def test_pt_tempo():
    start_time = -0.3
    end_time = 0.84

    system = tempo.System(0.5 * tempo.operators.sigma("x"))
    correlation_function = lambda t: (np.cos(6.0*t)+1j*np.sin(6.0*t)) \
                                        * np.exp(-12.0*t)
    correlations = tempo.CustomCorrelations(correlation_function,
                                            max_correlation_time=0.5)
    bath = tempo.Bath(0.5 * tempo.operators.sigma("z"), correlations)
    initial_state = tempo.operators.spin_dm("z+")

    tempo_param_A = tempo.PtTempoParameters(0.1, 5, 1.0e-5, name="rough-A")
    pt_tempo_sys_A = tempo.PtTempo(bath=bath,
                                   parameters=tempo_param_A,
                                   start_time=start_time,
                                   end_time=end_time)
    assert pt_tempo_sys_A.dimension == 2
    pt_tempo_sys_A.compute()
    pt_A = pt_tempo_sys_A.get_process_tensor()
    assert len(pt_A.times) == 12

    tempo_param_B = tempo.PtTempoParameters(0.1, None, 1.0e-5, name="rough-B")
    pt_tempo_sys_B = tempo.PtTempo(bath=bath,
                                   parameters=tempo_param_B,
                                   start_time=start_time,
                                   end_time=end_time)
    pt_B = pt_tempo_sys_B.get_process_tensor()
def test_tempo_bad_input():
    start_time = -0.3
    end_time = 0.84

    system = tempo.System(0.5 * tempo.operators.sigma("x"))
    correlation_function = lambda t: (np.cos(6.0*t)+1j*np.sin(6.0*t)) \
                                        * np.exp(-12.0*t)
    correlations = tempo.CustomCorrelations(correlation_function,
                                            max_correlation_time=0.5)
    bath = tempo.Bath(0.5 * tempo.operators.sigma("z"), correlations)
    initial_state = tempo.operators.spin_dm("z+")

    tempo_param_A = tempo.TempoParameters(0.1, 5, 1.0e-5, name="rough-A")
    with pytest.raises(AssertionError):
        tempo_sys_A = tempo.Tempo(system=system,
                                  bath=bath,
                                  parameters=tempo_param_A,
                                  initial_state="bla",
                                  start_time=start_time)
    with pytest.raises(AssertionError):
        tempo_sys_A = tempo.Tempo(system=system,
                                  bath=bath,
                                  parameters=tempo_param_A,
                                  initial_state=initial_state,
                                  start_time="bla")

    tempo_sys_A = tempo.Tempo(system=system,
                              bath=bath,
                              parameters=tempo_param_A,
                              initial_state=initial_state,
                              start_time=start_time)
    with pytest.raises(AssertionError):
        tempo_sys_A.compute(end_time="bla", progress_type="bar")
def test_process_tensor_backends(backend, backend_config):
    initial_state = tempo.operators.spin_dm("y+")
    initial_tensor = initial_state.flatten().reshape((1, -1))
    system = tempo.System(tempo.operators.sigma("z"))

    pt = tempo.ProcessTensor(times=None,
                             tensors=[],
                             initial_tensor=None,
                             backend=backend,
                             backend_config=backend_config)
    pt.export(TEMP_FILE, overwrite=True)
    pt.get_bond_dimensions()

    pt = tempo.ProcessTensor(times=None,
                             tensors=[],
                             initial_tensor=initial_tensor,
                             backend=backend,
                             backend_config=backend_config)
    pt.export(TEMP_FILE, overwrite=True)
    pt.get_bond_dimensions()
    pt.compute_final_state_from_system(system=system)
    pt.compute_dynamics_from_system(system=system)

    tensor = tempo.operators.identity(4).reshape((1, 1, 4, 4))
    pt = tempo.ProcessTensor(times=None,
                             tensors=[tensor],
                             initial_tensor=initial_tensor,
                             backend=backend,
                             backend_config=backend_config)
    pt.export(TEMP_FILE, overwrite=True)
    pt.get_bond_dimensions()
    pt.compute_final_state_from_system(system=system)
    pt.compute_dynamics_from_system(system=system)
def test_tempo():
    start_time = -0.3
    end_time1 = 0.4
    end_time2 = 0.6
    end_time3 = 0.84

    system = tempo.System(0.5 * tempo.operators.sigma("x"))
    correlation_function = lambda t: (np.cos(6.0*t)+1j*np.sin(6.0*t)) \
                                        * np.exp(-12.0*t)
    correlations = tempo.CustomCorrelations(correlation_function,
                                            max_correlation_time=0.5)
    bath = tempo.Bath(0.5 * tempo.operators.sigma("z"), correlations)
    initial_state = tempo.operators.spin_dm("z+")

