(policy, env_subproc, ReplayBuffer(50000))
    return {
        "env": env,
        "env_vec": env_vec,
        "env_subproc": env_subproc,
        "env_subproc_init": env_subproc_init,
        "policy": policy,
        "buffer": buffer,
        "collector": collector,
        "collector_vec": collector_vec,
        "collector_subproc": collector_subproc,
    }
Ejemplo n.º 3
0
def test_psrl(args=get_args()):
    env = gym.make(args.task)
    if args.task == "NChain-v0":
        env.spec.reward_threshold = 3647  # described in PSRL paper
    print("reward threshold:", env.spec.reward_threshold)
    args.state_shape = env.observation_space.shape or env.observation_space.n
    args.action_shape = env.action_space.shape or env.action_space.n
    # train_envs = gym.make(args.task)
    # train_envs = gym.make(args.task)
    train_envs = DummyVectorEnv(
        [lambda: gym.make(args.task) for _ in range(args.training_num)])
    # test_envs = gym.make(args.task)
    test_envs = SubprocVectorEnv(
        [lambda: gym.make(args.task) for _ in range(args.test_num)])
    # seed
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    train_envs.seed(args.seed)
    test_envs.seed(args.seed)
    # model
    n_action = args.action_shape
    n_state = args.state_shape
    trans_count_prior = np.ones((n_state, n_action, n_state))
    rew_mean_prior = np.full((n_state, n_action), args.rew_mean_prior)
    rew_std_prior = np.full((n_state, n_action), args.rew_std_prior)
    policy = PSRLPolicy(
        trans_count_prior, rew_mean_prior, rew_std_prior, args.gamma, args.eps,
        args.add_done_loop)
    # collector
    train_collector = Collector(
        policy, train_envs, ReplayBuffer(args.buffer_size))
    test_collector = Collector(policy, test_envs)
    # log
    writer = SummaryWriter(args.logdir + '/' + args.task)

    def stop_fn(x):
        if env.spec.reward_threshold:
            return x >= env.spec.reward_threshold
        else:
            return False

    train_collector.collect(n_step=args.buffer_size, random=True)
    # trainer
    result = onpolicy_trainer(
        policy, train_collector, test_collector, args.epoch,
        args.step_per_epoch, args.collect_per_step, 1,
        args.test_num, 0, stop_fn=stop_fn, writer=writer,
        test_in_train=False)

    if __name__ == '__main__':
        pprint.pprint(result)
        # Let's watch its performance!
        policy.eval()
        test_envs.seed(args.seed)
        test_collector.reset()
        result = test_collector.collect(n_episode=[1] * args.test_num,
                                        render=args.render)
        print(f'Final reward: {result["rew"]}, length: {result["len"]}')
    elif env.spec.reward_threshold:
        assert result["best_reward"] >= env.spec.reward_threshold
Ejemplo n.º 4
0
def test_td3(args=get_args()):
    env = gym.make(args.task)
    args.state_shape = env.observation_space.shape or env.observation_space.n
    args.action_shape = env.action_space.shape or env.action_space.n
    args.max_action = env.action_space.high[0]
    # train_envs = gym.make(args.task)
    train_envs = SubprocVectorEnv(
        [lambda: gym.make(args.task) for _ in range(args.training_num)])
    # test_envs = gym.make(args.task)
    test_envs = SubprocVectorEnv(
        [lambda: gym.make(args.task) for _ in range(args.test_num)])
    # seed
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    train_envs.seed(args.seed)
    test_envs.seed(args.seed)
    # model
    net = Net(args.layer_num, args.state_shape, device=args.device)
    actor = Actor(
        net, args.action_shape,
        args.max_action, args.device
    ).to(args.device)
    actor_optim = torch.optim.Adam(actor.parameters(), lr=args.actor_lr)
    net = Net(args.layer_num, args.state_shape,
              args.action_shape, concat=True, device=args.device)
    critic1 = Critic(net, args.device).to(args.device)
    critic1_optim = torch.optim.Adam(critic1.parameters(), lr=args.critic_lr)
    critic2 = Critic(net, args.device).to(args.device)
    critic2_optim = torch.optim.Adam(critic2.parameters(), lr=args.critic_lr)
    policy = TD3Policy(
        actor, actor_optim, critic1, critic1_optim, critic2, critic2_optim,
        args.tau, args.gamma,
        GaussianNoise(sigma=args.exploration_noise), args.policy_noise,
        args.update_actor_freq, args.noise_clip,
        [env.action_space.low[0], env.action_space.high[0]],
        reward_normalization=True, ignore_done=True)
    # collector
    train_collector = Collector(
        policy, train_envs, ReplayBuffer(args.buffer_size))
    test_collector = Collector(policy, test_envs)
    # train_collector.collect(n_step=args.buffer_size)
    # log
    writer = SummaryWriter(args.logdir + '/' + 'td3')

    def stop_fn(x):
        return x >= env.spec.reward_threshold

    # trainer
    result = offpolicy_trainer(
        policy, train_collector, test_collector, args.epoch,
        args.step_per_epoch, args.collect_per_step, args.test_num,
        args.batch_size, stop_fn=stop_fn, writer=writer)
    assert stop_fn(result['best_reward'])
    if __name__ == '__main__':
        pprint.pprint(result)
        # Let's watch its performance!
        env = gym.make(args.task)
        collector = Collector(policy, env)
        result = collector.collect(n_episode=1, render=args.render)
        print(f'Final reward: {result["rew"]}, length: {result["len"]}')
Ejemplo n.º 5
0
def test_ddpg(args=get_args()):
    env = gym.make(args.task)
    if args.task == 'Pendulum-v0':
        env.spec.reward_threshold = -250
    args.state_shape = env.observation_space.shape or env.observation_space.n
    args.action_shape = env.action_space.shape or env.action_space.n
    args.max_action = env.action_space.high[0]
    # train_envs = gym.make(args.task)
    train_envs = VectorEnv(
        [lambda: gym.make(args.task) for _ in range(args.training_num)])
    # test_envs = gym.make(args.task)
    test_envs = SubprocVectorEnv(
        [lambda: gym.make(args.task) for _ in range(args.test_num)])
    # seed
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    train_envs.seed(args.seed)
    test_envs.seed(args.seed)
    # model
    actor = Actor(
        args.layer_num, args.state_shape, args.action_shape,
        args.max_action, args.device
    ).to(args.device)
    actor_optim = torch.optim.Adam(actor.parameters(), lr=args.actor_lr)
    critic = Critic(
        args.layer_num, args.state_shape, args.action_shape, args.device
    ).to(args.device)
    critic_optim = torch.optim.Adam(critic.parameters(), lr=args.critic_lr)
    policy = DDPGPolicy(
        actor, actor_optim, critic, critic_optim,
        args.tau, args.gamma, args.exploration_noise,
        [env.action_space.low[0], env.action_space.high[0]],
        reward_normalization=True, ignore_done=True)
    # collector
    train_collector = Collector(
        policy, train_envs, ReplayBuffer(args.buffer_size))
    test_collector = Collector(policy, test_envs)
    # log
    writer = SummaryWriter(args.logdir + '/' + 'ddpg')

    def stop_fn(x):
        return x >= env.spec.reward_threshold

    # trainer
    result = offpolicy_trainer(
        policy, train_collector, test_collector, args.epoch,
        args.step_per_epoch, args.collect_per_step, args.test_num,
        args.batch_size, stop_fn=stop_fn, writer=writer, task=args.task)
    assert stop_fn(result['best_reward'])
    train_collector.close()
    test_collector.close()
    if __name__ == '__main__':
        pprint.pprint(result)
        # Let's watch its performance!
        env = gym.make(args.task)
        collector = Collector(policy, env)
        result = collector.collect(n_episode=1, render=args.render)
        print(f'Final reward: {result["rew"]}, length: {result["len"]}')
        collector.close()
Ejemplo n.º 6
0
 def watch():
     print("Testing agent ...")
     policy.eval()
     policy.set_eps(args.eps_test)
     envs = SubprocVectorEnv([lambda: make_atari_env_watch(args)
                              for _ in range(args.test_num)])
     envs.seed(args.seed)
     collector = Collector(policy, envs)
     result = collector.collect(n_episode=args.test_num, render=args.render)
     pprint.pprint(result)
Ejemplo n.º 7
0
def train(hyper: dict):
    env_id = 'CartPole-v1'
    env = gym.make(env_id)
    hyper['state_dim'] = 4
    hyper['action_dim'] = 2

    train_envs = VectorEnv([lambda: gym.make(env_id) for _ in range(hyper['training_num'])])
    test_envs = SubprocVectorEnv([lambda: gym.make(env_id) for _ in range(hyper['test_num'])])

    if hyper['seed']:
        np.random.seed(hyper['random_seed'])
        torch.manual_seed(hyper['random_seed'])
        train_envs.seed(hyper['random_seed'])
        test_envs.seed(hyper['random_seed'])

    device = Pytorch.device()

    net = Net(hyper['layer_num'], hyper['state_dim'], device=device)
    actor = Actor(net, hyper['action_dim']).to(device)
    critic = Critic(net).to(device)
    optim = torch.optim.Adam(list(
        actor.parameters()) + list(critic.parameters()), lr=hyper['learning_rate'])
    dist = torch.distributions.Categorical
    policy = A2CPolicy(
        actor, critic, optim, dist, hyper['gamma'], vf_coef=hyper['vf_coef'],
        ent_coef=hyper['ent_coef'], max_grad_norm=hyper['max_grad_norm'])
    # collector
    train_collector = Collector(
        policy, train_envs, ReplayBuffer(hyper['capacity']))
    test_collector = Collector(policy, test_envs)

    writer = SummaryWriter('./a2c')

    def stop_fn(x):
        if env.env.spec.reward_threshold:
            return x >= env.spec.reward_threshold
        else:
            return False

    result = onpolicy_trainer(
        policy, train_collector, test_collector, hyper['epoch'],
        hyper['step_per_epoch'], hyper['collect_per_step'], hyper['repeat_per_collect'],
        hyper['test_num'], hyper['batch_size'], stop_fn=stop_fn, writer=writer,
        task=env_id)
    train_collector.close()
    test_collector.close()
    pprint.pprint(result)
    # 测试
    env = gym.make(env_id)
    collector = Collector(policy, env)
    result = collector.collect(n_episode=1, render=hyper['render'])
    print(f'Final reward: {result["rew"]}, length: {result["len"]}')
    collector.close()
Ejemplo n.º 8
0
def reload(args=get_args()):
    slot_set = []
    with open('./dataset/slot_set.txt', 'r', encoding='utf-8') as f:
        for line in f.readlines():
            slot_set.append(line.strip())
    # slot_set =
    goals = {}
    with open('./dataset/test.pk', 'rb') as f:
        goals['test'] = pickle.load(f)

    for dic in goals['test']:
        dic['disease_tag'] = 'Esophagitis'

    total_disease = []
    with open('./dataset/disease.txt', 'r', encoding='utf-8') as f:
        for line in f.readlines():
            total_disease.append(line.strip())
    print(len(slot_set), slot_set)
    disease_num = len(total_disease)

    env = MedicalEnvrionment(slot_set, goals['test'], disease_num=disease_num)
    args.state_shape = env.observation_space.shape or env.observation_space.n
    args.action_shape = env.action_space.shape or env.action_space.n

    test_envs = SubprocVectorEnv([
        lambda: MedicalEnvrionment(slot_set,
                                   goals['test'],
                                   max_turn=args.max_episode_steps,
                                   flag="test",
                                   disease_num=disease_num)
        for _ in range(args.test_num)
    ])

