Ejemplo n.º 1
0
    def __init__(self,param,grid):

        self.list_param=['forcing','noslip','timestepping','diffusion','Kdiff',
                         'forcing_module','gravity','isisland',
                         'customized','custom_module','additional_tracer']
        param.copy(self,self.list_param)

        # for potential energy
        self.list_param=['xr','yr','nh','Lx','msk','area','mpitools']
        grid.copy(self,self.list_param)

        # for variables
        param.varname_list=['vorticity','psi','u','v','buoyancy']
        param.tracer_list=['vorticity','buoyancy']
        param.whosetspsi=('vorticity')

        if hasattr(self,'additional_tracer'):
            for k in range(len(self.additional_tracer)):
                trac=self.additional_tracer[k]
                param.varname_list.append(trac)
                param.tracer_list.append(trac)
                print('Tracers are :',param.tracer_list)

        param.sizevar     =[grid.nyl,grid.nxl]
        self.var = Var(param)
        self.source = zeros(param.sizevar)

        # for operators
        self.ope = Operators(param,grid)

        # for timescheme
        self.tscheme = Timescheme(param,self.var.state)
        self.tscheme.set(self.dynamics, self.timestepping)

        if self.forcing:

            try:
                f = import_module(self.forcing_module)
            except:
                print('module %s for forcing cannot be found'%self.forcing_module)
                print('make sure file **%s.py** exists'%self.forcing_module)
                exit(0)

            self.forc = f.Forcing(param,grid)

        self.diags={}

        if self.customized:
            try:
                f = import_module(self.custom_module)
                print(f)
                self.extrastep = f.Step(param,grid)
            except:
                print('module %s for forcing cannot be found'%self.custom_module)
                print('make sure file **%s.py** exists'%self.custom_module)
                exit(0)
Ejemplo n.º 2
0
    def __init__(self, param, grid):

        self.list_param = ['forcing', 'noslip', 'timestepping',
                           'forcing_module', 'additional_tracer',
                           'myrank',
                           'gravity', 'diffusion', 'Kdiff', 'f0']
        param.copy(self, self.list_param)

        # for potential energy
        self.list_param = ['xr', 'yr', 'nh',
                           'Lx', 'msk', 'area', 'mpitools', 'dx']
        grid.copy(self, self.list_param)

        # for variables
        param.varname_list = ['vorticity', 'psi',
                              'u', 'v', 'buoyancy', 'V', 'qE']
        param.tracer_list = ['vorticity', 'buoyancy', 'V']
        param.whosetspsi = ('vorticity')

        if hasattr(self, 'additional_tracer'):
            for k in range(len(self.additional_tracer)):
                trac = self.additional_tracer[k]
                param.varname_list.append(trac)
                param.tracer_list.append(trac)

        param.sizevar = [grid.nyl, grid.nxl]
        self.var = Var(param)

        # for operators
        self.ope = Operators(param, grid)

        # for timescheme
        self.tscheme = Timescheme(param, self.var.state)

        if self.forcing:
            if self.forcing_module == 'embedded':
                print('Warning: check that you have indeed added the forcing to the model')
                print('Right below the line    : model = f2d.model')
                print('you should have the line: model.forc = Forcing(param, grid)')

                pass
            else:
                try:
                    f = import_module(self.forcing_module)

                except ImportError:
                    print('module %s for forcing cannot be found'
                          % self.forcing_module)
                    print('make sure file **%s.py** exists' % self.forcing_module)
                    sys.exit(0)

                self.forc = f.Forcing(param, grid)


        self.diags = {}
Ejemplo n.º 3
0
    def __init__(self, param, grid):
        self.list_param = [
            'forcing', 'diffusion', 'Kdiff', 'noslip', 'timestepping', 'beta',
            'Rd', 'forcing_module'
        ]
        param.copy(self, self.list_param)

        # for diagnostics
        self.list_param = ['yr', 'nh', 'msk', 'area', 'mpitools']
        grid.copy(self, self.list_param)

        # for variables
        param.varname_list = ('pv1', 'psi1', 'u1', 'v1', 'pv2', 'psi2', 'u2',
                              'v2')
        param.sizevar = [grid.nyl, grid.nxl]
        self.var = Var(param)
        self.source = zeros(param.sizevar)

        #        self.ipva = self.var.varname_list.index('pvanom')
        #        self.ipv  = self.var.varname_list.index('pv')
        #        self.ivor = self.var.varname_list.index('vorticity')
        #        self.ipsi = self.var.varname_list.index('psi')

        # background pv
        self.pvback = self.beta * (grid.yr - grid.Ly * .5) * grid.msk

        # for operators
        param.tracer_list = ['pv1', 'pv2']
        param.whosetspsi = ('pvanom')
        param.qgoperator = True
        self.ope = Operators(param, grid)

        # for timescheme
        self.tscheme = Timescheme(param, self.var.state)
        self.dx0 = self.tscheme.dx0

        self.kt = 0

        if self.forcing:

            try:
                f = import_module(self.forcing_module)
            except:
                print('module %s for forcing cannot be found' %
                      self.forcing_module)
                print('make sure file **%s.py** exists' % self.forcing_module)
                exit(0)

            self.forc = f.Forcing(param, grid)

        self.diags = {}

        self.tscheme.set(self.dynamics, self.timestepping)
Ejemplo n.º 4
0
 def __init__(self, param):
     # Create a State object for the LES model
     self.state = get_state(param)
     # Make U and all its components prognostic.  This should
     # actually be done before the state is created, but I don't want
     # to mess with variables.py at the moment.  This must be done
     # before the timescheme is created.
     self.state.U.prognostic = True
     for i in "ijk":
         self.state.U[i].prognostic = True
     # Create and set-up a handler for the timescheme
     self.timescheme = Timescheme(param, self.state)
     self.timescheme.set(compute_rhs)
Ejemplo n.º 5
0
    def __init__(self, param, grid):

        self.list_param = ['forcing', 'noslip', 'timestepping']
        param.copy(self, self.list_param)

        # for variables
        param.varname_list = ('vorticity', 'psi', 'u', 'v', 'buoyancy', 'V')
        param.sizevar = [grid.nyl, grid.nxl]
        self.var = Var(param)

        # for operators
        param.tracer_list = ['vorticity', 'buoyancy', 'V']
        param.whosetspsi = ('vorticity')
        self.ope = Operators(param, grid)

        # for timescheme
        self.tscheme = Timescheme(param, self.var.state)
Ejemplo n.º 6
0
class LES(object):
    def __init__(self, param):
        # Create a State object for the LES model
        self.state = get_state(param)
        # Make U and all its components prognostic.  This should
        # actually be done before the state is created, but I don't want
        # to mess with variables.py at the moment.  This must be done
        # before the timescheme is created.
        self.state.U.prognostic = True
        for i in "ijk":
            self.state.U[i].prognostic = True
        # Create and set-up a handler for the timescheme
        self.timescheme = Timescheme(param, self.state)
        self.timescheme.set(compute_rhs)
        # TODO: also inform the timescheme about the function to compute diagnostic variables

    def forward(self, t, dt):
        self.timescheme.forward(self.state, t, dt)
Ejemplo n.º 7
0
class Thermalwind(Param):
    """ Thermal wind model 

    It provides the step(t,dt) function
    and 'var' containing the mode state
    """
    def __init__(self, param, grid):

        self.list_param = ['forcing', 'noslip', 'timestepping']
        param.copy(self, self.list_param)

        # for variables
        param.varname_list = ('vorticity', 'psi', 'u', 'v', 'buoyancy', 'V')
        param.sizevar = [grid.nyl, grid.nxl]
        self.var = Var(param)

        # for operators
        param.tracer_list = ['vorticity', 'buoyancy', 'V']
        param.whosetspsi = ('vorticity')
        self.ope = Operators(param, grid)

        # for timescheme
        self.tscheme = Timescheme(param, self.var.state)

    def step(self, t, dt):

        # 1/ integrate advection
        self.tscheme.set(self.dynamics, self.timestepping)
        self.tscheme.forward(self.var.state, t, dt)

        # 2/ integrate source
        if self.forcing or self.noslip:
            self.tscheme.set(self.sources, 'EF')
            self.tscheme.forward(self.var.state, t, dt)

    def dynamics(self, x, t, dxdt):
        self.ope.rhs_adv(x, t, dxdt)
        self.ope.rhs_thermalwind(x, t, dxdt)  # add the r.h.s. terms
        self.ope.invert_vorticity(dxdt, flag='fast')

    def sources(self, x, t, dxdt):
        if self.forcing:
            self.ope.rhs_forcing(x, t, dxdt)
            self.ope.invert_vorticity(dxdt, flag='fast')
        if self.noslip:
            self.ope.rhs_noslip(x, t, dxdt)
            self.ope.invert_vorticity(x, flag='full')

    def set_psi_from_vorticity(self):
        self.ope.invert_vorticity(self.var.state)
Ejemplo n.º 8
0
    def __init__(self, param, grid):

        self.list_param = ['timestepping', 'diffusion', 'Kdiff']
        param.copy(self, self.list_param)

        self.list_grid = ['msk', 'nh', 'area', 'mpitools']
        grid.copy(self, self.list_grid)

        # for variables
        param.varname_list = ['tracer', 'psi', 'u', 'v', 'vorticity']
        param.sizevar = [grid.nyl, grid.nxl]
        self.var = Var(param)

        # for operators
        param.tracer_list = ['tracer']
        param.whosetspsi = ('tracer')
        self.ope = Operators(param, grid)

        # for timescheme
        self.tscheme = Timescheme(param, self.var.state)
        self.tscheme.set(self.advection, self.timestepping)

        self.diags = {}
Ejemplo n.º 9
0
class TwoLayerQG(Param):
    """ Quasi-geostrophic model 

    It provides the step(t,dt) function
    and 'var' containing the mode state
    """
    def __init__(self, param, grid):
        self.list_param = [
            'forcing', 'diffusion', 'Kdiff', 'noslip', 'timestepping', 'beta',
            'Rd', 'forcing_module'
        ]
        param.copy(self, self.list_param)

