Ejemplo n.º 1
0
def test_regular(device):
    """
    Tests the LSTMTimeSeriesPredictor fitting
    """
    cuda_check(device)

    start = time.time()
    tsp = TimeSeriesPredictor(
        BenchmarkLSTM(hidden_dim=16),
        lr=1e-3,
        lambda1=1e-8,
        optimizer__weight_decay=1e-8,
        iterator_train__shuffle=True,
        early_stopping=EarlyStopping(patience=50),
        max_epochs=250,
        train_split=CVSplit(10),
        optimizer=Adam,
        device=device,
    )

    past_pattern_length = 24
    future_pattern_length = 12
    pattern_length = past_pattern_length + future_pattern_length
    fsd = FlightSeriesDataset(pattern_length,
                              past_pattern_length,
                              pattern_length,
                              stride=1)
    tsp.fit(fsd)
    end = time.time()
    elapsed = timedelta(seconds=end - start)
    print(f"Fitting in {device} time delta: {elapsed}")
    mean_r2_score = tsp.score(tsp.dataset)
    print(f"Achieved R2 score: {mean_r2_score}")
    assert mean_r2_score > -20
Ejemplo n.º 2
0
 def __init__(self, name: str, args: TrendArgs):
     self.args = args
     self.name = name
     self.model = TimeSeriesPredictor(n_hidden=args.n_hidden,
                                      window=args.seq_window,
                                      n_layers=args.n_layers,
                                      dropout=args.dropout)
     self.model_path = f"{args.model_path}/{name}.pt"
     if args.load_model:
         self.load_model()
def test_train_loss_monitor_no_train_split():
    """
    Tests the LSTMTimeSeriesPredictor fitting
    """
    tsp = TimeSeriesPredictor(BenchmarkLSTM(hidden_dim=10),
                              early_stopping=EarlyStopping(
                                  monitor='train_loss', patience=15),
                              max_epochs=150,
                              train_split=None,
                              optimizer=torch.optim.Adam)
    tsp.fit(FlightsDataset())
    mean_r2_score = tsp.score(tsp.dataset)
    assert mean_r2_score > -300
def test_train_loss_monitor(user_name, user_password):
    """
    Tests the LSTMTimeSeriesPredictor fitting
    """
    tsp = TimeSeriesPredictor(
        BenchmarkLSTM(hidden_dim=10),
        early_stopping=EarlyStopping(monitor='train_loss', patience=15),
        max_epochs=150,
        # train_split=None, # default = skorch.dataset.CVSplit(5)
        optimizer=torch.optim.Adam)
    tsp.fit(_get_dataset(user_name, user_password))
    mean_r2_score = tsp.score(tsp.dataset)
    assert mean_r2_score > -300
def test_lstm_tsp_fitting_oze(user_name, user_password):
    """
    Tests the LSTMTimeSeriesPredictor
    """
    tsp = TimeSeriesPredictor(
        BenchmarkLSTM(hidden_dim=64),
        max_epochs=5,
        # train_split=None, # default = skorch.dataset.CVSplit(5)
        optimizer=torch.optim.Adam)
    dataset = _get_dataset(user_name, user_password)

    tsp.fit(dataset)
    mean_r2_score = tsp.score(tsp.dataset)
    assert mean_r2_score > -300
def test_transformer_tsp(device):
    '''univariate test'''
    cuda_check(device)

    start = time.time()
    tsp = TimeSeriesPredictor(
        Transformer(),
        max_epochs=50,
        train_split=None,
        device=device,
    )

    tsp.fit(FlightsDataset())
    score = tsp.score(tsp.dataset)
    assert score > -1
    end = time.time()
    elapsed = timedelta(seconds=end - start)
    print(f"Fitting in {device} time delta: {elapsed}")
Ejemplo n.º 7
0
def test_quantum_lstm_tsp_fitting(device):
    """
    Tests the Quantum LSTM TimeSeriesPredictor fitting
    """
    cuda_check(device)

    tsp = TimeSeriesPredictor(
        QuantumLSTM(),
        lr=1E-1,
        max_epochs=50,
        train_split=None,
        optimizer=Adam,
        device=device
    )