    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    test_envs.seed(args.seed)
    random.seed(args.seed)
    policy = torch.load('./model/ehr/policy.pth')
    test_collector = MyCollector(policy, test_envs)
    result = test_episode(policy,
                          test_collector,
                          test_fn=None,
                          epoch=1,
                          n_episode=len(goals['test']),
                          writer=None)

    return result
Ejemplo n.º 9
0
def test_discrete_bcq(args=get_args()):
    # envs
    env = make_atari_env(args)
    args.state_shape = env.observation_space.shape or env.observation_space.n
    args.action_shape = env.action_space.shape or env.action_space.n
    # should be N_FRAMES x H x W
    print("Observations shape:", args.state_shape)
    print("Actions shape:", args.action_shape)
    # make environments
    test_envs = SubprocVectorEnv(
        [lambda: make_atari_env_watch(args) for _ in range(args.test_num)])
    # seed
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    test_envs.seed(args.seed)
    # model
    feature_net = DQN(*args.state_shape,
                      args.action_shape,
                      device=args.device,
                      features_only=True).to(args.device)
    policy_net = Actor(feature_net,
                       args.action_shape,
                       device=args.device,
                       hidden_sizes=args.hidden_sizes,
                       softmax_output=False).to(args.device)
    imitation_net = Actor(feature_net,
                          args.action_shape,
                          device=args.device,
                          hidden_sizes=args.hidden_sizes,
                          softmax_output=False).to(args.device)
    optim = torch.optim.Adam(list(policy_net.parameters()) +
                             list(imitation_net.parameters()),
                             lr=args.lr)
    # define policy
    policy = DiscreteBCQPolicy(policy_net, imitation_net, optim, args.gamma,
                               args.n_step, args.target_update_freq,
                               args.eps_test, args.unlikely_action_threshold,
                               args.imitation_logits_penalty)
    # load a previous policy
    if args.resume_path:
        policy.load_state_dict(
            torch.load(args.resume_path, map_location=args.device))
        print("Loaded agent from: ", args.resume_path)
    # buffer
    assert os.path.exists(args.load_buffer_name), \
        "Please run atari_dqn.py first to get expert's data buffer."
    if args.load_buffer_name.endswith('.pkl'):
        buffer = pickle.load(open(args.load_buffer_name, "rb"))
    elif args.load_buffer_name.endswith('.hdf5'):
        buffer = VectorReplayBuffer.load_hdf5(args.load_buffer_name)
    else:
        print(f"Unknown buffer format: {args.load_buffer_name}")
        exit(0)

    # collector
    test_collector = Collector(policy, test_envs, exploration_noise=True)

    # log
    log_path = os.path.join(
        args.logdir, args.task, 'bcq',
        f'seed_{args.seed}_{datetime.datetime.now().strftime("%m%d-%H%M%S")}')
    writer = SummaryWriter(log_path)
    writer.add_text("args", str(args))
    logger = BasicLogger(writer, update_interval=args.log_interval)

    def save_fn(policy):
        torch.save(policy.state_dict(), os.path.join(log_path, 'policy.pth'))

    def stop_fn(mean_rewards):
        return False

    # watch agent's performance
    def watch():
        print("Setup test envs ...")
        policy.eval()
        policy.set_eps(args.eps_test)
        test_envs.seed(args.seed)
        print("Testing agent ...")
        test_collector.reset()
        result = test_collector.collect(n_episode=args.test_num,
                                        render=args.render)
        pprint.pprint(result)
        rew = result["rews"].mean()
        print(f'Mean reward (over {result["n/ep"]} episodes): {rew}')

    if args.watch:
        watch()
        exit(0)

    result = offline_trainer(policy,
                             buffer,
                             test_collector,
                             args.epoch,
                             args.update_per_epoch,
                             args.test_num,
                             args.batch_size,
                             stop_fn=stop_fn,
                             save_fn=save_fn,
                             logger=logger)

    pprint.pprint(result)
    watch()
Ejemplo n.º 10
0
def test_sac(args=get_args()):
    torch.set_num_threads(1)
    env = gym.make(args.task)
    args.state_shape = env.observation_space.shape or env.observation_space.n
    args.action_shape = env.action_space.shape or env.action_space.n
    args.max_action = env.action_space.high[0]
    # you can also use tianshou.env.SubprocVectorEnv
    # train_envs = gym.make(args.task)
    train_envs = SubprocVectorEnv(
        [lambda: gym.make(args.task) for _ in range(args.training_num)])
    # test_envs = gym.make(args.task)
    test_envs = SubprocVectorEnv(
        [lambda: gym.make(args.task) for _ in range(args.test_num)])
    # seed
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    train_envs.seed(args.seed)
    test_envs.seed(args.seed)
    # model
    actor = ActorProb(
        args.layer_num, args.state_shape, args.action_shape,
        args.max_action, args.device, unbounded=True
    ).to(args.device)
    actor_optim = torch.optim.Adam(actor.parameters(), lr=args.actor_lr)
    critic1 = Critic(
        args.layer_num, args.state_shape, args.action_shape, args.device
    ).to(args.device)
    critic1_optim = torch.optim.Adam(critic1.parameters(), lr=args.critic_lr)
    critic2 = Critic(
        args.layer_num, args.state_shape, args.action_shape, args.device
    ).to(args.device)
    critic2_optim = torch.optim.Adam(critic2.parameters(), lr=args.critic_lr)
    policy = SACPolicy(
        actor, actor_optim, critic1, critic1_optim, critic2, critic2_optim,
        args.tau, args.gamma, args.alpha,
        [env.action_space.low[0], env.action_space.high[0]],
        reward_normalization=True, ignore_done=True)
    # collector
    train_collector = Collector(
        policy, train_envs, ReplayBuffer(args.buffer_size))
    test_collector = Collector(policy, test_envs)
    # train_collector.collect(n_step=args.buffer_size)
    # log
    log_path = os.path.join(args.logdir, args.task, 'sac', args.run_id)
    writer = SummaryWriter(log_path)

    def stop_fn(x):
        return x >= env.spec.reward_threshold

    # trainer
    result = offpolicy_trainer(
        policy, train_collector, test_collector, args.epoch,
        args.step_per_epoch, args.collect_per_step, args.test_num,
        args.batch_size, stop_fn=stop_fn,
        writer=writer, log_interval=args.log_interval)
    assert stop_fn(result['best_reward'])
    train_collector.close()
    test_collector.close()
    if __name__ == '__main__':
        pprint.pprint(result)
        # Let's watch its performance!
        env = gym.make(args.task)
        collector = Collector(policy, env)
        result = collector.collect(n_episode=1, render=args.render)
        print(f'Final reward: {result["rew"]}, length: {result["len"]}')
        collector.close()
Ejemplo n.º 11
0
# ====================== Run the optimization ======================

# Create a multiprocess environment
env_creator = lambda *args, **kwargs: gym.make(GYM_ENV_NAME, **GYM_ENV_KWARGS)

# Create training and testing environments
train_envs = SubprocVectorEnv([
    env_creator for _ in range(int(N_THREADS//2))])
test_envs = SubprocVectorEnv([
    env_creator for _ in range(int(N_THREADS//2))])

# Set the seeds
np.random.seed(SEED)
torch.manual_seed(SEED)
train_envs.seed(SEED)
test_envs.seed(SEED)

# Create actor and critic
actor, critic, dist_fn = build_actor_critic(
    env_creator, vf_share_layers=False, free_log_std=True)
actor = actor.to("cuda")
critic = critic.to("cuda")

# Set the action range in continuous mode
env = env_creator()
if isinstance(env.action_space, gym.spaces.Box):
    ppo_config["action_range"] = [
        float(env.action_space.low), float(env.action_space.high)]

# Optimizer parameters
Ejemplo n.º 12
0
def test_sac(args=get_args()):
    env = gym.make(args.task)
    args.state_shape = env.observation_space.shape or env.observation_space.n
    args.action_shape = env.action_space.shape or env.action_space.n
    args.max_action = env.action_space.high[0]
    print("Observations shape:", args.state_shape)
    print("Actions shape:", args.action_shape)
    print("Action range:", np.min(env.action_space.low), np.max(env.action_space.high))
    # train_envs = gym.make(args.task)
    if args.training_num > 1:
        train_envs = SubprocVectorEnv(
            [lambda: gym.make(args.task) for _ in range(args.training_num)]
        )
    else:
        train_envs = gym.make(args.task)
    # test_envs = gym.make(args.task)
    test_envs = SubprocVectorEnv(
        [lambda: gym.make(args.task) for _ in range(args.test_num)]
    )
    # seed
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    train_envs.seed(args.seed)
    test_envs.seed(args.seed)
    # model
    net_a = Net(args.state_shape, hidden_sizes=args.hidden_sizes, device=args.device)
    actor = ActorProb(
        net_a,
        args.action_shape,
        max_action=args.max_action,
        device=args.device,
        unbounded=True,
        conditioned_sigma=True
    ).to(args.device)
    actor_optim = torch.optim.Adam(actor.parameters(), lr=args.actor_lr)
    net_c1 = Net(
        args.state_shape,
        args.action_shape,
        hidden_sizes=args.hidden_sizes,
        concat=True,
        device=args.device
    )
    net_c2 = Net(
        args.state_shape,
        args.action_shape,
        hidden_sizes=args.hidden_sizes,
        concat=True,
        device=args.device
    )
    critic1 = Critic(net_c1, device=args.device).to(args.device)
    critic1_optim = torch.optim.Adam(critic1.parameters(), lr=args.critic_lr)
    critic2 = Critic(net_c2, device=args.device).to(args.device)
    critic2_optim = torch.optim.Adam(critic2.parameters(), lr=args.critic_lr)

    if args.auto_alpha:
        target_entropy = -np.prod(env.action_space.shape)
        log_alpha = torch.zeros(1, requires_grad=True, device=args.device)
        alpha_optim = torch.optim.Adam([log_alpha], lr=args.alpha_lr)
        args.alpha = (target_entropy, log_alpha, alpha_optim)

    policy = SACPolicy(
        actor,
        actor_optim,
        critic1,
        critic1_optim,
        critic2,
        critic2_optim,
        tau=args.tau,
        gamma=args.gamma,
        alpha=args.alpha,
        estimation_step=args.n_step,
        action_space=env.action_space
    )

    # load a previous policy
    if args.resume_path:
        policy.load_state_dict(torch.load(args.resume_path, map_location=args.device))
        print("Loaded agent from: ", args.resume_path)

    # collector
    if args.training_num > 1:
        buffer = VectorReplayBuffer(args.buffer_size, len(train_envs))
    else:
        buffer = ReplayBuffer(args.buffer_size)
    train_collector = Collector(policy, train_envs, buffer, exploration_noise=True)
    test_collector = Collector(policy, test_envs)
    train_collector.collect(n_step=args.start_timesteps, random=True)
    # log
    t0 = datetime.datetime.now().strftime("%m%d_%H%M%S")
    log_file = f'seed_{args.seed}_{t0}-{args.task.replace("-", "_")}_sac'
    log_path = os.path.join(args.logdir, args.task, 'sac', log_file)
    writer = SummaryWriter(log_path)
    writer.add_text("args", str(args))
    logger = TensorboardLogger(writer)

    def save_fn(policy):
        torch.save(policy.state_dict(), os.path.join(log_path, 'policy.pth'))

    if not args.watch:
        # trainer
        result = offpolicy_trainer(
            policy,
            train_collector,
            test_collector,
            args.epoch,
            args.step_per_epoch,
            args.step_per_collect,
            args.test_num,
            args.batch_size,
            save_fn=save_fn,
            logger=logger,
            update_per_step=args.update_per_step,
            test_in_train=False
        )
        pprint.pprint(result)

