Ejemplo n.º 1
0
    def _test_solver_astype_consistency(self, create_solver):
        # Launch this test only once
        if self.dtype != 'float64':
            return

        prox = ProxL2Sq(0.1)

        use_intercept = True
        y_64, X_64, coeffs0_64, interc0 = self.generate_logistic_data(
            100, 30, 'float64', use_intercept)

        model_64 = ModelLogReg(fit_intercept=use_intercept)
        model_64.fit(X_64, y_64)
        solver_64 = create_solver()
        solver_64.set_model(model_64).set_prox(prox)
        solution_64 = solver_64.solve()

        solver_32 = solver_64.astype('float32')
        solution_32 = solver_32.solve()

        self.assertEqual(solution_64.dtype, 'float64')
        self.assertEqual(solution_32.dtype, 'float32')

        np.testing.assert_array_almost_equal(solution_32,
                                             solution_64,
                                             decimal=3)
Ejemplo n.º 2
0
 def fit(self, X, y):
     import statick.linear_model.bin.statick_linear_model as statick_linear_model
     TMLR.fit(self, X, y)
     func = ModelLogReg.CFUNC_RESOLVER(self, "_dao_")
     object.__setattr__(self, "_dao",
                        getattr(statick_linear_model, func)(X, y))
     return self
Ejemplo n.º 3
0
    def compare_solver_sdca(self):
        """...Compare SDCA solution with SVRG solution
        """
        np.random.seed(12)
        n_samples = Test.n_samples
        n_features = Test.n_features

        for fit_intercept in [True, False]:
            y, X, coeffs0, interc0 = TestSolver.generate_logistic_data(
                n_features, n_samples)

            model = ModelLogReg(fit_intercept=fit_intercept).fit(X, y)
            ratio = 0.5
            l_enet = 1e-2

            # SDCA "elastic-net" formulation is different from elastic-net
            # implementation
            l_l2_sdca = ratio * l_enet
            l_l1_sdca = (1 - ratio) * l_enet
            sdca = SDCA(l_l2sq=l_l2_sdca, max_iter=100, verbose=False, tol=0,
                        seed=Test.sto_seed).set_model(model)
            prox_l1 = ProxL1(l_l1_sdca)
            sdca.set_prox(prox_l1)
            coeffs_sdca = sdca.solve()

            # Compare with SVRG
            svrg = SVRG(max_iter=100, verbose=False, tol=0,
                        seed=Test.sto_seed).set_model(model)
            prox_enet = ProxElasticNet(l_enet, ratio)
            svrg.set_prox(prox_enet)
            coeffs_svrg = svrg.solve(step=0.1)

            np.testing.assert_allclose(coeffs_sdca, coeffs_svrg)
Ejemplo n.º 4
0
    def test_step_type_setting(self):
        """...Test that SVRG step_type parameter behaves correctly
        """
        svrg = SVRG()

        coeffs0 = weights_sparse_gauss(20, nnz=5, dtype=self.dtype)
        interc0 = None

        X, y = SimuLogReg(coeffs0,
                          interc0,
                          n_samples=3000,
                          verbose=False,
                          seed=123,
                          dtype=self.dtype).simulate()

        model = ModelLogReg().fit(X, y)
        svrg.set_model(model)
        self.assertEqual(svrg.step_type, 'fixed')
        self.assertEqual(svrg._solver.get_step_type(), SVRG_StepType_Fixed)

        svrg = SVRG(step_type='bb')
        svrg.set_model(model)
        self.assertEqual(svrg.step_type, 'bb')
        self.assertEqual(svrg._solver.get_step_type(),
                         SVRG_StepType_BarzilaiBorwein)

        svrg.step_type = 'fixed'
        self.assertEqual(svrg.step_type, 'fixed')
        self.assertEqual(svrg._solver.get_step_type(), SVRG_StepType_Fixed)