        # for diagnostics
        self.list_param = ['yr', 'nh', 'msk', 'area', 'mpitools']
        grid.copy(self, self.list_param)

        # for variables
        param.varname_list = ('pv1', 'psi1', 'u1', 'v1', 'pv2', 'psi2', 'u2',
                              'v2')
        param.sizevar = [grid.nyl, grid.nxl]
        self.var = Var(param)
        self.source = zeros(param.sizevar)

        #        self.ipva = self.var.varname_list.index('pvanom')
        #        self.ipv  = self.var.varname_list.index('pv')
        #        self.ivor = self.var.varname_list.index('vorticity')
        #        self.ipsi = self.var.varname_list.index('psi')

        # background pv
        self.pvback = self.beta * (grid.yr - grid.Ly * .5) * grid.msk

        # for operators
        param.tracer_list = ['pv1', 'pv2']
        param.whosetspsi = ('pvanom')
        param.qgoperator = True
        self.ope = Operators(param, grid)

        # for timescheme
        self.tscheme = Timescheme(param, self.var.state)
        self.dx0 = self.tscheme.dx0

        self.kt = 0

        if self.forcing:

            try:
                f = import_module(self.forcing_module)
            except:
                print('module %s for forcing cannot be found' %
                      self.forcing_module)
                print('make sure file **%s.py** exists' % self.forcing_module)
                exit(0)

            self.forc = f.Forcing(param, grid)

        self.diags = {}

        self.tscheme.set(self.dynamics, self.timestepping)

    def step(self, t, dt):
        self.dt = dt
        # 1/ integrate advection
        self.tscheme.forward(self.var.state, t, dt)

        # 2/ integrate source
        if self.noslip:
            self.add_noslip(self.var.state)

        # 3/ diagnostic fields
        self.var.state[self.ipva] = self.var.state[self.ipv] - self.pvback
        self.var.state[self.ivor] = self.var.state[
            self.ipva] + self.Rd**2 * self.var.state[self.ipsi]

    def dynamics(self, x, t, dxdt):
        dxdt[:] = 0.
        self.ope.rhs_adv(x, t, dxdt)
        if (self.tscheme.kstage == self.tscheme.kforcing):
            if self.forcing:
                self.forc.add_forcing(x, t, dxdt)
            if self.diffusion:
                self.ope.rhs_diffusion(x, t, dxdt)
        # substract the background pv
        dxdt[self.ipva][:, :] = dxdt[self.ipv]  #- self.pvback*self.dt
        #        self.ope.invert_vorticity(dxdt,flag='fast')
        self.ope.invert_twolayers(dxdt, flag='fast')
#        self.kt +=1

    def add_noslip(self, x):
        self.ope.rhs_noslip(x, self.source)
        self.ope.invert_vorticity(x, flag='fast')

    def add_backgroundpv(self):
        self.var.state[
            self.ipv1][:, :] = self.var.state[self.ipv1] + self.pvback
        self.var.state[
            self.ipv2][:, :] = self.var.state[self.ipv2] + self.pvback

    def substract_backgroundpv(self):
        self.var.state[
            self.ipv1][:, :] = self.var.state[self.ipv1] - self.pvback
        self.var.state[
            self.ipv2][:, :] = self.var.state[self.ipv2] - self.pvback

    def set_psi_from_pv(self):
        state = self.var.state
        self.substract_backgroundpv()
        self.ope.invert_twolayers(self.var.state, flag='full')
        self.add_backgroundpv()

    def diagnostics(self, var, t):
        """ should provide at least 'maxspeed' (for cfl determination) """

        nh = self.nh
        u = var.get('u')
        v = var.get('v')
        trac = var.get('pv')

        ke, maxu = computekemaxu(self.msk, u, v, self.nh)

        z, z2 = computesumandnorm(self.msk, trac, self.nh)

        cst = self.mpitools.local_to_global([(maxu, 'max'), (ke, 'sum'),
                                             (z, 'sum'), (z2, 'sum')])

        self.diags['maxspeed'] = cst[0]
        self.diags['ke'] = cst[1] / self.area
        self.diags['pv'] = cst[2] / self.area
        self.diags['pv2'] = cst[3] / self.area
Ejemplo n.º 10
0
class QG2L(object):
    """Two-Layers Quasi-geostrophic model

    The prognostic variable is 'pv'. It is the full PV, which includes
    the planetary background PV 'pvback'. Full PV is materially
    conserved unlike the PV anamoly that has a beta*v source term

    """
    def __init__(self, param, grid):
        self.list_param = ['forcing', 'diffusion', 'Kdiff', 'noslip',
                           'timestepping', 'beta', 'Rd', 'ageostrophic',
                           'forcing_module']
        param.copy(self, self.list_param)

        # for diagnostics
        self.list_param = ['yr', 'nh', 'msk', 'area', 'mpitools']
        grid.copy(self, self.list_param)

        # for variables
        param.varname_list = ('pv', 'psi', 'u', 'v',
                              'pvanom', 'vorticity')

        if param.ageostrophic:
            param.varname_list += ('ua', 'va')
            print(param.varname_list)

        param.sizevar = [2, grid.nyl, grid.nxl]
        self.var = Var(param)
        self.source = np.zeros(param.sizevar)

        self.ipva = self.var.varname_list.index('pvanom')
        self.ipv = self.var.varname_list.index('pv')
        self.ivor = self.var.varname_list.index('vorticity')
        self.ipsi = self.var.varname_list.index('psi')

        # background pv
        self.pvback = self.beta*(grid.yr-grid.Ly*.5)*grid.msk

        # for operators
        param.tracer_list = ['pv']
        if param.ageostrophic:
            param.tracer_list += ['ua', 'va']

        param.whosetspsi = ('pvanom')
        param.qgoperator = True
        self.ope = Operators(param, grid)

        # for timescheme
        self.tscheme = Timescheme(param, self.var.state)
        self.dx0 = self.tscheme.dx0

        self.kt = 0

        if self.forcing:

            try:
                f = import_module(self.forcing_module)

            except:
                print('module %s for forcing cannot be found'
                      % self.forcing_module)
                print('make sure file **%s.py** exists' % self.forcing_module)
                exit(0)

            self.forc = f.Forcing(param, grid)

        self.diags = {}

        self.tscheme.set(self.dynamics, self.timestepping)

    def step(self, t, dt):
        """Integrate the model over one time step dt"""

        if self.ageostrophic:
            iu = self.var.varname_list.index('u')
            iv = self.var.varname_list.index('v')
            iua = self.var.varname_list.index('ua')
            iva = self.var.varname_list.index('va')

            self.var.state[iua][:, :] = self.var.state[iu].copy()
            self.var.state[iva][:, :] = self.var.state[iv].copy()

        self.dt = dt
        # 1/ integrate advection
        self.tscheme.forward(self.var.state, t, dt)

        # 2/ integrate source
        if self.noslip:
            self.add_noslip(self.var.state)

        # 3/ diagnostic fields
        self.var.state[self.ipva] = self.var.state[self.ipv] - self.pvback
        self.var.state[self.ivor] = (self.var.state[self.ipva]
                                     - (self.Rd**-2)*self.var.state[self.ipsi])

        if self.ageostrophic:
            """ diagnose the ageostrophic velocity (factor 1/f missing)

            du/dt + J(psi, u) = -f va
            dv/dt + J(psi, v) = +f ua

            implementation:

            - store u in 'ua'
            - step ua
            - compare update u (real u diagnosed from psi) with updated 'ua'
            - the difference is the ageostrophic velocity

            Yet to be done: implement the proper staggering, 'u' and 'v' sit
            on edges while the advection scheme assumes cell centers quantities
            """
            ua = -(self.var.state[iv] - self.var.state[iva])/dt
            va = +(self.var.state[iu] - self.var.state[iua])/dt
            self.var.state[iva][:, :] = va.copy()
            self.var.state[iua][:, :] = ua.copy()

    def dynamics(self, x, t, dxdt):
        """Compute the tendency terms + invert the streamfunction"""

        dxdt[:] = 0.
        self.ope.rhs_adv_multilayers(x, t, dxdt)
        if (self.tscheme.kstage == self.tscheme.kforcing):
            if self.forcing:
                self.forc.add_forcing(x, t, dxdt)
            if self.diffusion:
                self.ope.rhs_diffusion(x, t, dxdt)
        # substract the background pv
        dxdt[self.ipva][:, :] = dxdt[self.ipv]  # -self.pvback*self.dt
#        self.ope.invert_vorticity(dxdt,flag='fast')
        self.ope.invert_vorticity(dxdt, flag='fast')
#        self.kt +=1

    def add_noslip(self, x):
        """Add the no-slip term """

        self.ope.rhs_noslip(x, self.source)
        self.ope.invert_vorticity(x, flag='fast', island=self.isisland)

    def add_backgroundpv(self):
        self.var.state[self.ipv] += self.pvback

    def set_psi_from_pv(self):
        """Solve the elliptic equation for the streamfunction

        The unknown of the Helmholtz equation is the PV anomaly,
        not the full PV"""

        state = self.var.state
        state[self.ipva] = state[self.ipv] - self.pvback
        self.ope.invert_vorticity(self.var.state, flag='full')

    def diagnostics(self, var, t):
        """ Integral diagnostics for the QG model

        should provide at least 'maxspeed' (for cfl determination) """

        u = var.get('u')
        v = var.get('v')
        trac = var.get('pv')

        ke, maxu = fd.computekemaxu(self.msk, u, v, self.nh)

        z, z2 = fd.computesumandnorm(self.msk, trac, self.nh)

        cst = self.mpitools.local_to_global([(maxu, 'max'),
                                             (ke, 'sum'),
                                             (z, 'sum'),
                                             (z2, 'sum')])

        self.diags['maxspeed'] = cst[0]
        self.diags['ke'] = cst[1] / self.area
        self.diags['pv'] = cst[2] / self.area
        self.diags['pv2'] = cst[3] / self.area
Ejemplo n.º 11
0
class Boussinesq(Param):
    """ Boussinesq model 