    # Let's watch its performance!
    policy.eval()
    test_envs.seed(args.seed)
    test_collector.reset()
    result = test_collector.collect(n_episode=args.test_num, render=args.render)
    print(f'Final reward: {result["rews"].mean()}, length: {result["lens"].mean()}')
Ejemplo n.º 13
0
def test_fqf(args=get_args()):
    env = make_atari_env(args)
    args.state_shape = env.observation_space.shape or env.observation_space.n
    args.action_shape = env.action_space.shape or env.action_space.n
    # should be N_FRAMES x H x W
    print("Observations shape:", args.state_shape)
    print("Actions shape:", args.action_shape)
    # make environments
    train_envs = SubprocVectorEnv(
        [lambda: make_atari_env(args) for _ in range(args.training_num)])
    test_envs = SubprocVectorEnv(
        [lambda: make_atari_env_watch(args) for _ in range(args.test_num)])
    # seed
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    train_envs.seed(args.seed)
    test_envs.seed(args.seed)
    # define model
    feature_net = DQN(*args.state_shape,
                      args.action_shape,
                      args.device,
                      features_only=True)
    net = FullQuantileFunction(feature_net,
                               args.action_shape,
                               args.hidden_sizes,
                               args.num_cosines,
                               device=args.device).to(args.device)
    optim = torch.optim.Adam(net.parameters(), lr=args.lr)
    fraction_net = FractionProposalNetwork(args.num_fractions, net.input_dim)
    fraction_optim = torch.optim.RMSprop(fraction_net.parameters(),
                                         lr=args.fraction_lr)
    # define policy
    policy = FQFPolicy(net,
                       optim,
                       fraction_net,
                       fraction_optim,
                       args.gamma,
                       args.num_fractions,
                       args.ent_coef,
                       args.n_step,
                       target_update_freq=args.target_update_freq).to(
                           args.device)
    # load a previous policy
    if args.resume_path:
        policy.load_state_dict(
            torch.load(args.resume_path, map_location=args.device))
        print("Loaded agent from: ", args.resume_path)
    # replay buffer: `save_last_obs` and `stack_num` can be removed together
    # when you have enough RAM
    buffer = VectorReplayBuffer(args.buffer_size,
                                buffer_num=len(train_envs),
                                ignore_obs_next=True,
                                save_only_last_obs=True,
                                stack_num=args.frames_stack)
    # collector
    train_collector = Collector(policy,
                                train_envs,
                                buffer,
                                exploration_noise=True)
    test_collector = Collector(policy, test_envs, exploration_noise=True)
    # log
    log_path = os.path.join(args.logdir, args.task, 'fqf')
    writer = SummaryWriter(log_path)
    writer.add_text("args", str(args))
    logger = BasicLogger(writer)

    def save_fn(policy):
        torch.save(policy.state_dict(), os.path.join(log_path, 'policy.pth'))

    def stop_fn(mean_rewards):
        if env.spec.reward_threshold:
            return mean_rewards >= env.spec.reward_threshold
        elif 'Pong' in args.task:
            return mean_rewards >= 20
        else:
            return False

    def train_fn(epoch, env_step):
        # nature DQN setting, linear decay in the first 1M steps
        if env_step <= 1e6:
            eps = args.eps_train - env_step / 1e6 * \
                (args.eps_train - args.eps_train_final)
        else:
            eps = args.eps_train_final
        policy.set_eps(eps)
        logger.write('train/eps', env_step, eps)

    def test_fn(epoch, env_step):
        policy.set_eps(args.eps_test)

    # watch agent's performance
    def watch():
        print("Setup test envs ...")
        policy.eval()
        policy.set_eps(args.eps_test)
        test_envs.seed(args.seed)
        if args.save_buffer_name:
            print(f"Generate buffer with size {args.buffer_size}")
            buffer = VectorReplayBuffer(args.buffer_size,
                                        buffer_num=len(test_envs),
                                        ignore_obs_next=True,
                                        save_only_last_obs=True,
                                        stack_num=args.frames_stack)
            collector = Collector(policy,
                                  test_envs,
                                  buffer,
                                  exploration_noise=True)
            result = collector.collect(n_step=args.buffer_size)
            print(f"Save buffer into {args.save_buffer_name}")
            # Unfortunately, pickle will cause oom with 1M buffer size
            buffer.save_hdf5(args.save_buffer_name)
        else:
            print("Testing agent ...")
            test_collector.reset()
            result = test_collector.collect(n_episode=args.test_num,
                                            render=args.render)
        rew = result["rews"].mean()
        print(f'Mean reward (over {result["n/ep"]} episodes): {rew}')

    if args.watch:
        watch()
        exit(0)

    # test train_collector and start filling replay buffer
    train_collector.collect(n_step=args.batch_size * args.training_num)
    # trainer
    result = offpolicy_trainer(policy,
                               train_collector,
                               test_collector,
                               args.epoch,
                               args.step_per_epoch,
                               args.step_per_collect,
                               args.test_num,
                               args.batch_size,
                               train_fn=train_fn,
                               test_fn=test_fn,
                               stop_fn=stop_fn,
                               save_fn=save_fn,
                               logger=logger,
                               update_per_step=args.update_per_step,
                               test_in_train=False)

    pprint.pprint(result)
    watch()
Ejemplo n.º 14
0
def test_dqn(args=get_args()):
    env = make_atari_env(args)
    args.state_shape = env.observation_space.shape or env.observation_space.n
    args.action_shape = env.env.action_space.shape or env.env.action_space.n

    # should be N_FRAMES x H x W

    print("Observations shape: ", args.state_shape)
    print("Actions shape: ", args.action_shape)
    # make environments
    train_envs = SubprocVectorEnv(
        [lambda: make_atari_env(args) for _ in range(args.training_num)])
    test_envs = SubprocVectorEnv(
        [lambda: make_atari_env_watch(args) for _ in range(args.test_num)])
    # seed
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    train_envs.seed(args.seed)
    test_envs.seed(args.seed)
    # log
    log_path = os.path.join(args.logdir, args.task, 'embedding')
    embedding_writer = SummaryWriter(log_path + '/with_init')

    embedding_net = embedding_prediction.Prediction(
        *args.state_shape, args.action_shape,
        args.device).to(device=args.device)
    embedding_net.apply(embedding_prediction.weights_init)

    if args.embedding_path:
        embedding_net.load_state_dict(torch.load(log_path + '/embedding.pth'))
        print("Loaded agent from: ", log_path + '/embedding.pth')
    # numel_list = [p.numel() for p in embedding_net.parameters()]
    # print(sum(numel_list), numel_list)

    pre_buffer = ReplayBuffer(args.buffer_size,
                              save_only_last_obs=True,
                              stack_num=args.frames_stack)
    pre_test_buffer = ReplayBuffer(args.buffer_size // 100,
                                   save_only_last_obs=True,
                                   stack_num=args.frames_stack)

    train_collector = Collector(None, train_envs, pre_buffer)
    test_collector = Collector(None, test_envs, pre_test_buffer)
    if args.embedding_data_path:
        pre_buffer = pickle.load(open(log_path + '/train_data.pkl', 'rb'))
        pre_test_buffer = pickle.load(open(log_path + '/test_data.pkl', 'rb'))
        train_collector.buffer = pre_buffer
        test_collector.buffer = pre_test_buffer
        print('load success')
    else:
        print('collect start')
        train_collector = Collector(None, train_envs, pre_buffer)
        test_collector = Collector(None, test_envs, pre_test_buffer)
        train_collector.collect(n_step=args.buffer_size, random=True)
        test_collector.collect(n_step=args.buffer_size // 100, random=True)
        print(len(train_collector.buffer))
        print(len(test_collector.buffer))
        if not os.path.exists(log_path):
            os.makedirs(log_path)
        pickle.dump(pre_buffer, open(log_path + '/train_data.pkl', 'wb'))
        pickle.dump(pre_test_buffer, open(log_path + '/test_data.pkl', 'wb'))
        print('collect finish')

    #使用得到的数据训练编码网络
    def part_loss(x, device='cpu'):
        if not isinstance(x, torch.Tensor):
            x = torch.tensor(x, device=device, dtype=torch.float32)
        x = x.view(128, -1)
        temp = torch.cat(
            ((1 - x).pow(2.0).unsqueeze_(0), x.pow(2.0).unsqueeze_(0)), dim=0)
        temp_2 = torch.min(temp, dim=0)[0]
        return torch.sum(temp_2)

    pre_optim = torch.optim.Adam(embedding_net.parameters(), lr=1e-5)
    scheduler = torch.optim.lr_scheduler.StepLR(pre_optim,
                                                step_size=50000,
                                                gamma=0.1,
                                                last_epoch=-1)
    test_batch_data = test_collector.sample(batch_size=0)

    loss_fn = torch.nn.NLLLoss()
    # train_loss = []
    for epoch in range(1, 100001):
        embedding_net.train()
        batch_data = train_collector.sample(batch_size=128)
        # print(batch_data)
        # print(batch_data['obs'][0] == batch_data['obs'][1])
        pred = embedding_net(batch_data['obs'], batch_data['obs_next'])
        x1 = pred[1]
        x2 = pred[2]
        # print(torch.argmax(pred[0], dim=1))
        if not isinstance(batch_data['act'], torch.Tensor):
            act = torch.tensor(batch_data['act'],
                               device=args.device,
                               dtype=torch.int64)
        # print(pred[0].dtype)
        # print(act.dtype)
        # l2_norm = sum(p.pow(2.0).sum() for p in embedding_net.net.parameters())
        # loss = loss_fn(pred[0], act) + 0.001 * (part_loss(x1) + part_loss(x2)) / 64
        loss_1 = loss_fn(pred[0], act)
        loss_2 = 0.01 * (part_loss(x1, args.device) +
                         part_loss(x2, args.device)) / 128
        loss = loss_1 + loss_2
        # print(loss_1)
        # print(loss_2)
        embedding_writer.add_scalar('training loss1', loss_1.item(), epoch)
        embedding_writer.add_scalar('training loss2', loss_2, epoch)
        embedding_writer.add_scalar('training loss', loss.item(), epoch)
        # train_loss.append(loss.detach().item())
        pre_optim.zero_grad()
        loss.backward()
        pre_optim.step()
        scheduler.step()

        if epoch % 10000 == 0 or epoch == 1:
            print(pre_optim.state_dict()['param_groups'][0]['lr'])
            # print("Epoch: %d,Train: Loss: %f" % (epoch, float(loss.item())))
            correct = 0
            numel_list = [p for p in embedding_net.parameters()][-2]
            print(numel_list)
            embedding_net.eval()
            with torch.no_grad():
                test_pred, x1, x2, _ = embedding_net(
                    test_batch_data['obs'], test_batch_data['obs_next'])
                if not isinstance(test_batch_data['act'], torch.Tensor):
                    act = torch.tensor(test_batch_data['act'],
                                       device=args.device,
                                       dtype=torch.int64)
                loss_1 = loss_fn(test_pred, act)
                loss_2 = 0.01 * (part_loss(x1, args.device) +
                                 part_loss(x2, args.device)) / 128
                loss = loss_1 + loss_2
                embedding_writer.add_scalar('test loss', loss.item(), epoch)
                # print("Test Loss: %f" % (float(loss)))
                print(torch.argmax(test_pred, dim=1))
                print(act)
                correct += int((torch.argmax(test_pred, dim=1) == act).sum())
                print('Acc:', correct / len(test_batch_data))

    torch.save(embedding_net.state_dict(),
               os.path.join(log_path, 'embedding.pth'))
    embedding_writer.close()
    # plt.figure()
    # plt.plot(np.arange(100000),train_loss)
    # plt.show()
    exit()
    #构建hash表

    # log
    log_path = os.path.join(args.logdir, args.task, 'dqn')
    writer = SummaryWriter(log_path)

    # define model
    net = DQN(*args.state_shape, args.action_shape,
              args.device).to(device=args.device)

    optim = torch.optim.Adam(net.parameters(), lr=args.lr)
    # define policy
    policy = DQNPolicy(net,
                       optim,
                       args.gamma,
                       args.n_step,
                       target_update_freq=args.target_update_freq)
    # load a previous policy
    if args.resume_path:
        policy.load_state_dict(torch.load(args.resume_path))
        print("Loaded agent from: ", args.resume_path)