        svrg.step_type = 'bb'
        self.assertEqual(svrg.step_type, 'bb')
        self.assertEqual(svrg._solver.get_step_type(),
                         SVRG_StepType_BarzilaiBorwein)
Ejemplo n.º 5
0
 def prepare_solver(solver, X, y, fit_intercept=True, model="logistic",
                    prox="l2"):
     if model == "logistic":
         model = ModelLogReg(fit_intercept=fit_intercept).fit(X, y)
     elif model == "poisson":
         model = ModelPoisReg(fit_intercept=fit_intercept).fit(X, y)
     solver.set_model(model)
     if prox == "l2":
         l_l2sq = TestSolver.l_l2sq
         prox = ProxL2Sq(l_l2sq, (0, model.n_coeffs))
     if prox is not None:
         solver.set_prox(prox)
Ejemplo n.º 6
0
    def test_asaga_solver(self):
        """...Check ASAGA solver for a Logistic Regression with Elastic net
        penalization
        """
        seed = 1398
        np.random.seed(seed)
        n_samples = 4000
        n_features = 30
        weights = weights_sparse_gauss(n_features, nnz=3).astype(self.dtype)
        intercept = 0.2
        penalty_strength = 1e-3
        sparsity = 1e-4
        features = sparse.rand(n_samples, n_features, density=sparsity,
                               format='csr', random_state=8).astype(self.dtype)

        simulator = SimuLogReg(weights, n_samples=n_samples, features=features,
                               verbose=False, intercept=intercept,
                               dtype=self.dtype)
        features, labels = simulator.simulate()

        model = ModelLogReg(fit_intercept=True)
        model.fit(features, labels)
        prox = ProxElasticNet(penalty_strength, ratio=0.1, range=(0,
                                                                  n_features))
        solver_step = 1. / model.get_lip_max()
        saga = SAGA(step=solver_step, max_iter=100, tol=1e-10, verbose=False,
                    n_threads=1, record_every=10, seed=seed)
        saga.set_model(model).set_prox(prox)
        saga.solve()

        asaga = SAGA(step=solver_step, max_iter=100, tol=1e-10, verbose=False,
                     n_threads=2, record_every=10, seed=seed)
        asaga.set_model(model).set_prox(prox)
        asaga.solve()

        np.testing.assert_array_almost_equal(saga.solution, asaga.solution,
                                             decimal=4)
        self.assertGreater(np.linalg.norm(saga.solution[:-1]), 0)
Ejemplo n.º 7
0
    def test_variance_reduction_setting(self):
        """...SolverTest SAGA variance_reduction parameter is correctly set"""
        svrg = SAGA()

        coeffs0 = weights_sparse_gauss(20, nnz=5, dtype=self.dtype)
        interc0 = None

        X, y = SimuLogReg(coeffs0,
                          interc0,
                          n_samples=3000,
                          verbose=False,
                          seed=123,
                          dtype=self.dtype).simulate()

        model = ModelLogReg().fit(X, y)
        svrg.set_model(model)
        svrg.astype(self.dtype)
        self.assertEqual(svrg.variance_reduction, 'last')
        self.assertEqual(svrg._solver.get_variance_reduction(),
                         SAGA_VarianceReductionMethod_Last)

        svrg = SAGA(variance_reduction='rand')
        svrg.set_model(model)
        svrg.astype(self.dtype)
        self.assertEqual(svrg.variance_reduction, 'rand')
        self.assertEqual(svrg._solver.get_variance_reduction(),
                         SAGA_VarianceReductionMethod_Random)

        svrg.variance_reduction = 'avg'
        self.assertEqual(svrg.variance_reduction, 'avg')
        self.assertEqual(svrg._solver.get_variance_reduction(),
                         SAGA_VarianceReductionMethod_Average)

        svrg.variance_reduction = 'rand'
        self.assertEqual(svrg.variance_reduction, 'rand')
        self.assertEqual(svrg._solver.get_variance_reduction(),
                         SAGA_VarianceReductionMethod_Random)

        svrg.variance_reduction = 'last'
        self.assertEqual(svrg.variance_reduction, 'last')
        self.assertEqual(svrg._solver.get_variance_reduction(),
                         SAGA_VarianceReductionMethod_Last)