    tempo_param_A = tempo.TempoParameters(0.1, 5, 1.0e-5, name="rough-A")
    tempo_sys_A = tempo.Tempo(system=system,
                              bath=bath,
                              parameters=tempo_param_A,
                              initial_state=initial_state,
                              start_time=start_time)
    assert tempo_sys_A.dimension == 2
    tempo_sys_A.compute(end_time=end_time1, progress_type="bar")
    tempo_sys_A.compute(end_time=end_time2, progress_type="silent")
    tempo_sys_A.compute(end_time=end_time3, progress_type="simple")
    dyn_A = tempo_sys_A.get_dynamics()
    assert len(dyn_A.times) == 13
def test_tensor_network_tempo_backend_non_diag(backend):
    Omega = 1.0
    omega_cutoff = 5.0
    alpha = 0.3

    sx = tempo.operators.sigma("x")
    sy = tempo.operators.sigma("y")
    sz = tempo.operators.sigma("z")

    bases = [{"sys_op":sx, "coupling_op":sz, \
                "init_state":tempo.operators.spin_dm("y+")},
             {"sys_op":sy, "coupling_op":sx, \
                "init_state":tempo.operators.spin_dm("z+")},
             {"sys_op":sz, "coupling_op":sy, \
                "init_state":tempo.operators.spin_dm("x+")}]

    results = []
    for i, base in enumerate(bases):
        system = tempo.System(0.5 * base["sys_op"])
        correlations = tempo.PowerLawSD(alpha=alpha,
                                        zeta=1,
                                        cutoff=omega_cutoff,
                                        cutoff_type='exponential',
                                        max_correlation_time=8.0)
        bath = tempo.Bath(0.5 * base["coupling_op"], correlations)
        tempo_parameters = tempo.TempoParameters(dt=0.1,
                                                 dkmax=30,
                                                 epsrel=10**(-5))

        dynamics = tempo.tempo_compute(system=system,
                                       bath=bath,
                                       initial_state=base["init_state"],
                                       start_time=0.0,
                                       end_time=1.0,
                                       parameters=tempo_parameters,
                                       backend=backend)

        _, s_x = dynamics.expectations(0.5 * tempo.operators.sigma("x"),
                                       real=True)
        _, s_y = dynamics.expectations(0.5 * tempo.operators.sigma("y"),
                                       real=True)
        _, s_z = dynamics.expectations(0.5 * tempo.operators.sigma("z"),
                                       real=True)
        if i == 0:
            results.append(np.array([s_x, s_y, s_z]))
        elif i == 1:
            results.append(np.array([s_y, s_z, s_x]))
        elif i == 2:
            results.append(np.array([s_z, s_x, s_y]))

    assert np.allclose(results[0], results[1], atol=tempo_parameters.epsrel)
    assert np.allclose(results[0], results[2], atol=tempo_parameters.epsrel)
def test_tempo_compute():
    start_time = -0.3
    end_time = 0.84

    system = tempo.System(0.5 * tempo.operators.sigma("x"))
    correlation_function = lambda t: (np.cos(6.0*t)+1j*np.sin(6.0*t)) \
                                        * np.exp(-12.0*t)
    correlations = tempo.CustomCorrelations(correlation_function,
                                            max_correlation_time=0.5)
    bath = tempo.Bath(0.5 * tempo.operators.sigma("z"), correlations)
    initial_state = tempo.operators.spin_dm("z+")

    with pytest.warns(UserWarning):
        dyn_A = tempo.tempo_compute(system=system,
                                    bath=bath,
                                    initial_state=initial_state,
                                    start_time=start_time,
                                    end_time=end_time)
def test_tempo_dynamics_reference():
    system = tempo.System(0.5 * tempo.operators.sigma("x"))
    correlations = tempo.PowerLawSD(alpha=0.1,
                                    zeta=1,
                                    cutoff=1.0,
                                    cutoff_type='exponential',
                                    max_correlation_time=0.5)
    bath = tempo.Bath(0.5 * tempo.operators.sigma("z"), correlations)
    tempo_parameters = tempo.TempoParameters(dt=0.1, dkmax=10, epsrel=10**(-4))
    tempo_A = tempo.Tempo(system=system,
                          bath=bath,
                          parameters=tempo_parameters,
                          initial_state=tempo.operators.spin_dm("up"),
                          start_time=0.0)
    dynamics_1 = tempo_A.compute(end_time=0.2)
    t_1, sz_1 = dynamics_1.expectations(tempo.operators.sigma("z"))
    tempo_A.compute(end_time=0.4)
    dynamics_2 = tempo_A.get_dynamics()
    t_2, sz_2 = dynamics_2.expectations(tempo.operators.sigma("z"))
    assert dynamics_1 == dynamics_2
    assert len(t_2) > len(t_1)
def test_guess_tempo_parameters():
    system = tempo.System(0.5 * tempo.operators.sigma("x"))
    correlation_function = lambda t: (np.cos(t) + 1j * np.sin(6.0 * t)
                                      ) * np.exp(-2.0 * t)
    correlations = tempo.CustomCorrelations(correlation_function,
                                            max_correlation_time=10.0)
    bath = tempo.Bath(0.5 * tempo.operators.sigma("z"), correlations)
    with pytest.warns(UserWarning):
        param = tempo.guess_tempo_parameters(bath=bath,
                                             start_time=0.0,
                                             end_time=15.0)