    # replay buffer: `save_last_obs` and `stack_num` can be removed together
    # when you have enough RAM
    pre_buffer.reset()
    buffer = ReplayBuffer(args.buffer_size,
                          ignore_obs_next=True,
                          save_only_last_obs=True,
                          stack_num=args.frames_stack)
    # collector
    # train_collector中传入preprocess_fn对奖励进行重构
    train_collector = Collector(policy, train_envs, buffer)
    test_collector = Collector(policy, test_envs)

    def save_fn(policy):
        torch.save(policy.state_dict(), os.path.join(log_path, 'policy.pth'))

    def stop_fn(x):
        if env.env.spec.reward_threshold:
            return x >= env.spec.reward_threshold
        elif 'Pong' in args.task:
            return x >= 20

    def train_fn(x):
        # nature DQN setting, linear decay in the first 1M steps
        now = x * args.collect_per_step * args.step_per_epoch
        if now <= 1e6:
            eps = args.eps_train - now / 1e6 * \
                (args.eps_train - args.eps_train_final)
            policy.set_eps(eps)
        else:
            policy.set_eps(args.eps_train_final)
        print("set eps =", policy.eps)

    def test_fn(x):
        policy.set_eps(args.eps_test)

    # watch agent's performance
    def watch():
        print("Testing agent ...")
        policy.eval()
        policy.set_eps(args.eps_test)
        test_envs.seed(args.seed)
        test_collector.reset()
        result = test_collector.collect(n_episode=[1] * args.test_num,
                                        render=1 / 30)
        pprint.pprint(result)

    if args.watch:
        watch()
        exit(0)

    # test train_collector and start filling replay buffer
    train_collector.collect(n_step=args.batch_size * 4)
    # trainer
    result = offpolicy_trainer(policy,
                               train_collector,
                               test_collector,
                               args.epoch,
                               args.step_per_epoch,
                               args.collect_per_step,
                               args.test_num,
                               args.batch_size,
                               train_fn=train_fn,
                               test_fn=test_fn,
                               stop_fn=stop_fn,
                               save_fn=save_fn,
                               writer=writer,
                               test_in_train=False)

    pprint.pprint(result)
    watch()
Ejemplo n.º 15
0
def test_cql():
    args = get_args()
    env = gym.make(args.task)
    args.state_shape = env.observation_space.shape or env.observation_space.n
    args.action_shape = env.action_space.shape or env.action_space.n
    args.max_action = env.action_space.high[0]  # float
    print("device:", args.device)
    print("Observations shape:", args.state_shape)
    print("Actions shape:", args.action_shape)
    print("Action range:", np.min(env.action_space.low),
          np.max(env.action_space.high))

    args.state_dim = args.state_shape[0]
    args.action_dim = args.action_shape[0]
    print("Max_action", args.max_action)

    # test_envs = gym.make(args.task)
    test_envs = SubprocVectorEnv(
        [lambda: gym.make(args.task) for _ in range(args.test_num)])
    # seed
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    test_envs.seed(args.seed)

    # model
    # actor network
    net_a = Net(
        args.state_shape,
        args.action_shape,
        hidden_sizes=args.hidden_sizes,
        device=args.device,
    )
    actor = ActorProb(net_a,
                      action_shape=args.action_shape,
                      max_action=args.max_action,
                      device=args.device,
                      unbounded=True,
                      conditioned_sigma=True).to(args.device)
    actor_optim = torch.optim.Adam(actor.parameters(), lr=args.actor_lr)

    # critic network
    net_c1 = Net(
        args.state_shape,
        args.action_shape,
        hidden_sizes=args.hidden_sizes,
        concat=True,
        device=args.device,
    )
    net_c2 = Net(
        args.state_shape,
        args.action_shape,
        hidden_sizes=args.hidden_sizes,
        concat=True,
        device=args.device,
    )
    critic1 = Critic(net_c1, device=args.device).to(args.device)
    critic1_optim = torch.optim.Adam(critic1.parameters(), lr=args.critic_lr)
    critic2 = Critic(net_c2, device=args.device).to(args.device)
    critic2_optim = torch.optim.Adam(critic2.parameters(), lr=args.critic_lr)

    if args.auto_alpha:
        target_entropy = -np.prod(env.action_space.shape)
        log_alpha = torch.zeros(1, requires_grad=True, device=args.device)
        alpha_optim = torch.optim.Adam([log_alpha], lr=args.alpha_lr)
        args.alpha = (target_entropy, log_alpha, alpha_optim)

    policy = CQLPolicy(
        actor,
        actor_optim,
        critic1,
        critic1_optim,
        critic2,
        critic2_optim,
        cql_alpha_lr=args.cql_alpha_lr,
        cql_weight=args.cql_weight,
        tau=args.tau,
        gamma=args.gamma,
        alpha=args.alpha,
        temperature=args.temperature,
        with_lagrange=args.with_lagrange,
        lagrange_threshold=args.lagrange_threshold,
        min_action=np.min(env.action_space.low),
        max_action=np.max(env.action_space.high),
        device=args.device,
    )

    # load a previous policy
    if args.resume_path:
        policy.load_state_dict(
            torch.load(args.resume_path, map_location=args.device))
        print("Loaded agent from: ", args.resume_path)

    # collector
    test_collector = Collector(policy, test_envs)

    # log
    now = datetime.datetime.now().strftime("%y%m%d-%H%M%S")
    args.algo_name = "cql"
    log_name = os.path.join(args.task, args.algo_name, str(args.seed), now)
    log_path = os.path.join(args.logdir, log_name)

    # logger
    if args.logger == "wandb":
        logger = WandbLogger(
            save_interval=1,
            name=log_name.replace(os.path.sep, "__"),
            run_id=args.resume_id,
            config=args,
            project=args.wandb_project,
        )
    writer = SummaryWriter(log_path)
    writer.add_text("args", str(args))
    if args.logger == "tensorboard":
        logger = TensorboardLogger(writer)
    else:  # wandb
        logger.load(writer)

    def save_best_fn(policy):
        torch.save(policy.state_dict(), os.path.join(log_path, "policy.pth"))

    def watch():
        if args.resume_path is None:
            args.resume_path = os.path.join(log_path, "policy.pth")

        policy.load_state_dict(
            torch.load(args.resume_path, map_location=torch.device("cpu")))
        policy.eval()
        collector = Collector(policy, env)
        collector.collect(n_episode=1, render=1 / 35)

    if not args.watch:
        dataset = d4rl.qlearning_dataset(gym.make(args.expert_data_task))
        dataset_size = dataset["rewards"].size

        print("dataset_size", dataset_size)
        replay_buffer = ReplayBuffer(dataset_size)

        for i in range(dataset_size):
            replay_buffer.add(
                Batch(
                    obs=dataset["observations"][i],
                    act=dataset["actions"][i],
                    rew=dataset["rewards"][i],
                    done=dataset["terminals"][i],
                    obs_next=dataset["next_observations"][i],
                ))
        print("dataset loaded")
        # trainer
        result = offline_trainer(
            policy,
            replay_buffer,
            test_collector,
            args.epoch,
            args.step_per_epoch,
            args.test_num,
            args.batch_size,
            save_best_fn=save_best_fn,
            logger=logger,
        )
        pprint.pprint(result)
    else:
        watch()

    # Let's watch its performance!
    policy.eval()
    test_envs.seed(args.seed)
    test_collector.reset()
    result = test_collector.collect(n_episode=args.test_num,
                                    render=args.render)
    print(
        f"Final reward: {result['rews'].mean()}, length: {result['lens'].mean()}"
    )
def test_sac_bipedal(args=get_args()):
    env = EnvWrapper(args.task)

    args.state_shape = env.observation_space.shape or env.observation_space.n
    args.action_shape = env.action_space.shape or env.action_space.n
    args.max_action = env.action_space.high[0]

    train_envs = SubprocVectorEnv(
        [lambda: EnvWrapper(args.task) for _ in range(args.training_num)])
    # test_envs = gym.make(args.task)
    test_envs = SubprocVectorEnv([lambda: EnvWrapper(args.task, reward_scale=1)
                                  for _ in range(args.test_num)])

    # seed
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    train_envs.seed(args.seed)
    test_envs.seed(args.seed)

    # model
    net_a = Net(args.layer_num, args.state_shape, device=args.device)
    actor = ActorProb(
        net_a, args.action_shape, args.max_action, args.device, unbounded=True
    ).to(args.device)
    actor_optim = torch.optim.Adam(actor.parameters(), lr=args.actor_lr)

    net_c1 = Net(args.layer_num, args.state_shape,
                 args.action_shape, concat=True, device=args.device)
    critic1 = Critic(net_c1, args.device).to(args.device)
    critic1_optim = torch.optim.Adam(critic1.parameters(), lr=args.critic_lr)

    net_c2 = Net(args.layer_num, args.state_shape,
                 args.action_shape, concat=True, device=args.device)
    critic2 = Critic(net_c2, args.device).to(args.device)
    critic2_optim = torch.optim.Adam(critic2.parameters(), lr=args.critic_lr)

    if args.auto_alpha:
        target_entropy = -np.prod(env.action_space.shape)
        log_alpha = torch.zeros(1, requires_grad=True, device=args.device)
        alpha_optim = torch.optim.Adam([log_alpha], lr=args.alpha_lr)
        args.alpha = (target_entropy, log_alpha, alpha_optim)

    policy = SACPolicy(
        actor, actor_optim, critic1, critic1_optim, critic2, critic2_optim,
        action_range=[env.action_space.low[0], env.action_space.high[0]],
        tau=args.tau, gamma=args.gamma, alpha=args.alpha,
        reward_normalization=args.rew_norm,
        ignore_done=args.ignore_done,
        estimation_step=args.n_step)
    # load a previous policy
    if args.resume_path:
        policy.load_state_dict(torch.load(args.resume_path))
        print("Loaded agent from: ", args.resume_path)

    # collector
    train_collector = Collector(
        policy, train_envs, ReplayBuffer(args.buffer_size))
    test_collector = Collector(policy, test_envs)
    # train_collector.collect(n_step=args.buffer_size)
    # log
    log_path = os.path.join(args.logdir, args.task, 'sac')
    writer = SummaryWriter(log_path)

    def save_fn(policy):
        torch.save(policy.state_dict(), os.path.join(log_path, 'policy.pth'))

    def stop_fn(mean_rewards):
        return mean_rewards >= env.spec.reward_threshold

    # trainer
    result = offpolicy_trainer(
        policy, train_collector, test_collector, args.epoch,
        args.step_per_epoch, args.collect_per_step, args.test_num,
        args.batch_size, stop_fn=stop_fn, save_fn=save_fn, writer=writer,
        test_in_train=False)

    if __name__ == '__main__':
        pprint.pprint(result)
        # Let's watch its performance!
        policy.eval()
        test_envs.seed(args.seed)
        test_collector.reset()
        result = test_collector.collect(n_episode=[1] * args.test_num,
                                        render=args.render)
        print(f'Final reward: {result["rew"]}, length: {result["len"]}')
Ejemplo n.º 17
0
def test_td3_bc():
    args = get_args()
    env = gym.make(args.task)
    args.state_shape = env.observation_space.shape or env.observation_space.n
    args.action_shape = env.action_space.shape or env.action_space.n
    args.max_action = env.action_space.high[0]  # float
    print("device:", args.device)
    print("Observations shape:", args.state_shape)
    print("Actions shape:", args.action_shape)
    print("Action range:", np.min(env.action_space.low),
          np.max(env.action_space.high))

    args.state_dim = args.state_shape[0]
    args.action_dim = args.action_shape[0]
    print("Max_action", args.max_action)

    test_envs = SubprocVectorEnv(
        [lambda: gym.make(args.task) for _ in range(args.test_num)])
    if args.norm_obs:
        test_envs = VectorEnvNormObs(test_envs, update_obs_rms=False)

    # seed
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    test_envs.seed(args.seed)

    # model
    # actor network
    net_a = Net(
        args.state_shape,
        hidden_sizes=args.hidden_sizes,
        device=args.device,
    )
    actor = Actor(
        net_a,
        action_shape=args.action_shape,
        max_action=args.max_action,
        device=args.device,
    ).to(args.device)
    actor_optim = torch.optim.Adam(actor.parameters(), lr=args.actor_lr)