        with self.assertRaises(ValueError):
            svrg.variance_reduction = 'wrong_name'
Ejemplo n.º 8
0
 def test_solver_bfgs(self):
     """...Check BFGS solver for Logistic Regression with Ridge
     penalization
     """
     # It is the reference solver used in other unittests so we check that
     # it's actually close to the true parameter of the simulated dataset
     np.random.seed(12)
     n_samples = 3000
     n_features = 10
     coeffs0 = weights_sparse_gauss(n_features, nnz=5)
     interc0 = 2.
     X, y = SimuLogReg(coeffs0, interc0, n_samples=n_samples,
                       verbose=False).simulate()
     model = ModelLogReg(fit_intercept=True).fit(X, y)
     prox = ProxL2Sq(strength=1e-6)
     solver = BFGS(max_iter=100, print_every=1, verbose=False,
                   tol=1e-6).set_model(model).set_prox(prox)
     coeffs = solver.solve()
     err = Test.evaluate_model(coeffs, coeffs0, interc0)
     self.assertAlmostEqual(err, 0., delta=5e-1)
Ejemplo n.º 9
0
def create_model(model_type, n_samples, n_features, with_intercept=True):
    weights = np.random.randn(n_features)
    intercept = None
    if with_intercept:
        intercept = np.random.normal()

    if model_type == 'Poisson':
        # we need to rescale features to avoid overflows
        weights /= n_features
        if intercept is not None:
            intercept /= n_features

    if model_type == 'Linear':
        simulator = SimuLinReg(weights,
                               intercept=intercept,
                               n_samples=n_samples,
                               verbose=False)
    elif model_type == 'Logistic':
        simulator = SimuLogReg(weights,
                               intercept=intercept,
                               n_samples=n_samples,
                               verbose=False)
    elif model_type == 'Poisson':
        simulator = SimuPoisReg(weights,
                                intercept=intercept,
                                n_samples=n_samples,
                                verbose=False)

    labels, features = simulator.simulate()

    if model_type == 'Linear':
        model = ModelLinReg(fit_intercept=with_intercept)
    elif model_type == 'Logistic':
        model = ModelLogReg(fit_intercept=with_intercept)
    elif model_type == 'Poisson':
        model = ModelPoisReg(fit_intercept=with_intercept)

    model.fit(labels, features)
    return model
Ejemplo n.º 10
0
    def test_ModelLogReg(self):
        """...Numerical consistency check of loss and gradient for Logistic
        Regression
        """

        np.random.seed(12)
        n_samples, n_features = 5000, 10
        w0 = np.random.randn(n_features)
        c0 = np.random.randn()

        # First check with intercept
        X, y = SimuLogReg(w0, c0, n_samples=n_samples,
                          verbose=False).simulate()
        X_spars = csr_matrix(X)
        model = ModelLogReg(fit_intercept=True).fit(X, y)
        model_spars = ModelLogReg(fit_intercept=True).fit(X_spars, y)
        self.run_test_for_glm(model, model_spars, 1e-5, 1e-4)
        self._test_glm_intercept_vs_hardcoded_intercept(model)

        # Then check without intercept
        X, y = SimuLogReg(w0,
                          None,
                          n_samples=n_samples,
                          verbose=False,
                          seed=2038).simulate()
        X_spars = csr_matrix(X)
        model = ModelLogReg(fit_intercept=False).fit(X, y)

        model_spars = ModelLogReg(fit_intercept=False).fit(X_spars, y)
        self.run_test_for_glm(model, model_spars, 1e-5, 1e-4)
        self._test_glm_intercept_vs_hardcoded_intercept(model)

        # Test for the Lipschitz constants without intercept
        self.assertAlmostEqual(model.get_lip_best(), 0.67184209642814952)
        self.assertAlmostEqual(model.get_lip_mean(), 2.48961431697108)
        self.assertAlmostEqual(model.get_lip_max(), 13.706542412138093)
        self.assertAlmostEqual(model_spars.get_lip_mean(),
                               model.get_lip_mean())
        self.assertAlmostEqual(model_spars.get_lip_max(), model.get_lip_max())