    It provides the step(t,dt) function
    and 'var' containing the mode state
    """
    def __init__(self,param,grid):

        self.list_param=['forcing','noslip','timestepping','diffusion','Kdiff',
                         'forcing_module','gravity','isisland',
                         'customized','custom_module','additional_tracer']
        param.copy(self,self.list_param)

        # for potential energy
        self.list_param=['xr','yr','nh','Lx','msk','area','mpitools']
        grid.copy(self,self.list_param)

        # for variables
        param.varname_list=['vorticity','psi','u','v','buoyancy']
        param.tracer_list=['vorticity','buoyancy']
        param.whosetspsi=('vorticity')

        if hasattr(self,'additional_tracer'):
            for k in range(len(self.additional_tracer)):
                trac=self.additional_tracer[k]
                param.varname_list.append(trac)
                param.tracer_list.append(trac)
                print('Tracers are :',param.tracer_list)

        param.sizevar     =[grid.nyl,grid.nxl]
        self.var = Var(param)
        self.source = zeros(param.sizevar)

        # for operators
        self.ope = Operators(param,grid)

        # for timescheme
        self.tscheme = Timescheme(param,self.var.state)
        self.tscheme.set(self.dynamics, self.timestepping)

        if self.forcing:

            try:
                f = import_module(self.forcing_module)
            except:
                print('module %s for forcing cannot be found'%self.forcing_module)
                print('make sure file **%s.py** exists'%self.forcing_module)
                exit(0)

            self.forc = f.Forcing(param,grid)

        self.diags={}

        if self.customized:
            try:
                f = import_module(self.custom_module)
                print(f)
                self.extrastep = f.Step(param,grid)
            except:
                print('module %s for forcing cannot be found'%self.custom_module)
                print('make sure file **%s.py** exists'%self.custom_module)
                exit(0)



    def step(self,t,dt):

        # 1/ integrate advection
        self.tscheme.forward(self.var.state,t,dt)

        # 2/ integrate source
        if self.noslip:
            self.add_noslip(self.var.state)

        if self.customized:
            self.extrastep.do(self.var,t,dt)

    def dynamics(self,x,t,dxdt):
        self.ope.rhs_adv(x,t,dxdt)
        self.ope.rhs_torque(x,t,dxdt) # db/dx is a source term for the vorticity
        if (self.tscheme.kstage==self.tscheme.kforcing):
            if self.forcing:
                self.forc.add_forcing(x,t,dxdt)
            if self.diffusion:
                self.ope.rhs_diffusion(x,t,dxdt)

        self.ope.invert_vorticity(dxdt,flag='fast')


                
    def add_noslip(self,x):
        self.ope.rhs_noslip(x,self.source)        
        self.ope.invert_vorticity(x,flag='fast',island=self.isisland)
            
    def set_psi_from_vorticity(self):
        self.ope.invert_vorticity(self.var.state,island=self.isisland)

    def diagnostics(self,var,t):
        """ should provide at least 'maxspeed' (for cfl determination) """

        nh = self.nh
        u = var.get('u')
        v = var.get('v')
        vort = var.get('vorticity')
        buoy = var.get('buoyancy')

        ke,maxu = computekemaxu(self.msk,u,v,self.nh)
            
        z,z2    = computesumandnorm(self.msk,vort,self.nh)

        b,b2    = computesumandnorm(self.msk,buoy,self.nh)


        # potential energy (minus sign because buoyancy is minus density)
        pe = computesum(self.msk,buoy*self.yr,nh)
        pe = - self.gravity*pe 

        cst = self.mpitools.local_to_global( [(maxu,'max'),(ke,'sum'),(z,'sum'),(z2,'sum'),
                                          (pe,'sum'),(b,'sum'),(b2,'sum')] )

        
        self.diags['maxspeed'] = cst[0]
        self.diags['ke']       = cst[1] / self.area
        self.diags['pe']       = cst[4] / self.area
        self.diags['energy']   = (cst[1]+cst[4]) / self.area
        self.diags['vorticity']= cst[2] / self.area
        self.diags['enstrophy']= cst[3] / self.area
        self.diags['buoyancy'] = cst[5] / self.area
        self.diags['brms']= sqrt( cst[6] / self.area -(cst[5] / self.area)**2 )
Ejemplo n.º 12
0
    def __init__(self, param, grid, ope):
        self.list_param = [
            'timestepping', 'varname_list', 'tracer_list', 'order', 'aparab',
            'sizevar', 'flux_splitting_method', 'modelname'
        ]

        p = copy.deepcopy(param)
        # we add two new variables in the state vector: uc and vc
        # the velocities at cell centers
        # their fluxes are used to estimate the KE dissipation
        newvariables = ['uc', 'vc']
        p.tracer_list += newvariables
        p.varname_list += newvariables
        flx_list = []
        for v in p.tracer_list:
            for d in ['x', 'y']:
                flx_list += ['flx_%s_%s' % (v, d)]

        self.flx_list = flx_list
        self.nvarstate = len(p.varname_list)
        p.varname_list += flx_list

        fullflx_list = []
        for r in ['rev', 'irr']:
            for v in p.tracer_list:
                for d in ['x', 'y']:
                    fullflx_list += ['%s_%s_%s' % (r, d, v)]

        self.fullflx_list = fullflx_list
        p.copy(self, self.list_param)

        self.list_grid = ['nh', 'dx', 'dy', 'msk']
        grid.copy(self, self.list_grid)

        self.ope = ope

        varsize = [len(self.varname_list)] + self.sizevar
        self.x = np.zeros(varsize)

        # extended sate vector to host the model state vector and (uc,vc)
        self.xe = np.zeros([self.nvarstate] + self.sizevar)
        self.xwork = np.zeros(varsize)

        tracsize = [len(self.fullflx_list)] + self.sizevar

        # full stack of fluxes (including reversible and irreversible)
        self.flx = np.zeros(tracsize)

        # select the proper flux discretization
        if self.order % 2 == 0:
            self.fortran_adv = fa.adv_centered
        else:
            self.fortran_adv = fa.adv_upwind

        self.cst = np.zeros(5, )
        self.cst[0] = grid.dx
        self.cst[1] = grid.dy
        self.cst[2] = 0.05
        self.cst[3] = 0  # umax
        self.cst[4] = self.aparab

        # for timescheme
        #p.timestepping = 'EF'
        self.tscheme = Timescheme(p, self.x)
        self.tscheme.set(self.advection, p.timestepping)

        # controls the flux splitting method
        # 0 = min/max
        # 1 = parabolic
        list_fs_method = ['minmax', 'parabolic']
        if self.flux_splitting_method in list_fs_method:
            self.fs_method = list_fs_method.index(self.flux_splitting_method)
        else:
            print('Warning: %s does not exist' % self.flux_splitting_method)
            print('replaced with the default: parabolic')
            self.fs_method = list_fs_method.index('parabolic')
Ejemplo n.º 13
0
class Fluxes():
    """Class to diagnostic the irreversible part of advective fluxes

    The development status is
    - 'euler' : ok
    - 'boussinesq' : ok
    - 'thermalwind' : ok
    - 'qg' : not done

    Note that for 'thermalwind' we should change sign of both V and f0,
    but we don't, because the equations are still invariant under time
    reversal if we don't do it. The rationale is that the implementation
    is easier.
"""
    def __init__(self, param, grid, ope):
        self.list_param = [
            'timestepping', 'varname_list', 'tracer_list', 'order', 'aparab',
            'sizevar', 'flux_splitting_method', 'modelname'
        ]

        p = copy.deepcopy(param)
        # we add two new variables in the state vector: uc and vc
        # the velocities at cell centers
        # their fluxes are used to estimate the KE dissipation
        newvariables = ['uc', 'vc']
        p.tracer_list += newvariables
        p.varname_list += newvariables
        flx_list = []
        for v in p.tracer_list:
            for d in ['x', 'y']:
                flx_list += ['flx_%s_%s' % (v, d)]

        self.flx_list = flx_list
        self.nvarstate = len(p.varname_list)
        p.varname_list += flx_list

        fullflx_list = []
        for r in ['rev', 'irr']:
            for v in p.tracer_list:
                for d in ['x', 'y']:
                    fullflx_list += ['%s_%s_%s' % (r, d, v)]

        self.fullflx_list = fullflx_list
        p.copy(self, self.list_param)

        self.list_grid = ['nh', 'dx', 'dy', 'msk']
        grid.copy(self, self.list_grid)

        self.ope = ope

        varsize = [len(self.varname_list)] + self.sizevar
        self.x = np.zeros(varsize)

        # extended sate vector to host the model state vector and (uc,vc)
        self.xe = np.zeros([self.nvarstate] + self.sizevar)
        self.xwork = np.zeros(varsize)

        tracsize = [len(self.fullflx_list)] + self.sizevar

        # full stack of fluxes (including reversible and irreversible)
        self.flx = np.zeros(tracsize)

        # select the proper flux discretization
        if self.order % 2 == 0:
            self.fortran_adv = fa.adv_centered
        else:
            self.fortran_adv = fa.adv_upwind

        self.cst = np.zeros(5, )
        self.cst[0] = grid.dx
        self.cst[1] = grid.dy
        self.cst[2] = 0.05
        self.cst[3] = 0  # umax
        self.cst[4] = self.aparab

        # for timescheme
        #p.timestepping = 'EF'
        self.tscheme = Timescheme(p, self.x)
        self.tscheme.set(self.advection, p.timestepping)

        # controls the flux splitting method
        # 0 = min/max
        # 1 = parabolic
        list_fs_method = ['minmax', 'parabolic']
        if self.flux_splitting_method in list_fs_method:
            self.fs_method = list_fs_method.index(self.flux_splitting_method)
        else:
            print('Warning: %s does not exist' % self.flux_splitting_method)
            print('replaced with the default: parabolic')
            self.fs_method = list_fs_method.index('parabolic')

    def diag_fluxes(self, x, t, dt):
        """advance x from one time step, then reverse the time and advance
        another time step. Diagnose the reversible and the
        irreversible part of the fluxes

        """
        iu = self.varname_list.index('u')
        iv = self.varname_list.index('v')
        ip = self.varname_list.index('psi')
        iw = self.varname_list.index('vorticity')