    # critic network
    net_c1 = Net(
        args.state_shape,
        args.action_shape,
        hidden_sizes=args.hidden_sizes,
        concat=True,
        device=args.device,
    )
    net_c2 = Net(
        args.state_shape,
        args.action_shape,
        hidden_sizes=args.hidden_sizes,
        concat=True,
        device=args.device,
    )
    critic1 = Critic(net_c1, device=args.device).to(args.device)
    critic1_optim = torch.optim.Adam(critic1.parameters(), lr=args.critic_lr)
    critic2 = Critic(net_c2, device=args.device).to(args.device)
    critic2_optim = torch.optim.Adam(critic2.parameters(), lr=args.critic_lr)

    policy = TD3BCPolicy(
        actor,
        actor_optim,
        critic1,
        critic1_optim,
        critic2,
        critic2_optim,
        tau=args.tau,
        gamma=args.gamma,
        exploration_noise=GaussianNoise(sigma=args.exploration_noise),
        policy_noise=args.policy_noise,
        update_actor_freq=args.update_actor_freq,
        noise_clip=args.noise_clip,
        alpha=args.alpha,
        estimation_step=args.n_step,
        action_space=env.action_space,
    )

    # load a previous policy
    if args.resume_path:
        policy.load_state_dict(
            torch.load(args.resume_path, map_location=args.device))
        print("Loaded agent from: ", args.resume_path)

    # collector
    test_collector = Collector(policy, test_envs)

    # log
    now = datetime.datetime.now().strftime("%y%m%d-%H%M%S")
    args.algo_name = "td3_bc"
    log_name = os.path.join(args.task, args.algo_name, str(args.seed), now)
    log_path = os.path.join(args.logdir, log_name)

    # logger
    if args.logger == "wandb":
        logger = WandbLogger(
            save_interval=1,
            name=log_name.replace(os.path.sep, "__"),
            run_id=args.resume_id,
            config=args,
            project=args.wandb_project,
        )
    writer = SummaryWriter(log_path)
    writer.add_text("args", str(args))
    if args.logger == "tensorboard":
        logger = TensorboardLogger(writer)
    else:  # wandb
        logger.load(writer)

    def save_best_fn(policy):
        torch.save(policy.state_dict(), os.path.join(log_path, "policy.pth"))

    def watch():
        if args.resume_path is None:
            args.resume_path = os.path.join(log_path, "policy.pth")

        policy.load_state_dict(
            torch.load(args.resume_path, map_location=torch.device("cpu")))
        policy.eval()
        collector = Collector(policy, env)
        collector.collect(n_episode=1, render=1 / 35)

    if not args.watch:
        replay_buffer = load_buffer_d4rl(args.expert_data_task)
        if args.norm_obs:
            replay_buffer, obs_rms = normalize_all_obs_in_replay_buffer(
                replay_buffer)
            test_envs.set_obs_rms(obs_rms)
        # trainer
        result = offline_trainer(
            policy,
            replay_buffer,
            test_collector,
            args.epoch,
            args.step_per_epoch,
            args.test_num,
            args.batch_size,
            save_best_fn=save_best_fn,
            logger=logger,
        )
        pprint.pprint(result)
    else:
        watch()

    # Let's watch its performance!
    policy.eval()
    test_envs.seed(args.seed)
    test_collector.reset()
    result = test_collector.collect(n_episode=args.test_num,
                                    render=args.render)
    print(
        f"Final reward: {result['rews'].mean()}, length: {result['lens'].mean()}"
    )
Ejemplo n.º 18
0
def test_dqn(args=get_args()):
    env = gym.make(args.task)
    args.state_shape = env.observation_space.shape or env.observation_space.n
    args.action_shape = env.action_space.shape or env.action_space.n
    # train_envs = gym.make(args.task)
    # you can also use tianshou.env.SubprocVectorEnv
    train_envs = DummyVectorEnv(
        [lambda: gym.make(args.task) for _ in range(args.training_num)])
    # test_envs = gym.make(args.task)
    test_envs = SubprocVectorEnv(
        [lambda: gym.make(args.task) for _ in range(args.test_num)])
    # seed
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    train_envs.seed(args.seed)
    test_envs.seed(args.seed)
    # model
    net = Net(args.layer_num, args.state_shape,
              args.action_shape, args.device,
              dueling=(2, 2)).to(args.device)
    optim = torch.optim.Adam(net.parameters(), lr=args.lr)
    policy = DQNPolicy(
        net, optim, args.gamma, args.n_step,
        target_update_freq=args.target_update_freq)
    # collector
    train_collector = Collector(
        policy, train_envs, ReplayBuffer(args.buffer_size))
    test_collector = Collector(policy, test_envs)
    # policy.set_eps(1)
    train_collector.collect(n_step=args.batch_size)
    # log
    log_path = os.path.join(args.logdir, args.task, 'dqn')
    writer = SummaryWriter(log_path)

    def save_fn(policy):
        torch.save(policy.state_dict(), os.path.join(log_path, 'policy.pth'))

    def stop_fn(mean_rewards):
        return mean_rewards >= env.spec.reward_threshold

    def train_fn(epoch, env_step):  # exp decay
        eps = max(args.eps_train * (1 - 5e-6) ** env_step, args.eps_test)
        policy.set_eps(eps)

    def test_fn(epoch, env_step):
        policy.set_eps(args.eps_test)

    # trainer
    result = offpolicy_trainer(
        policy, train_collector, test_collector, args.epoch,
        args.step_per_epoch, args.collect_per_step, args.test_num,
        args.batch_size, train_fn=train_fn, test_fn=test_fn,
        stop_fn=stop_fn, save_fn=save_fn, writer=writer,
        test_in_train=False)

    assert stop_fn(result['best_reward'])
    if __name__ == '__main__':
        pprint.pprint(result)
        # Let's watch its performance!
        policy.eval()
        policy.set_eps(args.eps_test)
        test_envs.seed(args.seed)
        test_collector.reset()
        result = test_collector.collect(n_episode=[1] * args.test_num,
                                        render=args.render)
        print(f'Final reward: {result["rew"]}, length: {result["len"]}')
Ejemplo n.º 19
0
def test_psrl(args=get_args()):
    env = gym.make(args.task)
    if args.task == "NChain-v0":
        env.spec.reward_threshold = 3400
        # env.spec.reward_threshold = 3647  # described in PSRL paper
    print("reward threshold:", env.spec.reward_threshold)
    args.state_shape = env.observation_space.shape or env.observation_space.n
    args.action_shape = env.action_space.shape or env.action_space.n
    # train_envs = gym.make(args.task)
    train_envs = DummyVectorEnv(
        [lambda: gym.make(args.task) for _ in range(args.training_num)])
    # test_envs = gym.make(args.task)
    test_envs = SubprocVectorEnv(
        [lambda: gym.make(args.task) for _ in range(args.test_num)])
    # seed
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    train_envs.seed(args.seed)
    test_envs.seed(args.seed)
    # model
    n_action = args.action_shape
    n_state = args.state_shape
    trans_count_prior = np.ones((n_state, n_action, n_state))
    rew_mean_prior = np.full((n_state, n_action), args.rew_mean_prior)
    rew_std_prior = np.full((n_state, n_action), args.rew_std_prior)
    policy = PSRLPolicy(trans_count_prior, rew_mean_prior, rew_std_prior,
                        args.gamma, args.eps, args.add_done_loop)
    # collector
    train_collector = Collector(policy,
                                train_envs,
                                VectorReplayBuffer(args.buffer_size,
                                                   len(train_envs)),
                                exploration_noise=True)
    test_collector = Collector(policy, test_envs)
    # Logger
    if args.logger == "wandb":
        logger = WandbLogger(save_interval=1,
                             project='psrl',
                             name='wandb_test',
                             config=args)
    elif args.logger == "tensorboard":
        log_path = os.path.join(args.logdir, args.task, 'psrl')
        writer = SummaryWriter(log_path)
        writer.add_text("args", str(args))
        logger = TensorboardLogger(writer)
    else:
        logger = LazyLogger()

    def stop_fn(mean_rewards):
        if env.spec.reward_threshold:
            return mean_rewards >= env.spec.reward_threshold
        else:
            return False

    train_collector.collect(n_step=args.buffer_size, random=True)
    # trainer, test it without logger
    result = onpolicy_trainer(
        policy,
        train_collector,
        test_collector,
        args.epoch,
        args.step_per_epoch,
        1,
        args.test_num,
        0,
        episode_per_collect=args.episode_per_collect,
        stop_fn=stop_fn,
        logger=logger,
        test_in_train=False,
    )

    if __name__ == '__main__':
        pprint.pprint(result)
        # Let's watch its performance!
        policy.eval()
        test_envs.seed(args.seed)
        test_collector.reset()
        result = test_collector.collect(n_episode=args.test_num,
                                        render=args.render)
        rews, lens = result["rews"], result["lens"]
        print(f"Final reward: {rews.mean()}, length: {lens.mean()}")
    elif env.spec.reward_threshold:
        assert result["best_reward"] >= env.spec.reward_threshold
Ejemplo n.º 20
0
def test_discrete_sac(args=get_args()):
    env = gym.make(args.task)
    args.state_shape = env.observation_space.shape or env.observation_space.n
    args.action_shape = env.action_space.shape or env.action_space.n

    train_envs = SubprocVectorEnv(
        [lambda: gym.make(args.task) for _ in range(args.training_num)])
    test_envs = SubprocVectorEnv(
        [lambda: gym.make(args.task) for _ in range(args.test_num)])
    # seed
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    train_envs.seed(args.seed)
    test_envs.seed(args.seed)
    # model
    net = Net(args.state_shape,
              hidden_sizes=args.hidden_sizes,
              device=args.device)
    actor = Actor(net,
                  args.action_shape,
                  softmax_output=False,
                  device=args.device).to(args.device)
    actor_optim = torch.optim.Adam(actor.parameters(), lr=args.actor_lr)
    net_c1 = Net(args.state_shape,
                 hidden_sizes=args.hidden_sizes,
                 device=args.device)
    critic1 = Critic(net_c1, last_size=args.action_shape,
                     device=args.device).to(args.device)
    critic1_optim = torch.optim.Adam(critic1.parameters(), lr=args.critic_lr)
    net_c2 = Net(args.state_shape,
                 hidden_sizes=args.hidden_sizes,
                 device=args.device)
    critic2 = Critic(net_c2, last_size=args.action_shape,
                     device=args.device).to(args.device)
    critic2_optim = torch.optim.Adam(critic2.parameters(), lr=args.critic_lr)

    # better not to use auto alpha in CartPole
    if args.auto_alpha:
        target_entropy = 0.98 * np.log(np.prod(args.action_shape))
        log_alpha = torch.zeros(1, requires_grad=True, device=args.device)
        alpha_optim = torch.optim.Adam([log_alpha], lr=args.alpha_lr)
        args.alpha = (target_entropy, log_alpha, alpha_optim)

    policy = DiscreteSACPolicy(actor,
                               actor_optim,
                               critic1,
                               critic1_optim,
                               critic2,
                               critic2_optim,
                               args.tau,
                               args.gamma,
                               args.alpha,
                               reward_normalization=args.rew_norm,
                               ignore_done=args.ignore_done)
    # collector
    train_collector = Collector(policy, train_envs,
                                ReplayBuffer(args.buffer_size))
    test_collector = Collector(policy, test_envs)
    # train_collector.collect(n_step=args.buffer_size)
    # log
    log_path = os.path.join(args.logdir, args.task, 'discrete_sac')
    writer = SummaryWriter(log_path)

    def save_fn(policy):
        torch.save(policy.state_dict(), os.path.join(log_path, 'policy.pth'))

    def stop_fn(mean_rewards):
        return mean_rewards >= env.spec.reward_threshold