        # Test for the Lipschitz constants with intercept
        model = ModelLogReg(fit_intercept=True).fit(X, y)
        model_spars = ModelLogReg(fit_intercept=True).fit(X_spars, y)
        self.assertAlmostEqual(model.get_lip_best(), 0.671892096428)
        self.assertAlmostEqual(model.get_lip_mean(), 2.739614316971082)
        self.assertAlmostEqual(model.get_lip_max(), 13.956542412138093)
        self.assertAlmostEqual(model_spars.get_lip_mean(),
                               model.get_lip_mean())
        self.assertAlmostEqual(model_spars.get_lip_max(), model.get_lip_max())
Ejemplo n.º 11
0
np.random.seed(seed)

n_samples = 40000
n_features = 20000
sparsity = 1e-4
penalty_strength = 1e-5

weights = weights_sparse_gauss(n_features, nnz=1000)
intercept = 0.2
features = sparse.rand(n_samples, n_features, density=sparsity, format='csr')

simulator = SimuLogReg(weights, n_samples=n_samples, features=features,
                       verbose=False, intercept=intercept)
features, labels = simulator.simulate()

model = ModelLogReg(fit_intercept=True)
model.fit(features, labels)
prox = ProxElasticNet(penalty_strength, ratio=0.5, range=(0, n_features))
svrg_step = 1. / model.get_lip_max()

test_n_threads = [1, 2, 4]

fig, axes = plt.subplots(1, 2, figsize=(8, 4))

for ax, SolverClass in zip(axes, [SVRG, SAGA]):
    solver_list = []
    solver_labels = []

    for n_threads in test_n_threads:
        solver = SolverClass(step=svrg_step, seed=seed, max_iter=50,
                             verbose=False, n_threads=n_threads, tol=0,
Ejemplo n.º 12
0
import matplotlib.pyplot as plt
from cycler import cycler

from tick.simulation import weights_sparse_gauss
from tick.solver import SVRG
from tick.linear_model import SimuLogReg, ModelLogReg
from tick.prox import ProxElasticNet
from tick.plot import plot_history

n_samples, n_features, = 5000, 50
weights0 = weights_sparse_gauss(n_features, nnz=10)
intercept0 = 0.2
X, y = SimuLogReg(weights=weights0, intercept=intercept0,
                  n_samples=n_samples, seed=123, verbose=False).simulate()

model = ModelLogReg(fit_intercept=True).fit(X, y)
prox = ProxElasticNet(strength=1e-3, ratio=0.5, range=(0, n_features))
x0 = np.zeros(model.n_coeffs)

optimal_step = 1 / model.get_lip_max()
tested_steps = [optimal_step, 1e-2 * optimal_step, 10 * optimal_step]

solvers = []
solver_labels = []

for step in tested_steps:
    svrg = SVRG(max_iter=30, tol=1e-10, verbose=False)
    svrg.set_model(model).set_prox(prox)
    svrg.solve(step=step)

    svrg_bb = SVRG(max_iter=30, tol=1e-10, verbose=False, step_type='bb')
Ejemplo n.º 13
0
#!/usr/bin/python3
# expect tick first on PYTHONPATH

from tick.array.build.array import tick_double_sparse2d_from_file, tick_double_array_from_file
from tick.prox import ProxL2Sq; from tick.solver import SAGA; from tick.linear_model import ModelLogReg

X = tick_double_sparse2d_from_file("url.features.cereal")
n_samples = X.shape[0]; n_features = X.shape[1]
y = tick_double_array_from_file   ("url.labels.cereal")

model = ModelLogReg(fit_intercept=False).fit(X, y)
prox = ProxL2Sq((1. / n_samples) + 1e-10, range=(0, n_features))
asaga = SAGA(step=0.00257480411965, max_iter=200, tol=1e-10, verbose=False,
            n_threads=8, log_every_n_epochs=10)
asaga.set_model(model).set_prox(prox)
asaga.solve()
asaga.print_history()
Ejemplo n.º 14
0
    def test_variance_reduction_setting(self):
        """...Test that SVRG variance_reduction parameter behaves correctly
        """
        svrg = SVRG()

        coeffs0 = weights_sparse_gauss(20, nnz=5, dtype=self.dtype)
        interc0 = None