    with pytest.raises(AssertionError):  # bad start time input
        param = tempo.guess_tempo_parameters(bath=bath,
                                             start_time="bla",
                                             end_time=15.0)
    with pytest.raises(AssertionError):  # bad end time input
        param = tempo.guess_tempo_parameters(bath=bath,
                                             start_time=0.0,
                                             end_time="bla")
    with pytest.raises(ValueError):  # bad start/end time (swapped)
        param = tempo.guess_tempo_parameters(bath=bath,
                                             start_time=10.0,
                                             end_time=0.0)
    with pytest.raises(AssertionError):  # bad tollerance
        param = tempo.guess_tempo_parameters(bath=bath,
                                             start_time=0.0,
                                             end_time=15.0,
                                             tollerance="bla")
    with pytest.raises(AssertionError):  # bad tollerance (negative)
        param = tempo.guess_tempo_parameters(bath=bath,
                                             start_time=0.0,
                                             end_time=15.0,
                                             tollerance=-0.2)
    with pytest.warns(UserWarning):  # reach MAX_DKMAX
        param = tempo.guess_tempo_parameters(bath=bath,
                                             start_time=0.0,
                                             end_time=15.0,
                                             tollerance=1.0e-12)
Ejemplo n.º 9
0
         + y_plus * tempo.operators.spin_dm("y+")
    return dm

rho_E = exact_result(t_end_E)

correlations_E = tempo.PowerLawSD(alpha=alpha_E,
                                  zeta=3.0,
                                  cutoff=cutoff_E,
                                  cutoff_type="exponential",
                                  temperature=temperature_E,
                                  name="superohmic",
                        )
bath_E = tempo.Bath(coupling_operator_E,
                    correlations_E,
                    name="superohmic phonon bath")
system_E = tempo.System(h_sys_E)

# -----------------------------------------------------------------------------

@pytest.mark.parametrize('backend,backend_config',
                        [("tensor-network", {"backend":"numpy"}),])
def test_tensor_network_tempo_backend_E(backend, backend_config):
    tempo_params_E = tempo.TempoParameters(dt=0.4,
                                           dkmax=5,
                                           epsrel=1.0e-6)
    tempo_E = tempo.Tempo(system_E,
                          bath_E,
                          tempo_params_E,
                          initial_state_E,
                          start_time=t_start_E,
                          backend=backend,
Ejemplo n.º 10
0
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Tests for the time_evovling_mpo.process_tensor module.
"""

import pytest

import time_evolving_mpo as tempo


TEMP_FILE = "tests/data/temp.processTensor"

# -- prepare a process tensor -------------------------------------------------

system = tempo.System(tempo.operators.sigma("x"))
initial_state = tempo.operators.spin_dm("z+")
correlations = tempo.PowerLawSD(alpha=0.3,
                                zeta=1.0,
                                cutoff=5.0,
                                cutoff_type="exponential",
                                temperature=0.2,
                                name="ohmic")
bath = tempo.Bath(0.5*tempo.operators.sigma("z"),
                    correlations,
                    name="phonon bath")
tempo_params = tempo.PtTempoParameters(dt=0.1,
                                         dkmax=5,
                                         epsrel=10**(-5))
pt = tempo.pt_tempo_compute(bath,
                            start_time=0.0,
#     * A.1: The Model and its Parameters
#     * A.2: Create System, Spectral Density and Bath Objects
#     * A.3: The TEMPO Computation

# -------------------------------------------------
# ## Example A - The Spin Boson Model
#
# As a first example let's try to reconstruct one of the lines in figure 2a of [Strathearn2018] ([Nat. Comm. 9, 3322 (2018)](https://doi.org/10.1038/s41467-018-05617-3) / [arXiv:1711.09641v3](https://arxiv.org/abs/1711.09641)). In this example we compute the time evolution of a spin which is strongly coupled to an ohmic bath (spin-boson model). Before we go through this step by step below, let's have a brief look at the script that will do the job - just to have an idea where we are going:

# In[3]:

Omega = 1.0
omega_cutoff = 5.0
alpha = 0.3

system = tempo.System(0.5 * Omega * tempo.operators.sigma("x"))
correlations = tempo.PowerLawSD(alpha=alpha,
                                zeta=1,
                                cutoff=omega_cutoff,
                                cutoff_type='exponential',
                                max_correlation_time=8.0)
bath = tempo.Bath(0.5 * tempo.operators.sigma("z"), correlations)
tempo_parameters = tempo.TempoParameters(dt=0.1, dkmax=30, epsrel=10**(-4))

dynamics = tempo.tempo_compute(system=system,
                               bath=bath,
                               initial_state=tempo.operators.spin_dm("up"),
                               start_time=0.0,
                               end_time=15.0,
                               parameters=tempo_parameters)
t, s_z = dynamics.expectations(0.5 * tempo.operators.sigma("z"), real=True)
Ejemplo n.º 12
0
rho_C = np.array(
    [[ 0.12576653+0.j        ,-0.11739956-0.14312036j, 0.12211454-0.05963583j],
     [-0.11739956+0.14312036j, 0.61315893+0.j        ,-0.06636825+0.26917271j],
     [ 0.12211454+0.05963583j,-0.06636825-0.26917271j, 0.26107455+0.j        ]])

correlations_C = tempo.PowerLawSD(alpha=alpha_C,
                                  zeta=1.0,
                                  cutoff=cutoff_C,
                                  cutoff_type="exponential",
                                  temperature=temperature_C,
                                  name="ohmic")
bath_C = tempo.Bath(coupling_operator_C,
                    correlations_C,
                    name="phonon bath")
system_C = tempo.System(h_sys_C,
                        gammas=[gamma_C_1, gamma_C_2],
                        lindblad_operators=[lindblad_operators_C_1,
                                            lindblad_operators_C_2])


# -----------------------------------------------------------------------------

@pytest.mark.parametrize('backend',["tensor-network"])
def test_tensor_network_tempo_backend_C(backend):
    tempo_params_C = tempo.TempoParameters(dt=0.05,
                                           dkmax=11,
                                           epsrel=10**(-7))
    tempo_C = tempo.Tempo(system_C,
                          bath_C,
                          tempo_params_C,
                          initial_state_C,
                          start_time=0.0,
Ejemplo n.º 13
0
t_end_A = 1.0

# result obtained with release code (made hermitian):
rho_A = np.array([[0.7809559 + 0.j, -0.09456333 + 0.16671419j],
                  [-0.09456333 - 0.16671419j, 0.2190441 + 0.j]])

correlations_A = tempo.PowerLawSD(alpha=alpha_A,
                                  zeta=1.0,
                                  cutoff=cutoff_A,
                                  cutoff_type="exponential",
                                  temperature=temperature_A,
                                  name="ohmic")
bath_A = tempo.Bath(coupling_operator_A, correlations_A, name="phonon bath")
system_A = tempo.System(h_sys_A,
                        gammas=[gamma_A_1, gamma_A_2],
                        lindblad_operators=[
                            tempo.operators.sigma("-"),
                            tempo.operators.sigma("z")
                        ])

# -----------------------------------------------------------------------------


@pytest.mark.parametrize('backend,backend_config', [("tensor-network", {
    "backend": "numpy"
}), ("tensor-network", None)])
def test_tensor_network_tempo_backend_A(backend, backend_config):
    tempo_params_A = tempo.TempoParameters(dt=0.05,
                                           dkmax=None,
                                           epsrel=10**(-7))
    tempo_A = tempo.Tempo(system_A,
                          bath_A,
os.environ['NUMEXPR_NUM_THREADS'] = '1'

import time_evolving_mpo as tempo
import numpy as np
import matplotlib.pyplot as plt

from scipy import constants

Omega = 0.0  # 1.0
# omega_cutoff = 3.0
# alpha = 0.1
omega_cutoff = 2.0e-3 * constants.electron_volt * 1e-12 / constants.hbar
alpha = constants.hbar * 11.2e-3 * omega_cutoff**2 * 1e12/ \
        (2 * constants.pi * constants.Boltzmann)

system = tempo.System(0.0 * Omega * tempo.operators.sigma("x"))
initial_state = tempo.operators.spin_dm("y+")


def generate_pt(temp):

    start_time = 0.0
    end_time = 10.0

    correlations = tempo.PowerLawSD(alpha=alpha,
                                    zeta=3,
                                    cutoff=omega_cutoff,
                                    cutoff_type='gaussian',
                                    temperature=temp)
    bath = tempo.Bath(0.5 * tempo.operators.sigma("z"), correlations)