    start = time.time()
    tsp.fit(FlightsDataset())
    end = time.time()
    elapsed = timedelta(seconds = end - start)
    print("Fitting in {} time delta: {}".format(device, elapsed))
    mean_r2_score = tsp.score(tsp.dataset)
    assert mean_r2_score > -10
def test_no_train_split():
    """
    Tests the LSTMTimeSeriesPredictor fitting
    """
    with pytest.raises(ValueError) as error:
        TimeSeriesPredictor(BenchmarkLSTM(hidden_dim=16),
                            early_stopping=EarlyStopping(),
                            max_epochs=500,
                            train_split=None,
                            optimizer=torch.optim.Adam)
    # pylint: disable=line-too-long
    assert error.match(
        'Select a valid train_split or disable early_stopping! A valid train_split needs to be selected when valid_loss monitor is selected as early stopping criteria.'
    )
def test_transformer_tsp_multisamples(device):
    '''multivariate test'''
    cuda_check(device)

    start = time.time()
    tsp = TimeSeriesPredictor(
        Transformer(d_model=12),
        lr=1e-5,
        lambda1=1e-8,
        optimizer__weight_decay=1e-8,
        iterator_train__shuffle=True,
        early_stopping=EarlyStopping(patience=100),
        max_epochs=500,
        train_split=CVSplit(10),
        optimizer=Adam,
        device=device,
    )

    past_pattern_length = 24
    future_pattern_length = 12
    pattern_length = past_pattern_length + future_pattern_length
    # pylint: disable-next=line-too-long
    fsd = FlightSeriesDataset(pattern_length,
                              future_pattern_length,
                              pattern_length,
                              stride=1,
                              generate_test_dataset=True)
    tsp.fit(fsd)
    end = time.time()
    elapsed = timedelta(seconds=end - start)
    print(f"Fitting in {device} time delta: {elapsed}")

    mean_r2_score = tsp.score(tsp.dataset)
    assert mean_r2_score > -0.5

    netout = tsp.predict(fsd.test.x)

    idx = np.random.randint(0, len(fsd.test.x))

    y_true = fsd.test.y[idx, :, :]
    y_hat = netout[idx, :, :]
    r2s = r2_score(y_true, y_hat)
    assert r2s > -1
    print(f"Final R2 score: {r2s}")
def test_main(stride, test_main_context):
    context = test_main_context(stride)
    past_pattern_length = context['past_pattern_length']
    future_pattern_length = context['future_pattern_length']
    pattern_length = past_pattern_length + future_pattern_length
    tsp = TimeSeriesPredictor(
        BenchmarkLSTM(
            initial_forget_gate_bias=1,
            hidden_dim=7,
            num_layers=1,
        ),
        lr=context['lr'],
        lambda1=1e-8,
        optimizer__weight_decay=1e-8,
        iterator_train__shuffle=True,
        early_stopping=EarlyStopping(patience=100),
        max_epochs=500,
        train_split=CVSplit(context['n_cv_splits']),
        optimizer=Adam,
    )
    fsd = FlightSeriesDataset(pattern_length,
                              future_pattern_length,
                              context['except_last_n'],
                              stride=stride,
                              generate_test_dataset=True)
    tsp.fit(fsd)

    mean_r2_score = tsp.score(tsp.dataset)
    assert mean_r2_score > context['mean_r2_score']

    netout = tsp.predict(fsd.test.x)

    idx = np.random.randint(0, len(fsd.test.x))

    y_true = fsd.test.y[idx, :, :]
    y_hat = netout[idx, :, :]
    r2s = r2_score(y_true, y_hat)
    print("Final R2 score: {}".format(r2s))
    assert r2s > context['final_r2_score']
Ejemplo n.º 11
0
def test_quantum_lstm_tsp_forecast(device):
    """
    Tests the Quantum LSTM forecast
    """
    cuda_check(device)

    tsp = TimeSeriesPredictor(
        QuantumLSTM(hidden_dim = 2),
        max_epochs=250,
        lr = 1e-4,
        early_stopping=EarlyStopping(patience=100, monitor='train_loss'),
        train_split=None,
        optimizer=Adam,
        device=device
    )

    whole_fd = FlightsDataset()
    # leave last N months for error assertion
    last_n = 24
    start = time.time()
    tsp.fit(FlightsDataset(pattern_length = 120, except_last_n = last_n))
    end = time.time()
    elapsed = timedelta(seconds = end - start)
    print(f"Fitting in {device} time delta: {elapsed}")
    mean_r2_score = tsp.score(tsp.dataset)
    assert mean_r2_score > -5

    netout, _ = tsp.forecast(last_n)