    # trainer
    result = offpolicy_trainer(policy,
                               train_collector,
                               test_collector,
                               args.epoch,
                               args.step_per_epoch,
                               args.collect_per_step,
                               args.test_num,
                               args.batch_size,
                               stop_fn=stop_fn,
                               save_fn=save_fn,
                               writer=writer,
                               test_in_train=False)
    assert stop_fn(result['best_reward'])
    if __name__ == '__main__':
        pprint.pprint(result)
        # Let's watch its performance!
        env = gym.make(args.task)
        policy.eval()
        collector = Collector(policy, env)
        result = collector.collect(n_episode=1, render=args.render)
        print(f'Final reward: {result["rew"]}, length: {result["len"]}')
Ejemplo n.º 21
0
def test_a2c(args=get_args()):
    slot_set = []
    with open('./dataset/slot_set.txt', 'r', encoding='utf-8') as f:
        for line in f.readlines():
            slot_set.append(line.strip())
    # slot_set =
    goals = {}
    with open('./dataset/train.pk', 'rb') as f:
        goals['train'] = pickle.load(f)

    with open('./dataset/dev.pk', 'rb') as f:
        goals['dev'] = pickle.load(f)

    total_disease = []
    with open('./dataset/disease.txt', 'r', encoding='utf-8') as f:
        for line in f.readlines():
            total_disease.append(line.strip())
    print(len(slot_set), slot_set)
    disease_num = len(total_disease)

    env = MedicalEnvrionment(slot_set, goals['dev'], disease_num=disease_num)
    args.state_shape = env.observation_space.shape or env.observation_space.n
    args.action_shape = env.action_space.shape or env.action_space.n

    train_envs = SubprocVectorEnv([
        lambda: MedicalEnvrionment(slot_set,
                                   goals['train'],
                                   max_turn=args.max_episode_steps,
                                   flag='train',
                                   disease_num=disease_num)
        for _ in range(args.training_num)
    ])

    test_envs = SubprocVectorEnv([
        lambda: MedicalEnvrionment(slot_set,
                                   goals['dev'],
                                   max_turn=args.max_episode_steps,
                                   flag="dev",
                                   disease_num=disease_num)
        for _ in range(args.test_num)
    ])

    # seed
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    train_envs.seed(args.seed)
    test_envs.seed(args.seed)
    random.seed(args.seed)
    # model
    net = Net(args.layer_num, args.state_shape, device=args.device)
    actor_net = Net(args.layer_num, args.state_shape, device=args.device)
    actor = MyActor(actor_net, args.action_shape,
                    disease_num=disease_num).to(args.device)
    critic = Critic(net).to(args.device)
    optim = torch.optim.Adam(list(actor.parameters()) +
                             list(critic.parameters()),
                             lr=args.lr)
    dist = torch.distributions.Categorical
    policy = MyA2CPolicy(actor,
                         critic,
                         optim,
                         dist,
                         args.gamma,
                         vf_coef=args.vf_coef,
                         ent_coef=args.ent_coef,
                         max_grad_norm=args.max_grad_norm)
    # collector
    train_collector = MyCollector(policy, train_envs,
                                  ReplayBuffer(args.buffer_size))
    test_collector = MyCollector(policy, test_envs)
    # log
    time_name = time.strftime("%Y-%m-%d-%H_%M_%S", time.localtime())
    writer = SummaryWriter(os.path.join(args.logdir, args.logpath + time_name))

    def stop_fn(mean_rewards):
        if env.spec.reward_threshold:
            return mean_rewards >= env.spec.reward_threshold
        else:
            return False

    result = Myonpolicy_trainer(policy,
                                train_collector,
                                test_collector,
                                args.epoch,
                                args.step_per_epoch,
                                args.collect_per_step,
                                args.repeat_per_collect,
                                len(goals['dev']),
                                args.batch_size,
                                writer=writer,
                                save_fn=save_fn)

    return result
Ejemplo n.º 22
0
 # in this folder will be saved the best model and/or tensorboard files
 logdir = "log"
 device = 'cuda' if torch.cuda.is_available() else 'cpu'
 task = "Acrobot-v1"
 env = gym.make(task)
 state_shape = env.observation_space.shape or env.observation_space.n
 action_shape = env.env.action_space.shape or env.env.action_space.n
 print("Observations shape:", state_shape)
 print("Actions shape:", action_shape)
 # make environments
 train_envs = SubprocVectorEnv([lambda: gym.make(task) for _ in range(16)])
 test_envs = SubprocVectorEnv([lambda: gym.make(task) for _ in range(10)])
 # seed
 np.random.seed(0)
 torch.manual_seed(0)
 train_envs.seed(0)
 test_envs.seed(0)
 # define model
 layers_num = 3
 net = Net(layers_num, state_shape, action_shape, device).to(device)
 optim = torch.optim.Adam(net.parameters(), lr=0.0001)
 # define policy
 policy = DQNPolicy(net,
                    optim,
                    discount_factor=0.99,
                    estimation_step=3,
                    target_update_freq=300)
 # replay buffer: `save_last_obs` and `stack_num` can be removed together
 # when you have enough RAM
 buffer = ReplayBuffer(20000)  # collector
 train_collector = Collector(policy, train_envs, buffer)
Ejemplo n.º 23
0
def test_dqn(args=get_args()):
    env = gym.make(args.task)
    args.state_shape = env.observation_space.shape or env.observation_space.n
    args.action_shape = env.action_space.shape or env.action_space.n
    # train_envs = gym.make(args.task)
    # you can also use tianshou.env.SubprocVectorEnv
    train_envs = DummyVectorEnv(
        [lambda: gym.make(args.task) for _ in range(args.training_num)])
    # test_envs = gym.make(args.task)
    test_envs = SubprocVectorEnv(
        [lambda: gym.make(args.task) for _ in range(args.test_num)])
    # seed
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    train_envs.seed(args.seed)
    test_envs.seed(args.seed)
    # model
    Q_param = {"hidden_sizes": args.dueling_q_hidden_sizes}
    V_param = {"hidden_sizes": args.dueling_v_hidden_sizes}
    net = Net(args.state_shape,
              args.action_shape,
              hidden_sizes=args.hidden_sizes,
              device=args.device,
              dueling_param=(Q_param, V_param)).to(args.device)
    optim = torch.optim.Adam(net.parameters(), lr=args.lr)
    policy = DQNPolicy(net,
                       optim,
                       args.gamma,
                       args.n_step,
                       target_update_freq=args.target_update_freq)
    # collector
    train_collector = Collector(policy,
                                train_envs,
                                VectorReplayBuffer(args.buffer_size,
                                                   len(train_envs)),
                                exploration_noise=True)
    test_collector = Collector(policy, test_envs, exploration_noise=True)
    # policy.set_eps(1)
    train_collector.collect(n_step=args.batch_size * args.training_num)
    # log
    log_path = os.path.join(args.logdir, args.task, 'dqn')
    writer = SummaryWriter(log_path)
    logger = TensorboardLogger(writer)

    def save_fn(policy):
        torch.save(policy.state_dict(), os.path.join(log_path, 'policy.pth'))

    def stop_fn(mean_rewards):
        return mean_rewards >= env.spec.reward_threshold

    def train_fn(epoch, env_step):  # exp decay
        eps = max(args.eps_train * (1 - 5e-6)**env_step, args.eps_test)
        policy.set_eps(eps)

    def test_fn(epoch, env_step):
        policy.set_eps(args.eps_test)

    # trainer
    result = offpolicy_trainer(policy,
                               train_collector,
                               test_collector,
                               args.epoch,
                               args.step_per_epoch,
                               args.step_per_collect,
                               args.test_num,
                               args.batch_size,
                               update_per_step=args.update_per_step,
                               stop_fn=stop_fn,
                               train_fn=train_fn,
                               test_fn=test_fn,
                               save_fn=save_fn,
                               logger=logger)

    assert stop_fn(result['best_reward'])
    if __name__ == '__main__':
        pprint.pprint(result)
        # Let's watch its performance!
        policy.eval()
        policy.set_eps(args.eps_test)
        test_envs.seed(args.seed)
        test_collector.reset()
        result = test_collector.collect(n_episode=args.test_num,
                                        render=args.render)
        rews, lens = result["rews"], result["lens"]
        print(f"Final reward: {rews.mean()}, length: {lens.mean()}")
Ejemplo n.º 24
0
def test_dqn(args=get_args()):
    if 'ram' in args.task and 'NoFrame' not in args.task:
        use_ram = True
    else:
        use_ram = False

    if use_ram:
        env = make_ram_env(args)
        make_env_fn = make_ram_env
        make_watch_fn = make_ram_env_watch
        save_only_last_obs = False
    else:
        env = make_atari_env(args)
        make_env_fn = make_atari_env
        make_watch_fn = make_atari_env_watch
        save_only_last_obs = True

    args.state_shape = env.observation_space.shape or env.observation_space.n
    args.action_shape = env.env.action_space.shape or env.env.action_space.n
    # should be N_FRAMES x H x W
    print("Observations shape:", args.state_shape)
    print("Actions shape:", args.action_shape)
    # make environments
    train_envs = SubprocVectorEnv(
        [lambda: make_env_fn(args) for _ in range(args.training_num)])
    test_envs = SubprocVectorEnv(
        [lambda: make_watch_fn(args) for _ in range(args.test_num)])
    # seed
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    train_envs.seed(args.seed)
    test_envs.seed(args.seed)
    # define model
    if use_ram:
        net = RamDQN(args.state_shape,
                     args.action_shape,
                     hidden_sizes=args.hidden_sizes,
                     device=args.device).to(args.device)
    elif args.lfiw:
        net = LfiwDQN(*args.state_shape, args.action_shape,
                      args.device).to(args.device)
    else:
        net = DQN(*args.state_shape, args.action_shape,
                  args.device).to(args.device)
    optim = torch.optim.Adam(net.parameters(), lr=args.lr)
    # possible TODO: lfiw_optim over non-cnn parameters
    # prepare hyperparameters
    adaptive_scheme = args.adaptive_scheme
    adaptive_scheme[4] *= args.update_per_step
    adaptive_scheme[5] *= args.update_per_step
    reweigh_hyper = {
        "hard_weight": args.tper_weight,
        "linear": args.linear_hp,
        "adaptive_linear": args.adaptive_scheme,
    }
    # define policy
    if args.lfiw:
        policy = LfiwTPDQNPolicy(net,
                                 optim,
                                 args.gamma,
                                 args.n_step,
                                 target_update_freq=args.target_update_freq,
                                 bk_step=args.bk_step,
                                 reweigh_type=args.reweigh_type,
                                 reweigh_hyper=reweigh_hyper,
                                 opd_temperature=args.lfiw_temp,
                                 opd_loss_coeff=args.lfiw_loss_coeff)
    else:
        policy = TPDQNPolicy(net,
                             optim,
                             args.gamma,
                             args.n_step,
                             target_update_freq=args.target_update_freq,
                             bk_step=args.bk_step,
                             reweigh_type=args.reweigh_type,
                             reweigh_hyper=reweigh_hyper)
    # load a previous policy
    if args.resume_path:
        policy.load_state_dict(
            torch.load(args.resume_path, map_location=args.device))
        print("Loaded agent from: ", args.resume_path)
    # replay buffer: `save_last_obs` and `stack_num` can be removed together
    # when you have enough RAM
    if args.lfiw:
        buffer = TPDoubleVectorReplayBuffer(
            args.buffer_size,
            buffer_num=len(train_envs),
            bk_step=args.bk_step,
            ignore_obs_next=True,
            save_only_last_obs=save_only_last_obs,
            stack_num=args.frames_stack,
            fast_buffer_size=args.fast_buffer_size)
    else:
        buffer = TPVectorReplayBuffer(args.buffer_size,
                                      buffer_num=len(train_envs),
                                      bk_step=args.bk_step,
                                      ignore_obs_next=True,
                                      save_only_last_obs=save_only_last_obs,
                                      stack_num=args.frames_stack)
    # collector
    train_collector = Collector(policy,
                                train_envs,
                                buffer,
                                preprocess_fn=StepPreprocess(
                                    len(train_envs), args.bk_step).get_step,
                                exploration_noise=True)
    # print(len(test_envs))
    test_collector = Collector(
        policy,
        test_envs,
        exploration_noise=True,
    )
    # log
    cur_time = time.strftime('%y-%m-%d-%H-%M-%S', time.localtime())
    log_path = os.path.join(args.logdir, args.task, 'tpdqn',
                            "%s-seed%d" % (args.exp, args.seed), cur_time)
    writer = SummaryWriter(log_path)
    writer.add_text("args", str(args))
    logger = BasicLogger(writer)

    def save_fn(policy):
        torch.save(policy.state_dict(), os.path.join(log_path, 'policy.pth'))

    def stop_fn(mean_rewards):
        # if env.env.spec.reward_threshold:
        #     return mean_rewards >= env.spec.reward_threshold
        # elif 'Pong' in args.task:
        #     return mean_rewards >= 20
        # else:
        #     return False
        return False

    def train_fn(epoch, env_step):
        # nature DQN setting, linear decay in the first 1M steps
        if env_step <= 1e6:
            eps = args.eps_train - env_step / 1e6 * \
                (args.eps_train - args.eps_train_final)
        else:
            eps = args.eps_train_final
        policy.set_eps(eps)
        logger.write('train/eps', env_step, eps)

    def test_fn(epoch, env_step):
        policy.set_eps(args.eps_test)