        # set locally dt to a very small value to make the time scheme
        # dissipation vanishing (hard coded so far)
        #
        # dt = dt*1e-6
        self.xe[:self.nvarstate - 2, :, :] = x
        #
        # we add two more variables 'uc' and 'vc', the cell centered velocities
        # we store them in the extended state self.xe
        #
        # i) uc
        y = 0.5 * (x[iu] + np.roll(x[iu], 1, axis=1))
        self.ope.fill_halo(y)
        self.xe[self.nvarstate - 2, :, :] = y
        # ii) vc
        y = 0.5 * (x[iv] + np.roll(x[iv], 1, axis=0))
        self.ope.fill_halo(y)
        self.xe[self.nvarstate - 1, :, :] = y

        # we copy this extended state into self.x
        self.x[:self.nvarstate, :, :] = self.xe

        # set fluxes entries to zero
        self.x[self.nvarstate:, :, :] = 0.
        self.tscheme.forward(self.x, t, dt)
        self.xwork[:, :, :] = self.x

        # reverse velocity
        self.x[:self.nvarstate, :, :] = self.xe
        self.x[iu] *= -1
        self.x[iv] *= -1
        self.x[ip] *= -1
        self.x[iw] *= -1
        self.x[self.nvarstate - 2] *= -1  # uc
        self.x[self.nvarstate - 1] *= -1  # vc

        # set fluxes entries to zero
        self.x[self.nvarstate:, :, :] = 0.
        self.tscheme.forward(self.x, t + dt, -dt)

        # don't forget to divide by 'dt' to get the tendency
        cff = 0.5 / (dt)
        nflx = len(self.flx_list)
        # this loop below should be made more readable
        # k sweeps across all reversible fluxes
        # (two components per advected quantity)
        for k in range(nflx):
            # l points to the flux index in the self.x array
            l = self.nvarstate + k
            # j points to the associated irreversible flux
            j = nflx + k
            if (k < 2) or (k >= (nflx - 4)):
                # k = 0, 1 are the vorticity fluxes
                # k = nflx-4, nflx-3 are the 'uc' fluxes
                # k = nflx-2, nflx-1 are the 'vc' fluxes
                sign = -1  #for vorticity, 'uc' and 'vc'
            else:
                sign = 1  # for buoyancy and tracer (if present)

            self.flx[k, :, :] = cff * (self.xwork[l] + sign * self.x[l])
            self.flx[j, :, :] = cff * (self.xwork[l] - sign * self.x[l])

    def advection(self, x, t, dxdt):
        self.rhs_adv(x, t, dxdt)
        if self.modelname == 'boussinesq':
            self.ope.rhs_torque(x, t, dxdt)
        elif self.modelname == 'thermalwind':
            self.ope.rhs_thermalwind(x, t, dxdt)
        self.ope.invert_vorticity(dxdt, flag='fast')

    def rhs_adv(self, x, t, dxdt):
        """ compute -div(u*tracer) using finite volume flux discretization
        the flux is computed at edge cells using p-th order interpolation
        for p even, the flux is centered
        for p odd, the flux is upwinded (more points on the upwind side) """
        iu = self.varname_list.index('u')
        iv = self.varname_list.index('v')
        u = x[iu]
        v = x[iv]
        # don't forget to adjust the maxspeed
        self.cst[3] = self.ope.cst[3]
        for itrac, trac in enumerate(self.tracer_list):
            ik = self.varname_list.index(trac)
            y = dxdt[ik]
            ix = self.nvarstate + itrac * 2
            iy = self.nvarstate + itrac * 2 + 1
            xf = dxdt[ix]
            yf = dxdt[iy]
            self.fortran_adv(self.msk, x[ik], y, u, v, xf, yf, self.cst,
                             self.nh, self.fs_method, self.order)
            self.ope.fill_halo(y)
            self.ope.fill_halo(xf)
            self.ope.fill_halo(yf)
            # for an unknown reason dxdt[ik] is
            # not updated by the Fortran routine
            # it should be done manually
            # (this yields an excessive data movement)
            dxdt[ik, :, :] = y
            dxdt[ix, :, :] = xf
            dxdt[iy, :, :] = yf
Ejemplo n.º 14
0
    def __init__(self, param, grid):

        self.list_param = [
            'forcing', 'noslip', 'timestepping', 'alphaT', 'betaS',
            'diffusion', 'Kdiff', 'myrank', 'forcing_module', 'gravity',
            'isisland', 'customized', 'custom_module', 'additional_tracer'
        ]
        param.copy(self, self.list_param)

        # for potential energy
        self.list_param = ['xr', 'yr', 'nh', 'Lx', 'msk', 'area', 'mpitools']
        grid.copy(self, self.list_param)

        # for variables
        param.varname_list = [
            'vorticity', 'psi', 'u', 'v', 'density', 'danom', 'T', 'S'
        ]
        param.tracer_list = ['vorticity', 'T', 'S']
        param.whosetspsi = ('vorticity')

        if hasattr(self, 'additional_tracer'):
            for k in range(len(self.additional_tracer)):
                trac = self.additional_tracer[k]
                param.varname_list.append(trac)
                param.tracer_list.append(trac)

        self.varname_list = param.varname_list

        param.sizevar = [grid.nyl, grid.nxl]
        self.var = Var(param)
        dref = self.var.get('density').copy()
        self.dref = dref
        self.source = np.zeros(param.sizevar)

        # for operators
        self.ope = Operators(param, grid)

        # for timescheme
        self.tscheme = Timescheme(param, self.var.state)
        self.tscheme.set(self.dynamics, self.timestepping)

        if self.forcing:
            if self.forcing_module == 'embedded':
                print(
                    'Warning: check that you have indeed added the forcing to the model'
                )
                print('Right below the line    : model = f2d.model')
                print(
                    'you should have the line: model.forc = Forcing(param, grid)'
                )

                pass
            else:
                try:
                    f = import_module(self.forcing_module)

                except ImportError:
                    print('module %s for forcing cannot be found' %
                          self.forcing_module)
                    print('make sure file **%s.py** exists' %
                          self.forcing_module)
                    sys.exit(0)

                self.forc = f.Forcing(param, grid)

        self.diags = {}

        if self.customized:
            try:
                f = import_module(self.custom_module)
                print(f)
                self.extrastep = f.Step(param, grid)
            except ImportError:
                print('module %s for forcing cannot be found' %
                      self.custom_module)
                print('make sure file **%s.py** exists' % self.custom_module)
                exit(0)
Ejemplo n.º 15
0
class Euler(Param):
    """ Euler model 

    It provides the step(t,dt) function
    and 'var' containing the mode state
    """
    def __init__(self, param, grid):

        self.list_param = [
            'forcing', 'noslip', 'timestepping', 'diffusion', 'Kdiff',
            'forcing_module', 'additional_tracer', 'enforce_momentum',
            'var_to_save', 'customized', 'custom_module'
        ]
        param.copy(self, self.list_param)

        # for diagnostics
        self.list_param = [
            'yr', 'nh', 'msk', 'area', 'mpitools', 'dx', 'xr', 'yr', 'r2',
            'x0', 'y0', 'x2', 'y2', 'isisland', 'Lx'
        ]
        grid.copy(self, self.list_param)

        # for variables
        param.varname_list = ['vorticity', 'psi', 'u', 'v']  #,'tauw','wshear']
        param.tracer_list = ['vorticity']
        param.whosetspsi = ('vorticity')

        if 'tauw' in self.var_to_save:
            param.varname_list.append('tauw')

        if 'wshear' in self.var_to_save:
            param.varname_list.append('wshear')

        if hasattr(self, 'additional_tracer'):
            for k in range(len(self.additional_tracer)):
                trac = self.additional_tracer[k]
                param.varname_list.append(trac)
                param.tracer_list.append(trac)
                print('Tracers are :', param.tracer_list)

        param.sizevar = [grid.nyl, grid.nxl]
        self.var = Var(param)
        self.source = zeros(param.sizevar)

        # for operators
        self.ope = Operators(param, grid)

        # for timescheme
        self.tscheme = Timescheme(param, self.var.state)
        self.tscheme.set(self.advection, self.timestepping)

        if self.forcing:

            try:
                f = import_module(self.forcing_module)
            except:
                print('module %s for forcing cannot be found' %
                      self.forcing_module)
                print('make sure file **%s.py** exists' % self.forcing_module)
                exit(0)

            self.forc = f.Forcing(param, grid)

        self.diags = {}

        if self.customized:
            try:
                f = import_module(self.custom_module)
                self.extrastep = f.step(param, grid)
            except:
                print('module %s for forcing cannot be found' %
                      self.custom_module)
                print('make sure file **%s.py** exists' % self.custom_module)
                exit(0)

    def step(self, t, dt):

        # 1/ integrate advection
        self.tscheme.forward(self.var.state, t, dt)

        # 2/ integrate source
        if self.noslip:
            self.add_noslip(self.var.state)

            if 'tauw' in self.var_to_save:
                tauw = self.var.get('tauw')
                tauw[:, :] = self.source / dt * self.dx * self.dx

            if 'wshear' in self.var_to_save:
                wshear = self.var.get('wshear')
                self.ope.wallshear(self.var.state, self.source)
                wshear[:, :] = self.source

        if self.customized:
            self.extrastep.do(self.var, t, dt)