        X, y = SimuLogReg(coeffs0,
                          interc0,
                          n_samples=3000,
                          verbose=False,
                          seed=123,
                          dtype=self.dtype).simulate()

        model = ModelLogReg().fit(X, y)
        svrg.set_model(model)

        self.assertEqual(svrg.variance_reduction, 'last')
        self.assertEqual(svrg._solver.get_variance_reduction(),
                         SVRG_VarianceReductionMethod_Last)

        svrg = SVRG(variance_reduction='rand')
        svrg.set_model(model)
        self.assertEqual(svrg.variance_reduction, 'rand')
        self.assertEqual(svrg._solver.get_variance_reduction(),
                         SVRG_VarianceReductionMethod_Random)

        svrg.variance_reduction = 'avg'
        self.assertEqual(svrg.variance_reduction, 'avg')
        self.assertEqual(svrg._solver.get_variance_reduction(),
                         SVRG_VarianceReductionMethod_Average)

        svrg.variance_reduction = 'rand'
        self.assertEqual(svrg.variance_reduction, 'rand')
        self.assertEqual(svrg._solver.get_variance_reduction(),
                         SVRG_VarianceReductionMethod_Random)

        svrg.variance_reduction = 'last'
        self.assertEqual(svrg.variance_reduction, 'last')
        self.assertEqual(svrg._solver.get_variance_reduction(),
                         SVRG_VarianceReductionMethod_Last)

        msg = '^variance_reduction should be one of "avg, last, rand", ' \
              'got "stuff"$'
        with self.assertRaisesRegex(ValueError, msg):
            svrg = SVRG(variance_reduction='stuff')
            svrg.set_model(model)
        with self.assertRaisesRegex(ValueError, msg):
            svrg.variance_reduction = 'stuff'

        X, y = self.simu_linreg_data(dtype=self.dtype)
        model_dense, model_spars = self.get_dense_and_sparse_linreg_model(
            X, y, dtype=self.dtype)
        try:
            svrg.set_model(model_dense)
            svrg.variance_reduction = 'avg'
            svrg.variance_reduction = 'last'
            svrg.variance_reduction = 'rand'
            svrg.set_model(model_spars)
            svrg.variance_reduction = 'last'
            svrg.variance_reduction = 'rand'
        except Exception:
            self.fail('Setting variance_reduction in these cases should have '
                      'been ok')

        msg = "'avg' variance reduction cannot be used with sparse datasets"
        with catch_warnings(record=True) as w:
            simplefilter('always')
            svrg.set_model(model_spars)
            svrg.variance_reduction = 'avg'
            self.assertEqual(len(w), 1)
            self.assertTrue(issubclass(w[0].category, UserWarning))
            self.assertEqual(str(w[0].message), msg)
from tick.linear_model import ModelLogReg, SimuLogReg
from tick.simulation import weights_sparse_gauss
from tick.solver import GD, AGD, SGD, SVRG, SDCA
from tick.prox import ProxElasticNet, ProxL1
from tick.plot import plot_history

n_samples, n_features, = 5000, 50
weights0 = weights_sparse_gauss(n_features, nnz=10)
intercept0 = 0.2
X, y = SimuLogReg(weights=weights0,
                  intercept=intercept0,
                  n_samples=n_samples,
                  seed=123,
                  verbose=False).simulate()

model = ModelLogReg(fit_intercept=True).fit(X, y)
prox = ProxElasticNet(strength=1e-3, ratio=0.5, range=(0, n_features))

solver_params = {'max_iter': 100, 'tol': 0., 'verbose': False}
x0 = np.zeros(model.n_coeffs)

gd = GD(linesearch=False, **solver_params).set_model(model).set_prox(prox)
gd.solve(x0, step=1 / model.get_lip_best())

agd = AGD(linesearch=False, **solver_params).set_model(model).set_prox(prox)
agd.solve(x0, step=1 / model.get_lip_best())

sgd = SGD(**solver_params).set_model(model).set_prox(prox)
sgd.solve(x0, step=500.)