    # watch agent's performance
    def watch():
        print("Setup test envs ...")
        policy.eval()
        policy.set_eps(args.eps_test)
        test_envs.seed(args.seed)
        if args.save_buffer_name:
            print(f"Generate buffer with size {args.buffer_size}")
            buffer = TPVectorReplayBuffer(args.buffer_size,
                                          buffer_num=len(test_envs),
                                          ignore_obs_next=True,
                                          save_only_last_obs=True,
                                          stack_num=args.frames_stack)
            collector = Collector(policy, test_envs, buffer)
            result = collector.collect(n_step=args.buffer_size)
            print(f"Save buffer into {args.save_buffer_name}")
            # Unfortunately, pickle will cause oom with 1M buffer size
            buffer.save_hdf5(args.save_buffer_name)
        else:
            print("Testing agent ...")
            test_collector.reset()
            result = test_collector.collect(n_episode=args.test_num,
                                            render=args.render)
        pprint.pprint(result)

    if args.watch:
        watch()
        exit(0)

    # test train_collector and start filling replay buffer
    train_collector.collect(n_step=args.batch_size * args.training_num)
    # trainer
    result = offpolicy_trainer(policy,
                               train_collector,
                               test_collector,
                               args.epoch,
                               args.step_per_epoch,
                               args.step_per_collect,
                               args.test_num,
                               args.batch_size,
                               train_fn=train_fn,
                               test_fn=test_fn,
                               stop_fn=stop_fn,
                               save_fn=save_fn,
                               logger=logger,
                               update_per_step=args.update_per_step,
                               test_in_train=False)

    pprint.pprint(result)
    watch()
Ejemplo n.º 25
0
def test_td3(args=get_args()):
    # initialize environment
    env = gym.make(args.task)
    args.state_shape = env.observation_space.shape or env.observation_space.n
    args.action_shape = env.action_space.shape or env.action_space.n
    args.max_action = env.action_space.high[0]
    train_envs = VectorEnv(
        [lambda: gym.make(args.task) for _ in range(args.training_num)])
    test_envs = SubprocVectorEnv(
        [lambda: gym.make(args.task) for _ in range(args.test_num)])
    # seed
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    train_envs.seed(args.seed)
    test_envs.seed(args.seed)
    # model
    actor = Actor(args.layer_num,
                  args.state_shape,
                  args.action_shape,
                  args.max_action,
                  args.device,
                  hidden_layer_size=args.hidden_size).to(args.device)
    actor_optim = torch.optim.Adam(actor.parameters(), lr=args.actor_lr)
    critic1 = Critic(args.layer_num,
                     args.state_shape,
                     args.action_shape,
                     args.device,
                     hidden_layer_size=args.hidden_size).to(args.device)
    critic1_optim = torch.optim.Adam(critic1.parameters(), lr=args.critic_lr)
    critic2 = Critic(args.layer_num,
                     args.state_shape,
                     args.action_shape,
                     args.device,
                     hidden_layer_size=args.hidden_size).to(args.device)
    critic2_optim = torch.optim.Adam(critic2.parameters(), lr=args.critic_lr)

    policy = TD3Policy(
        actor,
        actor_optim,
        critic1,
        critic1_optim,
        critic2,
        critic2_optim,
        args.tau,
        args.gamma,
        GaussianNoise(sigma=args.exploration_noise),
        args.policy_noise,
        args.update_actor_freq,
        args.noise_clip,
        action_range=[env.action_space.low[0], env.action_space.high[0]],
        reward_normalization=args.rew_norm,
        ignore_done=False)
    # collector
    if args.training_num == 0:
        max_episode_steps = train_envs._max_episode_steps
    else:
        max_episode_steps = train_envs.envs[0]._max_episode_steps
    train_collector = Collector(
        policy, train_envs,
        ReplayBuffer(args.buffer_size, max_ep_len=max_episode_steps))
    test_collector = Collector(policy, test_envs, mode='test')
    # log
    log_path = os.path.join(args.logdir, args.task, 'td3', str(args.seed))
    writer = SummaryWriter(log_path)

    def save_fn(policy):
        torch.save(policy.state_dict(), os.path.join(log_path, 'policy.pth'))

    env.spec.reward_threshold = 100000

    def stop_fn(x):
        return x >= env.spec.reward_threshold

    # trainer
    result = offpolicy_exact_trainer(policy,
                                     train_collector,
                                     test_collector,
                                     args.epoch,
                                     args.step_per_epoch,
                                     args.collect_per_step,
                                     args.test_num,
                                     args.batch_size,
                                     stop_fn=stop_fn,
                                     save_fn=save_fn,
                                     writer=writer)
    assert stop_fn(result['best_reward'])
    train_collector.close()
    test_collector.close()
    if __name__ == '__main__':
        pprint.pprint(result)
        # Let's watch its performance!
        env = gym.make(args.task)
        collector = Collector(policy, env)
        result = collector.collect(n_episode=1, render=args.render)
        print(f'Final reward: {result["rew"]}, length: {result["len"]}')
        collector.close()
Ejemplo n.º 26
0
def test_sac_bipedal(args=get_args()):
    torch.set_num_threads(1)  # we just need only one thread for NN

    env = EnvWrapper(args.task)

    def IsStop(reward):
        return reward >= env.spec.reward_threshold

    args.state_shape = env.observation_space.shape or env.observation_space.n
    args.action_shape = env.action_space.shape or env.action_space.n
    args.max_action = env.action_space.high[0]

    train_envs = SubprocVectorEnv(
        [lambda: EnvWrapper(args.task) for _ in range(args.training_num)])
    # test_envs = gym.make(args.task)
    test_envs = SubprocVectorEnv([
        lambda: EnvWrapper(args.task, reward_scale=1)
        for _ in range(args.test_num)
    ])

    # seed
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    train_envs.seed(args.seed)
    test_envs.seed(args.seed)

    # model
    net_a = Net(args.layer_num, args.state_shape, device=args.device)
    actor = ActorProb(net_a, args.action_shape, args.max_action,
                      args.device).to(args.device)
    actor_optim = torch.optim.Adam(actor.parameters(), lr=args.actor_lr)

    net_c1 = Net(args.layer_num,
                 args.state_shape,
                 args.action_shape,
                 concat=True,
                 device=args.device)
    critic1 = Critic(net_c1, args.device).to(args.device)
    critic1_optim = torch.optim.Adam(critic1.parameters(), lr=args.critic_lr)

    net_c2 = Net(args.layer_num,
                 args.state_shape,
                 args.action_shape,
                 concat=True,
                 device=args.device)
    critic2 = Critic(net_c2, args.device).to(args.device)
    critic2_optim = torch.optim.Adam(critic2.parameters(), lr=args.critic_lr)

    policy = SACPolicy(actor,
                       actor_optim,
                       critic1,
                       critic1_optim,
                       critic2,
                       critic2_optim,
                       args.tau,
                       args.gamma,
                       args.alpha,
                       [env.action_space.low[0], env.action_space.high[0]],
                       reward_normalization=args.rew_norm,
                       ignore_done=args.ignore_done,
                       estimation_step=args.n_step)

    # collector
    train_collector = Collector(policy, train_envs,
                                ReplayBuffer(args.buffer_size))
    test_collector = Collector(policy, test_envs)
    # train_collector.collect(n_step=args.buffer_size)
    # log
    log_path = os.path.join(args.logdir, args.task, 'sac')
    writer = SummaryWriter(log_path)

    def save_fn(policy):
        torch.save(policy.state_dict(), os.path.join(log_path, 'policy.pth'))

    # trainer
    result = offpolicy_trainer(policy,
                               train_collector,
                               test_collector,
                               args.epoch,
                               args.step_per_epoch,
                               args.collect_per_step,
                               args.test_num,
                               args.batch_size,
                               stop_fn=IsStop,
                               save_fn=save_fn,
                               writer=writer)

    if __name__ == '__main__':
        pprint.pprint(result)
        # Let's watch its performance!
        policy.eval()
        test_envs.seed(args.seed)
        test_collector.reset()
        result = test_collector.collect(n_episode=[1] * args.test_num,
                                        render=args.render)
        print(f'Final reward: {result["rew"]}, length: {result["len"]}')
Ejemplo n.º 27
0
def test_dqn(args=get_args()):
    env = make_atari_env(args)
    args.state_shape = env.observation_space.shape or env.observation_space.n
    args.action_shape = env.env.action_space.shape or env.env.action_space.n
    # should be N_FRAMES x H x W
    print("Observations shape:", args.state_shape)
    print("Actions shape:", args.action_shape)
    # make environments
    train_envs = SubprocVectorEnv(
        [lambda: make_atari_env(args) for _ in range(args.training_num)])
    test_envs = SubprocVectorEnv(
        [lambda: make_atari_env_watch(args) for _ in range(args.test_num)])
    # seed
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    train_envs.seed(args.seed)
    test_envs.seed(args.seed)
    # define model
    net = DQN(*args.state_shape, args.action_shape,
              args.device).to(args.device)
    optim = torch.optim.Adam(net.parameters(), lr=args.lr)
    # define policy
    policy = DQNPolicy(net,
                       optim,
                       args.gamma,
                       args.n_step,
                       target_update_freq=args.target_update_freq)
    # load a previous policy
    if args.resume_path:
        policy.load_state_dict(
            torch.load(args.resume_path, map_location=args.device))
        print("Loaded agent from: ", args.resume_path)
    # replay buffer: `save_last_obs` and `stack_num` can be removed together
    # when you have enough RAM
    buffer = ReplayBuffer(args.buffer_size,
                          ignore_obs_next=True,
                          save_only_last_obs=True,
                          stack_num=args.frames_stack)
    # collector
    train_collector = Collector(policy, train_envs, buffer)
    test_collector = Collector(policy, test_envs)
    # log
    log_path = os.path.join(args.logdir, args.task, 'dqn')
    writer = SummaryWriter(log_path)

    def save_fn(policy):
        torch.save(policy.state_dict(), os.path.join(log_path, 'policy.pth'))

    def stop_fn(mean_rewards):
        if env.env.spec.reward_threshold:
            return mean_rewards >= env.spec.reward_threshold
        elif 'Pong' in args.task:
            return mean_rewards >= 20
        else:
            return False

    def train_fn(epoch, env_step):
        # nature DQN setting, linear decay in the first 1M steps
        if env_step <= 1e6:
            eps = args.eps_train - env_step / 1e6 * \
                (args.eps_train - args.eps_train_final)
        else:
            eps = args.eps_train_final
        policy.set_eps(eps)
        writer.add_scalar('train/eps', eps, global_step=env_step)

    def test_fn(epoch, env_step):
        policy.set_eps(args.eps_test)