        # # 3/ dye tracer
        # i,jp,jm=1,67,61

        # dye = self.var.get('dye')
        # dye[jp+self.nh,i]=1
        # dye[jm+self.nh,i]=-1

        # age = self.var.get('age')
        # age += dt*self.msk
        # age[:,self.nh]=0.

        # # 4/ sponge layer
        # damping = ( 1- (1+tanh( (self.xr - self.Lx)/0.1))*0.5)
        # w = self.var.get('vorticity')
        # w *= damping
        # dye *= damping
        # age *= damping

    def advection(self, x, t, dxdt):
        self.ope.rhs_adv(x, t, dxdt)
        if (self.tscheme.kstage == self.tscheme.kforcing):
            if self.forcing:
                self.forc.add_forcing(x, t, dxdt)
            if self.diffusion:
                self.ope.rhs_diffusion(x, t, dxdt)

        self.ope.invert_vorticity(dxdt, flag='fast')

    def add_noslip(self, x):
        self.ope.rhs_noslip(x, self.source)
        if not (self.enforce_momentum):
            self.ope.invert_vorticity(x, flag='fast', island=self.isisland)

    def set_psi_from_vorticity(self):
        self.ope.invert_vorticity(self.var.state, island=self.isisland)

    def diagnostics(self, var, t):
        """ should provide at least 'maxspeed' (for cfl determination) """

        nh = self.nh
        u = var.get('u')
        v = var.get('v')
        trac = var.get('vorticity')

        xr = self.xr
        yr = self.yr
        r2 = self.r2

        ke, maxu = computekemaxu(self.msk, u, v, self.nh)

        z, z2 = computesumandnorm(self.msk, trac, self.nh)

        px = computedotprod(self.msk, trac, xr, self.nh)
        py = computedotprod(self.msk, trac, yr, self.nh)
        angmom = computedotprod(self.msk, trac, r2, self.nh)

        cst = self.mpitools.local_to_global([(maxu, 'max'), (ke, 'sum'),
                                             (z, 'sum'), (z2, 'sum'),
                                             (px, 'sum'), (py, 'sum'),
                                             (angmom, 'sum')])

        self.diags['maxspeed'] = cst[0]
        self.diags['ke'] = cst[1] / self.area
        self.diags['vorticity'] = cst[2] / self.area
        self.diags['enstrophy'] = cst[3] / self.area
        self.diags['px'] = cst[4] / self.area
        self.diags['py'] = cst[5] / self.area
        self.diags['angmom'] = cst[6] / self.area
Ejemplo n.º 16
0
class BoussinesqTS(object):
    """ Boussinesq model with temperature and salinity

    It provides the step(t,dt) function
    and 'var' containing the mode state
    """
    def __init__(self, param, grid):

        self.list_param = [
            'forcing', 'noslip', 'timestepping', 'alphaT', 'betaS',
            'diffusion', 'Kdiff', 'myrank', 'forcing_module', 'gravity',
            'isisland', 'customized', 'custom_module', 'additional_tracer'
        ]
        param.copy(self, self.list_param)

        # for potential energy
        self.list_param = ['xr', 'yr', 'nh', 'Lx', 'msk', 'area', 'mpitools']
        grid.copy(self, self.list_param)

        # for variables
        param.varname_list = [
            'vorticity', 'psi', 'u', 'v', 'density', 'danom', 'T', 'S'
        ]
        param.tracer_list = ['vorticity', 'T', 'S']
        param.whosetspsi = ('vorticity')

        if hasattr(self, 'additional_tracer'):
            for k in range(len(self.additional_tracer)):
                trac = self.additional_tracer[k]
                param.varname_list.append(trac)
                param.tracer_list.append(trac)

        self.varname_list = param.varname_list

        param.sizevar = [grid.nyl, grid.nxl]
        self.var = Var(param)
        dref = self.var.get('density').copy()
        self.dref = dref
        self.source = np.zeros(param.sizevar)

        # for operators
        self.ope = Operators(param, grid)

        # for timescheme
        self.tscheme = Timescheme(param, self.var.state)
        self.tscheme.set(self.dynamics, self.timestepping)

        if self.forcing:
            if self.forcing_module == 'embedded':
                print(
                    'Warning: check that you have indeed added the forcing to the model'
                )
                print('Right below the line    : model = f2d.model')
                print(
                    'you should have the line: model.forc = Forcing(param, grid)'
                )

                pass
            else:
                try:
                    f = import_module(self.forcing_module)

                except ImportError:
                    print('module %s for forcing cannot be found' %
                          self.forcing_module)
                    print('make sure file **%s.py** exists' %
                          self.forcing_module)
                    sys.exit(0)

                self.forc = f.Forcing(param, grid)

        self.diags = {}

        if self.customized:
            try:
                f = import_module(self.custom_module)
                print(f)
                self.extrastep = f.Step(param, grid)
            except ImportError:
                print('module %s for forcing cannot be found' %
                      self.custom_module)
                print('make sure file **%s.py** exists' % self.custom_module)
                exit(0)

    def step(self, t, dt):

        # 1/ integrate advection
        self.tscheme.forward(self.var.state, t, dt)
        self.set_density()

        # 2/ integrate source
        if self.noslip:
            self.add_noslip(self.var.state)

        if self.customized:
            self.extrastep.do(self.var, t, dt)

        danom = self.var.get('danom')
        danom[:, :] = self.var.get('density') - self.dref

    def dynamics(self, x, t, dxdt):
        self.ope.rhs_adv(x, t, dxdt)
        self.eos(dxdt)
        # db/dx is a source term for the vorticity
        self.ope.rhs_torque_density(x, t, dxdt)
        if (self.tscheme.kstage == self.tscheme.kforcing):
            coef = self.tscheme.dtcoef
            if self.forcing:
                self.forc.add_forcing(x, t, dxdt, coef=coef)
            if self.diffusion:
                self.ope.rhs_diffusion(x, t, dxdt, coef=coef)
        self.eos(dxdt)
        self.ope.invert_vorticity(dxdt, flag='fast')

    def add_noslip(self, x):
        self.ope.rhs_noslip(x, self.source)
        self.ope.invert_vorticity(x, flag='fast', island=self.isisland)

    def eos(self, x):
        """ compute density from T and S """
        idens = self.varname_list.index('density')
        itemp = self.varname_list.index('T')
        isalt = self.varname_list.index('S')

        x[idens] = -self.alphaT * x[itemp] + self.betaS * x[isalt]

    def set_density(self):
        self.eos(self.var.state)

    def set_psi_from_vorticity(self):
        self.ope.invert_vorticity(self.var.state, island=self.isisland)

    def diagnostics(self, var, t):
        """ should provide at least 'maxspeed' (for cfl determination) """

        nh = self.nh
        u = var.get('u')
        v = var.get('v')
        vort = var.get('vorticity')
        dens = var.get('density')

        ke, maxu = fd.computekemaxu(self.msk, u, v, self.nh)

        z, z2 = fd.computesumandnorm(self.msk, vort, self.nh)

        b, b2 = fd.computesumandnorm(self.msk, dens, self.nh)

        #  potential energy
        pe = +self.gravity * fd.computesum(self.msk, dens * self.yr, nh)

        cst = self.mpitools.local_to_global([(maxu, 'max'), (ke, 'sum'),
                                             (z, 'sum'), (z2, 'sum'),
                                             (pe, 'sum'), (b, 'sum'),
                                             (b2, 'sum')])

        self.diags['maxspeed'] = cst[0]
        self.diags['ke'] = cst[1] / self.area
        self.diags['pe'] = cst[4] / self.area
        self.diags['energy'] = (cst[1] + cst[4]) / self.area
        self.diags['vorticity'] = cst[2] / self.area
        self.diags['enstrophy'] = 0.5 * cst[3] / self.area
        self.diags['density'] = cst[5] / self.area
        self.diags['drms'] = np.sqrt(cst[6] / self.area -
                                     (cst[5] / self.area)**2)
Ejemplo n.º 17
0
    def __init__(self, param, grid):
        self.list_param = ['forcing', 'diffusion', 'Kdiff', 'noslip',
                           'timestepping', 'beta', 'Rd', 'ageostrophic',
                           'bottom_torque',
                           'forcing_module']
        param.copy(self, self.list_param)

        # for diagnostics
        self.list_param = ['yr', 'nh', 'msk', 'area', 'mpitools',  'isisland']
        grid.copy(self, self.list_param)

        # for variables
        param.varname_list = ['pv', 'psi', 'u', 'v', 'pvanom', 'vorticity']

        if param.bottom_torque:
            param.varname_list += ['btorque']

        if param.ageostrophic:
            param.varname_list += ['ua', 'va']

        param.sizevar = [grid.nyl, grid.nxl]
        self.var = Var(param)
        self.source = np.zeros(param.sizevar)

        self.ipva = self.var.varname_list.index('pvanom')
        self.ipv = self.var.varname_list.index('pv')
        self.ivor = self.var.varname_list.index('vorticity')
        self.ipsi = self.var.varname_list.index('psi')

        # background pv
        self.pvback = self.beta*(grid.yr-grid.Ly*.5)*grid.msk

        # for operators
        param.tracer_list = ['pv']
        if param.bottom_torque:
            param.tracer_list += ['btorque']

        if param.ageostrophic:
            param.tracer_list += ['ua', 'va']

        param.whosetspsi = ('pvanom')
        param.qgoperator = True
        self.ope = Operators(param, grid)

        # for timescheme
        self.tscheme = Timescheme(param, self.var.state)
        self.dx0 = self.tscheme.dx0

        self.kt = 0

        if self.forcing:
            if self.forcing_module == 'embedded':
                print('Warning: check that you have indeed added the forcing to the model')
                print('Right below the line    : model = f2d.model')
                print('you should have the line: model.forc = Forcing(param, grid)')

                pass
            else:
                try:
                    f = import_module(self.forcing_module)

                except ImportError:
                    print('module %s for forcing cannot be found'
                          % self.forcing_module)
                    print('make sure file **%s.py** exists' % self.forcing_module)
                    sys.exit(0)

                self.forc = f.Forcing(param, grid)

        self.diags = {}

        self.tscheme.set(self.dynamics, self.timestepping)
Ejemplo n.º 18
0
    def __init__(self, param, grid):

        self.list_param = [
            'forcing', 'noslip', 'timestepping', 'diffusion', 'Kdiff',
            'forcing_module', 'additional_tracer', 'enforce_momentum',
            'var_to_save', 'customized', 'custom_module', 'spongelayer'
        ]
        param.copy(self, self.list_param)

        # for diagnostics
        self.list_param = [
            'yr', 'nh', 'msk', 'area', 'mpitools', 'dx', 'xr', 'yr', 'r2',
            'x0', 'y0', 'x2', 'y2', 'isisland', 'Lx', 'ny'
        ]
        grid.copy(self, self.list_param)