svrg = SVRG(**solver_params).set_model(model).set_prox(prox)
Ejemplo n.º 16
0
 def __init__(self):
     TMLR.__init__(self)
     self._model = None
     object.__setattr__(self, "_MANGLING", "log_reg")
     object.__setattr__(self, "_dao", None)
Ejemplo n.º 17
0
    def check_solver(self,
                     solver,
                     fit_intercept=True,
                     model='logreg',
                     decimal=1):
        """Check solver instance finds same parameters as scipy BFGS

        Parameters
        ----------
        solver : `Solver`
            Instance of a solver to be tested

        fit_intercept : `bool`, default=True
            Model uses intercept is `True`

        model : 'linreg' | 'logreg' | 'poisreg', default='logreg'
            Name of the model used to test the solver

        decimal : `int`, default=1
            Number of decimals required for the test
        """
        # Set seed for data simulation
        np.random.seed(12)
        n_samples = TestSolver.n_samples
        n_features = TestSolver.n_features

        coeffs0 = weights_sparse_gauss(n_features, nnz=5)
        if fit_intercept:
            interc0 = 2.
        else:
            interc0 = None

        if model == 'linreg':
            X, y = SimuLinReg(coeffs0,
                              interc0,
                              n_samples=n_samples,
                              verbose=False,
                              seed=123).simulate()
            model = ModelLinReg(fit_intercept=fit_intercept).fit(X, y)
        elif model == 'logreg':
            X, y = SimuLogReg(coeffs0,
                              interc0,
                              n_samples=n_samples,
                              verbose=False,
                              seed=123).simulate()
            model = ModelLogReg(fit_intercept=fit_intercept).fit(X, y)
        elif model == 'poisreg':
            X, y = SimuPoisReg(coeffs0,
                               interc0,
                               n_samples=n_samples,
                               verbose=False,
                               seed=123).simulate()
            # Rescale features to avoid overflows in Poisson simulations
            X /= np.linalg.norm(X, axis=1).reshape(n_samples, 1)
            model = ModelPoisReg(fit_intercept=fit_intercept).fit(X, y)
        else:
            raise ValueError("``model`` must be either 'linreg', 'logreg' or"
                             " 'poisreg'")

        solver.set_model(model)

        strength = 1e-2
        prox = ProxL2Sq(strength, (0, model.n_features))

        if type(solver) is not SDCA:
            solver.set_prox(prox)
        else:
            solver.set_prox(ProxZero())
            solver.l_l2sq = strength

        coeffs_solver = solver.solve()
        # Compare with BFGS
        bfgs = BFGS(max_iter=100,
                    verbose=False).set_model(model).set_prox(prox)
        coeffs_bfgs = bfgs.solve()
        np.testing.assert_almost_equal(coeffs_solver,
                                       coeffs_bfgs,
                                       decimal=decimal)

        # We ensure that reached coeffs are not equal to zero
        self.assertGreater(norm(coeffs_solver), 0)

        self.assertAlmostEqual(solver.objective(coeffs_bfgs),
                               solver.objective(coeffs_solver),
                               delta=1e-2)
Ejemplo n.º 18
0
import numpy as np
import matplotlib.pyplot as plt

from tick.linear_model import ModelLogReg, SimuLogReg
from tick.simulation import weights_sparse_gauss

n_samples, n_features = 2000, 50
weights0 = weights_sparse_gauss(n_weights=n_features, nnz=10)
intercept0 = 1.
X, y = SimuLogReg(weights0,
                  intercept=intercept0,
                  seed=123,
                  n_samples=n_samples,
                  verbose=False).simulate()

model = ModelLogReg(fit_intercept=True).fit(X, y)

coeffs0 = np.concatenate([weights0, [intercept0]])

_, ax = plt.subplots(1, 2, sharey=True, figsize=(9, 3))
ax[0].stem(model.grad(coeffs0))
ax[0].set_title(r"$\nabla f(\mathrm{coeffs0})$", fontsize=16)
ax[1].stem(model.grad(np.ones(model.n_coeffs)))
ax[1].set_title(r"$\nabla f(\mathrm{coeffs1})$", fontsize=16)
plt.show()