    # watch agent's performance
    def watch():
        print("Setup test envs ...")
        policy.eval()
        policy.set_eps(args.eps_test)
        test_envs.seed(args.seed)
        if args.save_buffer_name:
            print(f"Generate buffer with size {args.buffer_size}")
            buffer = ReplayBuffer(args.buffer_size,
                                  ignore_obs_next=True,
                                  save_only_last_obs=True,
                                  stack_num=args.frames_stack)
            collector = Collector(policy, test_envs, buffer)
            result = collector.collect(n_step=args.buffer_size)
            print(f"Save buffer into {args.save_buffer_name}")
            # Unfortunately, pickle will cause oom with 1M buffer size
            buffer.save_hdf5(args.save_buffer_name)
        else:
            print("Testing agent ...")
            test_collector.reset()
            result = test_collector.collect(n_episode=[1] * args.test_num,
                                            render=args.render)
        pprint.pprint(result)

    if args.watch:
        watch()
        exit(0)

    # test train_collector and start filling replay buffer
    train_collector.collect(n_step=args.batch_size * 4)
    # trainer
    result = offpolicy_trainer(policy,
                               train_collector,
                               test_collector,
                               args.epoch,
                               args.step_per_epoch,
                               args.collect_per_step,
                               args.test_num,
                               args.batch_size,
                               train_fn=train_fn,
                               test_fn=test_fn,
                               stop_fn=stop_fn,
                               save_fn=save_fn,
                               writer=writer,
                               test_in_train=False)

    pprint.pprint(result)
    watch()
Ejemplo n.º 28
0
def test_ddpg(args=get_args()):
    env = gym.make(args.task)
    args.state_shape = env.observation_space.shape or env.observation_space.n
    args.action_shape = env.action_space.shape or env.action_space.n
    args.max_action = env.action_space.high[0]
    args.exploration_noise = args.exploration_noise * args.max_action
    print("Observations shape:", args.state_shape)
    print("Actions shape:", args.action_shape)
    print("Action range:", np.min(env.action_space.low),
          np.max(env.action_space.high))
    # train_envs = gym.make(args.task)
    if args.training_num > 1:
        train_envs = SubprocVectorEnv(
            [lambda: gym.make(args.task) for _ in range(args.training_num)])
    else:
        train_envs = gym.make(args.task)
    # test_envs = gym.make(args.task)
    test_envs = SubprocVectorEnv(
        [lambda: gym.make(args.task) for _ in range(args.test_num)])
    # seed
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    train_envs.seed(args.seed)
    test_envs.seed(args.seed)
    # model
    net_a = Net(args.state_shape,
                hidden_sizes=args.hidden_sizes,
                device=args.device)
    actor = Actor(net_a,
                  args.action_shape,
                  max_action=args.max_action,
                  device=args.device).to(args.device)
    actor_optim = torch.optim.Adam(actor.parameters(), lr=args.actor_lr)
    net_c = Net(args.state_shape,
                args.action_shape,
                hidden_sizes=args.hidden_sizes,
                concat=True,
                device=args.device)
    critic = Critic(net_c, device=args.device).to(args.device)
    critic_optim = torch.optim.Adam(critic.parameters(), lr=args.critic_lr)
    policy = DDPGPolicy(
        actor,
        actor_optim,
        critic,
        critic_optim,
        tau=args.tau,
        gamma=args.gamma,
        exploration_noise=GaussianNoise(sigma=args.exploration_noise),
        estimation_step=args.n_step,
        action_space=env.action_space)
    # load a previous policy
    if args.resume_path:
        policy.load_state_dict(
            torch.load(args.resume_path, map_location=args.device))
        print("Loaded agent from: ", args.resume_path)

    # collector
    if args.training_num > 1:
        buffer = VectorReplayBuffer(args.buffer_size, len(train_envs))
    else:
        buffer = ReplayBuffer(args.buffer_size)
    train_collector = Collector(policy,
                                train_envs,
                                buffer,
                                exploration_noise=True)
    test_collector = Collector(policy, test_envs)
    train_collector.collect(n_step=args.start_timesteps, random=True)
    # log
    log_path = os.path.join(
        args.logdir, args.task, 'ddpg', 'seed_' + str(args.seed) + '_' +
        datetime.datetime.now().strftime('%m%d_%H%M%S') + '-' +
        args.task.replace('-', '_') + '_ddpg')
    writer = SummaryWriter(log_path)
    writer.add_text("args", str(args))
    logger = BasicLogger(writer)

    def save_fn(policy):
        torch.save(policy.state_dict(), os.path.join(log_path, 'policy.pth'))

    # trainer
    result = offpolicy_trainer(policy,
                               train_collector,
                               test_collector,
                               args.epoch,
                               args.step_per_epoch,
                               args.step_per_collect,
                               args.test_num,
                               args.batch_size,
                               save_fn=save_fn,
                               logger=logger,
                               update_per_step=args.update_per_step,
                               test_in_train=False)

    # Let's watch its performance!
    policy.eval()
    test_envs.seed(args.seed)
    test_collector.reset()
    result = test_collector.collect(n_episode=args.test_num,
                                    render=args.render)
    print(
        f'Final reward: {result["rews"].mean()}, length: {result["lens"].mean()}'
    )
Ejemplo n.º 29
0
def test_reinforce(args=get_args()):
    env = gym.make(args.task)
    args.state_shape = env.observation_space.shape or env.observation_space.n
    args.action_shape = env.action_space.shape or env.action_space.n
    args.max_action = env.action_space.high[0]
    print("Observations shape:", args.state_shape)
    print("Actions shape:", args.action_shape)
    print("Action range:", np.min(env.action_space.low),
          np.max(env.action_space.high))
    # train_envs = gym.make(args.task)
    train_envs = SubprocVectorEnv(
        [lambda: gym.make(args.task) for _ in range(args.training_num)],
        norm_obs=True)
    # test_envs = gym.make(args.task)
    test_envs = SubprocVectorEnv(
        [lambda: gym.make(args.task) for _ in range(args.test_num)],
        norm_obs=True,
        obs_rms=train_envs.obs_rms,
        update_obs_rms=False)

    # seed
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    train_envs.seed(args.seed)
    test_envs.seed(args.seed)
    # model
    net_a = Net(args.state_shape,
                hidden_sizes=args.hidden_sizes,
                activation=nn.Tanh,
                device=args.device)
    actor = ActorProb(net_a,
                      args.action_shape,
                      max_action=args.max_action,
                      unbounded=True,
                      device=args.device).to(args.device)
    torch.nn.init.constant_(actor.sigma_param, -0.5)
    for m in actor.modules():
        if isinstance(m, torch.nn.Linear):
            # orthogonal initialization
            torch.nn.init.orthogonal_(m.weight, gain=np.sqrt(2))
            torch.nn.init.zeros_(m.bias)
    # do last policy layer scaling, this will make initial actions have (close to)
    # 0 mean and std, and will help boost performances,
    # see https://arxiv.org/abs/2006.05990, Fig.24 for details
    for m in actor.mu.modules():
        if isinstance(m, torch.nn.Linear):
            torch.nn.init.zeros_(m.bias)
            m.weight.data.copy_(0.01 * m.weight.data)

    optim = torch.optim.Adam(actor.parameters(), lr=args.lr)
    lr_scheduler = None
    if args.lr_decay:
        # decay learning rate to 0 linearly
        max_update_num = np.ceil(
            args.step_per_epoch / args.step_per_collect) * args.epoch

        lr_scheduler = LambdaLR(
            optim, lr_lambda=lambda epoch: 1 - epoch / max_update_num)

    def dist(*logits):
        return Independent(Normal(*logits), 1)

    policy = PGPolicy(actor,
                      optim,
                      dist,
                      discount_factor=args.gamma,
                      reward_normalization=args.rew_norm,
                      action_scaling=True,
                      action_bound_method=args.action_bound_method,
                      lr_scheduler=lr_scheduler,
                      action_space=env.action_space)

    # load a previous policy
    if args.resume_path:
        policy.load_state_dict(
            torch.load(args.resume_path, map_location=args.device))
        print("Loaded agent from: ", args.resume_path)

    # collector
    if args.training_num > 1:
        buffer = VectorReplayBuffer(args.buffer_size, len(train_envs))
    else:
        buffer = ReplayBuffer(args.buffer_size)
    train_collector = Collector(policy,
                                train_envs,
                                buffer,
                                exploration_noise=True)
    test_collector = Collector(policy, test_envs)
    # log
    t0 = datetime.datetime.now().strftime("%m%d_%H%M%S")
    log_file = f'seed_{args.seed}_{t0}-{args.task.replace("-", "_")}_reinforce'
    log_path = os.path.join(args.logdir, args.task, 'reinforce', log_file)
    writer = SummaryWriter(log_path)
    writer.add_text("args", str(args))
    logger = BasicLogger(writer, update_interval=10, train_interval=100)

    def save_fn(policy):
        torch.save(policy.state_dict(), os.path.join(log_path, 'policy.pth'))

    if not args.watch:
        # trainer
        result = onpolicy_trainer(policy,
                                  train_collector,
                                  test_collector,
                                  args.epoch,
                                  args.step_per_epoch,
                                  args.repeat_per_collect,
                                  args.test_num,
                                  args.batch_size,
                                  step_per_collect=args.step_per_collect,
                                  save_fn=save_fn,
                                  logger=logger,
                                  test_in_train=False)
        pprint.pprint(result)

    # Let's watch its performance!
    policy.eval()
    test_envs.seed(args.seed)
    test_collector.reset()
    result = test_collector.collect(n_episode=args.test_num,
                                    render=args.render)
    print(
        f'Final reward: {result["rews"].mean()}, length: {result["lens"].mean()}'
    )
Ejemplo n.º 30
0
def test_dqn(args=get_args()):
    env = create_atari_environment(args.task)
    args.state_shape = env.observation_space.shape or env.observation_space.n
    args.action_shape = env.env.action_space.shape or env.env.action_space.n
    # train_envs = gym.make(args.task)
    train_envs = SubprocVectorEnv([
        lambda: create_atari_environment(args.task)
        for _ in range(args.training_num)])
    # test_envs = gym.make(args.task)
    test_envs = SubprocVectorEnv([
        lambda: create_atari_environment(args.task)
        for _ in range(args.test_num)])
    # seed
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    train_envs.seed(args.seed)
    test_envs.seed(args.seed)
    # model
    net = DQN(
        args.state_shape[0], args.state_shape[1],
        args.action_shape, args.device)
    net = net.to(args.device)
    optim = torch.optim.Adam(net.parameters(), lr=args.lr)
    policy = DQNPolicy(
        net, optim, args.gamma, args.n_step,
        target_update_freq=args.target_update_freq)
    # collector
    train_collector = Collector(
        policy, train_envs, ReplayBuffer(args.buffer_size),
        preprocess_fn=preprocess_fn)
    test_collector = Collector(policy, test_envs, preprocess_fn=preprocess_fn)
    # policy.set_eps(1)
    train_collector.collect(n_step=args.batch_size * 4)
    print(len(train_collector.buffer))
    # log
    writer = SummaryWriter(args.logdir + '/' + 'dqn')

    def stop_fn(x):
        if env.env.spec.reward_threshold:
            return x >= env.spec.reward_threshold
        else:
            return False

    def train_fn(x):
        policy.set_eps(args.eps_train)

    def test_fn(x):
        policy.set_eps(args.eps_test)

    # trainer
    result = offpolicy_trainer(
        policy, train_collector, test_collector, args.epoch,
        args.step_per_epoch, args.collect_per_step, args.test_num,
        args.batch_size, train_fn=train_fn, test_fn=test_fn,
        stop_fn=stop_fn, writer=writer)

    if __name__ == '__main__':
        pprint.pprint(result)
        # Let's watch its performance!
        env = create_atari_environment(args.task)
        collector = Collector(policy, env, preprocess_fn=preprocess_fn)
        result = collector.collect(n_episode=1, render=args.render)
        print(f'Final reward: {result["rew"]}, length: {result["len"]}')