        # for variables
        param.varname_list = ['vorticity', 'psi', 'u', 'v',
                              'source']  # ,'tauw','wshear']
        param.tracer_list = ['vorticity']
        param.whosetspsi = ('vorticity')

        if 'tauw' in self.var_to_save:
            param.varname_list.append('tauw')

        if 'wshear' in self.var_to_save:
            param.varname_list.append('wshear')

        if hasattr(self, 'additional_tracer'):
            for k in range(len(self.additional_tracer)):
                trac = self.additional_tracer[k]
                param.varname_list.append(trac)
                param.tracer_list.append(trac)

        param.sizevar = [grid.nyl, grid.nxl]
        self.var = Var(param)
        self.work = np.zeros(param.sizevar)

        # for timing the code
        self.timers = Timers(param)

        # for operators
        self.ope = Operators(param, grid)

        # for timescheme
        self.tscheme = Timescheme(param, self.var.state)
        self.tscheme.set(self.dynamics, self.timestepping)

        if self.forcing:
            if self.forcing_module == 'embedded':
                print(
                    'Warning: check that you have indeed added the forcing to the model'
                )
                print('Right below the line    : model = f2d.model')
                print(
                    'you should have the line: model.forc = Forcing(param, grid)'
                )

                pass
            else:
                try:
                    f = import_module(self.forcing_module)
                except ImportError:
                    print('module %s for forcing cannot be found' %
                          self.forcing_module)
                    print('make sure file **%s.py** exists' %
                          self.forcing_module)
                    exit(0)
                self.forc = f.Forcing(param, grid)

        if self.spongelayer:
            # sponge layer zone [0 = full sponge, 1 = no sponge]
            self.spongemsk = (1 - (1 + np.tanh(
                (self.xr - self.Lx) / 0.1)) * 0.5)

        self.diags = {}

        if self.customized:
            try:
                f = import_module(self.custom_module)
                self.extrastep = f.Step(param, grid)
            except ImportError:
                print('module %s for forcing cannot be found' %
                      self.custom_module)
                print('make sure file **%s.py** exists' % self.custom_module)
                exit(0)
Ejemplo n.º 19
0
class Advection(object):
    """Advection model

    It solves the 2D transport equation for a passive tracer with a
    prescribed steady velocity field, which derives from a
    streamfunction

    """
    def __init__(self, param, grid):

        self.list_param = ['timestepping', 'diffusion', 'Kdiff']
        param.copy(self, self.list_param)

        self.list_grid = ['msk', 'nh', 'area', 'mpitools']
        grid.copy(self, self.list_grid)

        # for variables
        param.varname_list = ['tracer', 'psi', 'u', 'v', 'vorticity']
        param.sizevar = [grid.nyl, grid.nxl]
        self.var = Var(param)

        # for operators
        param.tracer_list = ['tracer']
        param.whosetspsi = ('tracer')
        self.ope = Operators(param, grid)

        # for timescheme
        self.tscheme = Timescheme(param, self.var.state)
        self.tscheme.set(self.advection, self.timestepping)

        self.diags = {}

    def step(self, t, dt):
        self.tscheme.forward(self.var.state, t, dt)
        self.diagnostics(self.var, t)

    def advection(self, x, t, dxdt):
        self.ope.rhs_adv(x, t, dxdt)

        if (self.tscheme.kstage == self.tscheme.kforcing):
            if self.diffusion:
                self.ope.rhs_diffusion(x, t, dxdt)

    def set_psi_from_tracer(self):
        self.ope.invert_vorticity(self.var.state)

    def diagnostics(self, var, t):
        """ should provide at least 'maxspeed' (for cfl determination) """

        if t == 0.:
            # since the flow is prescribed, compute it only at t=0
            u = var.get('u')
            v = var.get('v')
            ke, maxu = fd.computekemaxu(self.msk, u, v, self.nh)

            cst = self.mpitools.local_to_global([(maxu, 'max'), (ke, 'sum')])
            self.diags['maxspeed'] = cst[0]
            self.diags['ke'] = cst[1] / self.area
            self.diags['enstrophy'] = 0.

        trac = var.get('tracer')

        z, z2 = fd.computesumandnorm(self.msk, trac, self.nh)

        cst = self.mpitools.local_to_global([(z, 'sum'), (z2, 'sum')])

        z = cst[0] / self.area
        z2 = cst[1] / self.area

        self.diags['mean'] = z
        self.diags['rms'] = np.sqrt(z2)
Ejemplo n.º 20
0
    def __init__(self, param, grid):

        self.list_param = [
            'forcing', 'noslip', 'timestepping', 'diffusion', 'Kdiff',
            'myrank', 'forcing_module', 'gravity', 'isisland', 'customized',
            'custom_module', 'additional_tracer'
        ]
        param.copy(self, self.list_param)

        # for potential energy
        self.list_param = ['xr', 'yr', 'nh', 'Lx', 'msk', 'area', 'mpitools']
        grid.copy(self, self.list_param)

        # for variables
        param.varname_list = [
            'vorticity', 'psi', 'u', 'v', 'buoyancy', 'banom'
        ]
        param.tracer_list = ['vorticity', 'buoyancy']
        param.whosetspsi = ('vorticity')

        if hasattr(self, 'additional_tracer'):
            for k in range(len(self.additional_tracer)):
                trac = self.additional_tracer[k]
                param.varname_list.append(trac)
                param.tracer_list.append(trac)

        param.sizevar = [grid.nyl, grid.nxl]
        self.var = Var(param)
        bref = self.var.get('buoyancy').copy()
        self.bref = bref
        self.source = np.zeros(param.sizevar)

        # for operators
        self.ope = Operators(param, grid)

        # for timescheme
        self.tscheme = Timescheme(param, self.var.state)
        self.tscheme.set(self.dynamics, self.timestepping)

        if self.forcing:
            if self.forcing_module == 'embedded':
                self.msg_forcing = (
                    'To make Fluid2d aware of your embedded forcing\n' +
                    'you need to add in the user script \n' +
                    'model.forc = Forcing(param, grid)\n' +
                    'right below the line: model = f2d.model')

                pass
            else:
                try:
                    f = import_module(self.forcing_module)
                except ImportError:
                    print('module %s for forcing cannot be found' %
                          self.forcing_module)
                    print('make sure file **%s.py** exists' %
                          self.forcing_module)
                    exit(0)
                self.forc = f.Forcing(param, grid)

        self.diags = {}

        if self.customized:
            try:
                f = import_module(self.custom_module)
                print(f)
                self.extrastep = f.Step(param, grid)
            except ImportError:
                print('module %s for forcing cannot be found' %
                      self.custom_module)
                print('make sure file **%s.py** exists' % self.custom_module)
                exit(0)
Ejemplo n.º 21
0
class SQG(object):
    """ Surface Quasi-Geostrophic model

    The prognostic variable is 'pv'. It is the surface PV

    The streamfunction is computed in the Fourier space

    The geometry must be biperiodic

    This model does not support multicores (because of the fft)

    """
    def __init__(self, param, grid):
        self.list_param = [
            'forcing', 'diffusion', 'Kdiff', 'timestepping', 'ageostrophic',
            'forcing_module', 'geometry'
        ]
        param.copy(self, self.list_param)

        # for diagnostics
        self.list_param = ['yr', 'nh', 'msk', 'area', 'mpitools']
        grid.copy(self, self.list_param)
        assert grid.geometry == "perio", "SQG imposes a biperiodic domain"

        assert param.ageostrophic == False, "Ageostrophic velocity not yet tested"

        # for variables
        param.varname_list = ['pv', 'psi', 'u', 'v', 'vorticity']

        if param.ageostrophic:
            # TODO: not yet tested for SQG
            param.varname_list += ['ua', 'va']

        param.sizevar = [grid.nyl, grid.nxl]
        self.var = Var(param)
        self.source = np.zeros(param.sizevar)

        self.ipv = self.var.varname_list.index('pv')
        self.ivor = self.var.varname_list.index('vorticity')
        self.ipsi = self.var.varname_list.index('psi')

        # for operators
        param.tracer_list = ['pv']

        if param.ageostrophic:
            param.tracer_list += ['ua', 'va']

        param.whosetspsi = ('pv')
        param.sqgoperator = True
        self.ope = Operators(param, grid)

        # for timescheme
        self.tscheme = Timescheme(param, self.var.state)
        self.dx0 = self.tscheme.dx0

        self.kt = 0

        if self.forcing:
            if self.forcing_module == 'embedded':
                print(
                    'Warning: check that you have indeed added the forcing to the model'
                )
                print('Right below the line    : model = f2d.model')
                print(
                    'you should have the line: model.forc = Forcing(param, grid)'
                )

                pass
            else:
                try:
                    f = import_module(self.forcing_module)

                except ImportError:
                    print('module %s for forcing cannot be found' %
                          self.forcing_module)
                    print('make sure file **%s.py** exists' %
                          self.forcing_module)
                    sys.exit(0)

                self.forc = f.Forcing(param, grid)

        self.diags = {}

        self.tscheme.set(self.dynamics, self.timestepping)

    def step(self, t, dt):
        """Integrate the model over one time step dt"""

        if self.ageostrophic:
            iu = self.var.varname_list.index('u')
            iv = self.var.varname_list.index('v')
            iua = self.var.varname_list.index('ua')
            iva = self.var.varname_list.index('va')

            self.var.state[iua][:, :] = self.var.state[iu].copy()
            self.var.state[iva][:, :] = self.var.state[iv].copy()

        self.dt = dt
        # 1/ integrate advection
        self.tscheme.forward(self.var.state, t, dt)

        self.set_psi_from_pv()

        if self.ageostrophic:
            """ diagnose the ageostrophic velocity (factor 1/f missing)

            du/dt + J(psi, u) = +f va + (pvback)*vg
            dv/dt + J(psi, v) = -f ua - (pvback)*ug

            implementation:

            - store u in 'ua'
            - step ua
            - compare update u (real u diagnosed from psi) with updated 'ua'
            - the difference is the ageostrophic velocity