    # Select any training example just for comparison
    idx = np.random.randint(0, len(tsp.dataset))
    _, whole_y = whole_fd[idx]

    y_true = whole_y[-last_n:, :]   # get only known future outputs
    y_pred = netout[idx, -last_n:, :]    # get only last N predicted outputs
    r2s = r2_score(y_true, y_pred)
    assert r2s > -60
Ejemplo n.º 12
0
class Company:
    scaler: MinMaxScaler
    train_data: torch.Tensor
    test_data: torch.Tensor
    train_sequences: List[Tuple[torch.Tensor, torch.Tensor]]
    test_sequences: List[Tuple[torch.Tensor, torch.Tensor]]
    inputs: torch.Tensor
    targets: torch.Tensor
    data: pd.DataFrame
    model: TimeSeriesPredictor

    def __init__(self, name: str, args: TrendArgs):
        self.args = args
        self.name = name
        self.model = TimeSeriesPredictor(n_hidden=args.n_hidden,
                                         window=args.seq_window,
                                         n_layers=args.n_layers,
                                         dropout=args.dropout)
        self.model_path = f"{args.model_path}/{name}.pt"
        if args.load_model:
            self.load_model()

    def load_model(self):
        self.model.load_state_dict(torch.load(self.model_path))

    def save_model(self):
        torch.save(self.model.state_dict(), self.model_path)

    def load_data_from_yahoo(self) -> pd.DataFrame:
        actual_date = dt.date.today()
        past_date = actual_date - dt.timedelta(days=self.args.days)
        actual_date = actual_date.strftime("%Y-%m-%d")
        past_date = past_date.strftime("%Y-%m-%d")
        data = yf.download(self.name, start=past_date, end=actual_date)
        return pd.DataFrame(data=data)

    def load_data(self):
        data_path = f"{self.args.stock_dataset}/{self.name}.csv"
        if self.args.load_from_yahoo:
            data = self.load_data_from_yahoo()
            data.to_csv(data_path)
        else:
            data = pd.read_csv(data_path)
        self.data = data

    def init_train_test_data(self):
        self.scaler = MinMaxScaler(feature_range=(-1, 1))
        df = self.data
        data = np.array(df.Close.tolist())
        n = math.ceil(data.shape[0] * self.args.split_n)
        train_data, test_data = data[:n], data[n:]
        self.train_data = norm_data(train_data, self.scaler)
        self.test_data = norm_data(test_data, self.scaler)
        self.train_sequences = create_inout_sequences(self.train_data,
                                                      self.args.seq_window)
        self.test_sequences = create_inout_sequences(self.test_data,
                                                     self.args.seq_window)
        inputs = []
        targets = []
        for seq, target in self.train_sequences:
            inputs += [seq]
            targets += target
        self.inputs = torch.stack(inputs)
        self.targets = torch.stack(targets)

    def test(self) -> float:
        self.model.eval()
        self.model.cpu()
        total_loss = 0
        state = None
        for inputs, target in self.test_sequences:
            with torch.no_grad():
                out, state, loss = self.model(inputs.unsqueeze(0),
                                              state,
                                              target=target)
            total_loss += loss.item()
        return total_loss / len(self.test_data)

    def predict(self, history: np.ndarray, n=1) -> np.ndarray:
        scaler = MinMaxScaler(feature_range=(-1, 1))
        x = scaler.fit_transform(history.reshape(-1, 1)).reshape(1, -1)
        # noinspection PyArgumentList
        x = torch.FloatTensor(x)
        state = None
        for i in range(n):
            with torch.no_grad():
                y, state = self.model(x, state)
            x = torch.cat((x.view((-1, 1)), y)).view(1, -1)
            x = x[:, 1:]
        return scaler.inverse_transform(x.reshape(-1,
                                                  1).numpy())[-n:].reshape(-1)