            Yet to be done: implement the proper staggering, 'u' and
            'v' sit on edges while the advection scheme assumes cell
            centers quantities  """
            ug = self.var.state[iu]
            vg = self.var.state[iv]
            ua = -(vg - self.var.state[iva]) / dt - self.pvback * ug
            va = +(ug - self.var.state[iua]) / dt - self.pvback * vg
            self.var.state[iva][:, :] = va.copy()
            self.var.state[iua][:, :] = ua.copy()

    def dynamics(self, x, t, dxdt):
        """Compute the tendency terms + invert the streamfunction"""

        dxdt[:] = 0.
        self.ope.rhs_adv(x, t, dxdt)
        if (self.tscheme.kstage == self.tscheme.kforcing):
            if self.forcing:
                self.forc.add_forcing(x, t, dxdt)
            if self.diffusion:
                self.ope.rhs_diffusion(x, t, dxdt)

        else:
            self.ope.fourier_invert_vorticity(dxdt, flag='fast')

    def set_psi_from_pv(self):
        """Solve the elliptic equation for the streamfunction

        The unknown of the Helmholtz equation is the PV anomaly,
        not the full PV"""

        self.ope.fourier_invert_vorticity(self.var.state, flag='full')

    def diagnostics(self, var, t):
        """Integral diagnostics for the SQG model

        should provide at least 'maxspeed' (for cfl determination)

        WARNING: the diag for KE and APE are wrong. A SQG flow is 3D
        the integration should be carried over in the Fourier space

        The total PV should be conserved (in the absence of external
        forcing) and the enstrophy should be conserved as long as the
        flow is not developping filaments (grid-scale enstrophy). The
        numerical dissipation wipes out Filaments which yields
        enstrophy dissipation.

        """

        u = var.get('u')
        v = var.get('v')
        trac = var.get('pv')
        psi = var.get('psi')

        #fo.cornertocell(psi, self.ope.work)
        #psim, psi2 = fd.computesumandnorm(self.msk, self.ope.work, self.nh)
        #ape = 0.5 * psi2 / self.Rd**2

        ke, maxu = fd.computekemaxu(self.msk, u, v, self.nh)

        z, z2 = fd.computesumandnorm(self.msk, trac, self.nh)

        cst = self.mpitools.local_to_global([(maxu, 'max'), (ke, 'sum'),
                                             (z, 'sum'), (z2, 'sum')])

        self.diags['maxspeed'] = cst[0]
        self.diags['ke'] = cst[1] / self.area
        self.diags['pv'] = cst[2] / self.area
        self.diags['pv2'] = 0.5 * cst[3] / self.area
Ejemplo n.º 22
0
    def __init__(self, param, grid):
        self.list_param = [
            'forcing', 'diffusion', 'Kdiff', 'timestepping', 'ageostrophic',
            'forcing_module', 'geometry'
        ]
        param.copy(self, self.list_param)

        # for diagnostics
        self.list_param = ['yr', 'nh', 'msk', 'area', 'mpitools']
        grid.copy(self, self.list_param)
        assert grid.geometry == "perio", "SQG imposes a biperiodic domain"

        assert param.ageostrophic == False, "Ageostrophic velocity not yet tested"

        # for variables
        param.varname_list = ['pv', 'psi', 'u', 'v', 'vorticity']

        if param.ageostrophic:
            # TODO: not yet tested for SQG
            param.varname_list += ['ua', 'va']

        param.sizevar = [grid.nyl, grid.nxl]
        self.var = Var(param)
        self.source = np.zeros(param.sizevar)

        self.ipv = self.var.varname_list.index('pv')
        self.ivor = self.var.varname_list.index('vorticity')
        self.ipsi = self.var.varname_list.index('psi')

        # for operators
        param.tracer_list = ['pv']

        if param.ageostrophic:
            param.tracer_list += ['ua', 'va']

        param.whosetspsi = ('pv')
        param.sqgoperator = True
        self.ope = Operators(param, grid)

        # for timescheme
        self.tscheme = Timescheme(param, self.var.state)
        self.dx0 = self.tscheme.dx0

        self.kt = 0

        if self.forcing:
            if self.forcing_module == 'embedded':
                print(
                    'Warning: check that you have indeed added the forcing to the model'
                )
                print('Right below the line    : model = f2d.model')
                print(
                    'you should have the line: model.forc = Forcing(param, grid)'
                )

                pass
            else:
                try:
                    f = import_module(self.forcing_module)

                except ImportError:
                    print('module %s for forcing cannot be found' %
                          self.forcing_module)
                    print('make sure file **%s.py** exists' %
                          self.forcing_module)
                    sys.exit(0)

                self.forc = f.Forcing(param, grid)

        self.diags = {}

        self.tscheme.set(self.dynamics, self.timestepping)
Ejemplo n.º 23
0
class Euler(object):
    """ Euler model

    It provides the step(t,dt) function
    and 'var' containing the mode state
    """
    def __init__(self, param, grid):

        self.list_param = [
            'forcing', 'noslip', 'timestepping', 'diffusion', 'Kdiff',
            'forcing_module', 'additional_tracer', 'enforce_momentum',
            'var_to_save', 'customized', 'custom_module', 'spongelayer'
        ]
        param.copy(self, self.list_param)

        # for diagnostics
        self.list_param = [
            'yr', 'nh', 'msk', 'area', 'mpitools', 'dx', 'xr', 'yr', 'r2',
            'x0', 'y0', 'x2', 'y2', 'isisland', 'Lx', 'ny'
        ]
        grid.copy(self, self.list_param)

        # for variables
        param.varname_list = ['vorticity', 'psi', 'u', 'v',
                              'source']  # ,'tauw','wshear']
        param.tracer_list = ['vorticity']
        param.whosetspsi = ('vorticity')

        if 'tauw' in self.var_to_save:
            param.varname_list.append('tauw')

        if 'wshear' in self.var_to_save:
            param.varname_list.append('wshear')

        if hasattr(self, 'additional_tracer'):
            for k in range(len(self.additional_tracer)):
                trac = self.additional_tracer[k]
                param.varname_list.append(trac)
                param.tracer_list.append(trac)

        param.sizevar = [grid.nyl, grid.nxl]
        self.var = Var(param)
        self.work = np.zeros(param.sizevar)

        # for timing the code
        self.timers = Timers(param)

        # for operators
        self.ope = Operators(param, grid)

        # for timescheme
        self.tscheme = Timescheme(param, self.var.state)
        self.tscheme.set(self.dynamics, self.timestepping)

        if self.forcing:
            if self.forcing_module == 'embedded':
                print(
                    'Warning: check that you have indeed added the forcing to the model'
                )
                print('Right below the line    : model = f2d.model')
                print(
                    'you should have the line: model.forc = Forcing(param, grid)'
                )

                pass
            else:
                try:
                    f = import_module(self.forcing_module)
                except ImportError:
                    print('module %s for forcing cannot be found' %
                          self.forcing_module)
                    print('make sure file **%s.py** exists' %
                          self.forcing_module)
                    exit(0)
                self.forc = f.Forcing(param, grid)

        if self.spongelayer:
            # sponge layer zone [0 = full sponge, 1 = no sponge]
            self.spongemsk = (1 - (1 + np.tanh(
                (self.xr - self.Lx) / 0.1)) * 0.5)

        self.diags = {}

        if self.customized:
            try:
                f = import_module(self.custom_module)
                self.extrastep = f.Step(param, grid)
            except ImportError:
                print('module %s for forcing cannot be found' %
                      self.custom_module)
                print('make sure file **%s.py** exists' % self.custom_module)
                exit(0)

    def step(self, t, dt):

        # 1/ integrate dynamics
        self.tscheme.forward(self.var.state, t, dt)

        # 2/ integrate source
        if self.noslip:
            self.add_noslip(self.var.state)
            source = self.var.get('source')
            source /= dt
            if 'tauw' in self.var_to_save:
                tauw = self.var.get('tauw')
                tauw[:, :] = source * self.dx * self.dx

            if 'wshear' in self.var_to_save:
                wshear = self.var.get('wshear')
                self.ope.wallshear(self.var.state, self.work)
                wshear[:, :] = self.work

        if self.customized:
            self.extrastep.do(self.var, t, dt)

        # # 3/ dye tracer
        if 'dye' in self.var.varname_list:
            i, jp, jm = 1, self.ny // 2 + 3, self.ny // 2 - 3

            dye = self.var.get('dye')
            dye[jp + self.nh, i] = 1
            dye[jm + self.nh, i] = -1

        if 'age' in self.var.varname_list:
            age = self.var.get('age')
            age += dt * self.msk
            age[:, self.nh] = 0.

        if self.spongelayer:
            # 4/ sponge layer
            w = self.var.get('vorticity')
            w *= self.spongemsk
            if 'dye' in self.var.varname_list:
                dye *= self.spongemsk
            if 'age' in self.var.varname_list:
                age *= self.spongemsk

        #self.set_psi_from_vorticity()

    def dynamics(self, x, t, dxdt):
        """Compute the tendency terms + invert the streamfunction"""

        self.timers.tic('rhs_adv')
        self.ope.rhs_adv(x, t, dxdt)
        self.timers.toc('rhs_adv')

        if (self.tscheme.kstage == self.tscheme.kforcing):
            if self.forcing:
                self.forc.add_forcing(x, t, dxdt)

            if self.diffusion:
                self.ope.rhs_diffusion(x, t, dxdt)

                #        else:
        self.timers.tic('invert')
        self.ope.invert_vorticity(dxdt, flag='fast')
        self.timers.toc('invert')

    def add_noslip(self, x):
        self.timers.tic('noslip')
        source = self.var.get('source')
        self.ope.rhs_noslip(x, source)
        self.timers.toc('noslip')

        # if not(self.enforce_momentum):
        self.timers.tic('invert')
        self.ope.invert_vorticity(x, flag='fast', island=self.isisland)
        self.timers.toc('invert')

    def set_psi_from_vorticity(self):
        self.ope.invert_vorticity(self.var.state, island=self.isisland)

    def diagnostics(self, var, t):
        """ should provide at least 'maxspeed' (for cfl determination) """
        self.timers.tic('diag')
        u = var.get('u')
        v = var.get('v')
        trac = var.get('vorticity')
        psi = var.get('psi')
        source = self.var.get('source')

        xr = self.xr
        yr = self.yr

        ke, maxu = fd.computekemaxu(self.msk, u, v, self.nh)
        # ke = fd.computekewithpsi(self.msk, trac, psi, self.nh)

        z, z2 = fd.computesumandnorm(self.msk, trac, self.nh)

        px = fd.computedotprod(self.msk, trac, xr, self.nh)
        py = fd.computedotprod(self.msk, trac, yr, self.nh)

        angmom = fd.computesum(self.msk, psi, self.nh)
        sce = fd.computedotprod(self.msk, trac, source, self.nh)

        cst = self.mpitools.local_to_global([(maxu, 'max'), (ke, 'sum'),
                                             (z, 'sum'), (z2, 'sum'),
                                             (px, 'sum'), (py, 'sum'),
                                             (angmom, 'sum'), (sce, 'sum')])

        self.diags['maxspeed'] = cst[0]
        self.diags['ke'] = cst[1] / self.area
        self.diags['vorticity'] = cst[2] / self.area
        self.diags['enstrophy'] = 0.5 * cst[3] / self.area
        self.diags['px'] = cst[4] / self.area
        self.diags['py'] = cst[5] / self.area
        self.diags['angmom'] = cst[6] / self.area
        self.diags['source'] = cst[7] / self.area

        self.timers.toc('diag')
Ejemplo n.º 24
0
class QG(object):
    """Quasi-geostrophic model

    The prognostic variable is 'pv'. It is the full PV, which includes
    the planetary background PV 'pvback'. Full PV is materially
    conserved unlike the PV anamoly that has a beta*v source term

    """

    def __init__(self, param, grid):
        self.list_param = ['forcing', 'diffusion', 'Kdiff', 'noslip',
                           'timestepping', 'beta', 'Rd', 'ageostrophic',
                           'bottom_torque',
                           'forcing_module']
        param.copy(self, self.list_param)

        # for diagnostics
        self.list_param = ['yr', 'nh', 'msk', 'area', 'mpitools',  'isisland']
        grid.copy(self, self.list_param)

        # for variables
        param.varname_list = ['pv', 'psi', 'u', 'v', 'pvanom', 'vorticity']

        if param.bottom_torque:
            param.varname_list += ['btorque']

        if param.ageostrophic:
            param.varname_list += ['ua', 'va']

        param.sizevar = [grid.nyl, grid.nxl]
        self.var = Var(param)
        self.source = np.zeros(param.sizevar)

        self.ipva = self.var.varname_list.index('pvanom')
        self.ipv = self.var.varname_list.index('pv')
        self.ivor = self.var.varname_list.index('vorticity')
        self.ipsi = self.var.varname_list.index('psi')

        # background pv
        self.pvback = self.beta*(grid.yr-grid.Ly*.5)*grid.msk

        # for operators
        param.tracer_list = ['pv']
        if param.bottom_torque:
            param.tracer_list += ['btorque']

        if param.ageostrophic:
            param.tracer_list += ['ua', 'va']

        param.whosetspsi = ('pvanom')
        param.qgoperator = True
        self.ope = Operators(param, grid)

        # for timescheme
        self.tscheme = Timescheme(param, self.var.state)
        self.dx0 = self.tscheme.dx0

        self.kt = 0

        if self.forcing:
            if self.forcing_module == 'embedded':
                print('Warning: check that you have indeed added the forcing to the model')
                print('Right below the line    : model = f2d.model')
                print('you should have the line: model.forc = Forcing(param, grid)')

                pass
            else:
                try:
                    f = import_module(self.forcing_module)

                except ImportError:
                    print('module %s for forcing cannot be found'
                          % self.forcing_module)
                    print('make sure file **%s.py** exists' % self.forcing_module)
                    sys.exit(0)

                self.forc = f.Forcing(param, grid)

        self.diags = {}

        self.tscheme.set(self.dynamics, self.timestepping)

    def step(self, t, dt):
        """Integrate the model over one time step dt"""

        if self.bottom_torque:
            ibt = self.var.varname_list.index('btorque')
            self.var.state[ibt][:, :] = self.pvback

        if self.ageostrophic:
            iu = self.var.varname_list.index('u')
            iv = self.var.varname_list.index('v')
            iua = self.var.varname_list.index('ua')
            iva = self.var.varname_list.index('va')

            self.var.state[iua][:, :] = self.var.state[iu].copy()
            self.var.state[iva][:, :] = self.var.state[iv].copy()

        self.dt = dt
        # 1/ integrate advection
        self.tscheme.forward(self.var.state, t, dt)

        # 2/ integrate source
        if self.noslip:
            self.add_noslip(self.var.state)

        # self.set_psi_from_pv()
        
        # 3/ diagnostic fields
        self.var.state[self.ipva] = self.var.state[self.ipv] - self.pvback
        self.var.state[self.ivor] = (self.var.state[self.ipva]
                                     - (self.Rd**-2)*self.var.state[self.ipsi])

        if self.bottom_torque:
            """ diagnose the bottom torque btorque = -J(psi, htopo)

            in practice it is obtained as (htopo^{n+1}-htopo^n)/dt by
            using the 'btorque' entry in var.state and transport it"""
            self.var.state[ibt][:, :] = (self.var.state[ibt][:, :]
                                         - self.pvback)/dt

        if self.ageostrophic:
            """ diagnose the ageostrophic velocity (factor 1/f missing)

            du/dt + J(psi, u) = +f va + (pvback)*vg
            dv/dt + J(psi, v) = -f ua - (pvback)*ug

            implementation:

            - store u in 'ua'
            - step ua
            - compare update u (real u diagnosed from psi) with updated 'ua'
            - the difference is the ageostrophic velocity

            Yet to be done: implement the proper staggering, 'u' and
            'v' sit on edges while the advection scheme assumes cell
            centers quantities  """
            ug = self.var.state[iu]
            vg = self.var.state[iv]
            ua = -(vg - self.var.state[iva])/dt - self.pvback*ug
            va = +(ug - self.var.state[iua])/dt - self.pvback*vg
            self.var.state[iva][:, :] = va.copy()
            self.var.state[iua][:, :] = ua.copy()

    def dynamics(self, x, t, dxdt):
        """Compute the tendency terms + invert the streamfunction"""

        dxdt[:] = 0.
        self.ope.rhs_adv(x, t, dxdt)
        if (self.tscheme.kstage == self.tscheme.kforcing):
            if self.forcing:
                self.forc.add_forcing(x, t, dxdt)
            if self.diffusion:
                self.ope.rhs_diffusion(x, t, dxdt)

        else:
            dxdt[self.ipva] = dxdt[self.ipv]
            self.ope.invert_vorticity(dxdt, flag='fast', island=self.isisland)

    def add_noslip(self, x):
        """Add the no-slip term """

        self.ope.rhs_noslip(x, self.source)
        self.ope.invert_vorticity(x, flag='fast', island=self.isisland)

    def add_backgroundpv(self):
        self.var.state[self.ipv] += self.pvback

    def set_psi_from_pv(self):
        """Solve the elliptic equation for the streamfunction

        The unknown of the Helmholtz equation is the PV anomaly,
        not the full PV"""

        state = self.var.state
        state[self.ipva] = state[self.ipv] - self.pvback
        self.ope.invert_vorticity(self.var.state, flag='full', island=self.isisland)

    def diagnostics(self, var, t):
        """ Integral diagnostics for the QG model

        should provide at least 'maxspeed' (for cfl determination) """

        u = var.get('u')
        v = var.get('v')
        trac = var.get('pv')
        psi = var.get('psi')

        fo.cornertocell(psi, self.ope.work)
        psim, psi2 = fd.computesumandnorm(self.msk, self.ope.work, self.nh)
        ape = 0.5 * psi2 / self.Rd**2

        ke, maxu = fd.computekemaxu(self.msk, u, v, self.nh)

        z, z2 = fd.computesumandnorm(self.msk, trac, self.nh)

        cst = self.mpitools.local_to_global([(maxu, 'max'),
                                             (ke, 'sum'),
                                             (z, 'sum'),
                                             (z2, 'sum'),
                                             (ape, 'sum')])

        self.diags['maxspeed'] = cst[0]
        self.diags['ke'] = cst[1] / self.area
        self.diags['pv'] = cst[2] / self.area
        self.diags['pv2'] = 0.5*cst[3] / self.area
        self.diags['ape'] = cst[4] / self.area
        self.diags['energy'] = (cst[1]+cst[4]) / self.area
Ejemplo n.º 25
0
class Thermalwind(Param):
    """ Thermal wind model

    It provides the step(t,dt) function
    and 'var' containing the mode state
    """
    def __init__(self, param, grid):

        self.list_param = [
            'forcing', 'noslip', 'timestepping', 'forcing_module',
            'additional_tracer', 'myrank', 'gravity', 'diffusion', 'Kdiff',
            'f0'
        ]
        param.copy(self, self.list_param)

        # for potential energy
        self.list_param = [
            'xr', 'yr', 'nh', 'Lx', 'msk', 'area', 'mpitools', 'dx'
        ]
        grid.copy(self, self.list_param)

        # for variables
        param.varname_list = [
            'vorticity', 'psi', 'u', 'v', 'buoyancy', 'V', 'qE'
        ]
        param.tracer_list = ['vorticity', 'buoyancy', 'V']
        param.whosetspsi = ('vorticity')

        if hasattr(self, 'additional_tracer'):
            for k in range(len(self.additional_tracer)):
                trac = self.additional_tracer[k]
                param.varname_list.append(trac)
                param.tracer_list.append(trac)

        param.sizevar = [grid.nyl, grid.nxl]
        self.var = Var(param)

        # for operators
        self.ope = Operators(param, grid)

        # for timescheme
        self.tscheme = Timescheme(param, self.var.state)

        if self.forcing:
            try:
                f = import_module(self.forcing_module)
            except:
                print('module %s for forcing cannot be found' %
                      self.forcing_module)
                print('make sure file **%s.py** exists' % self.forcing_module)
                exit(0)

            self.forc = f.Forcing(param, grid)

        self.diags = {}

    def step(self, t, dt):

        # 1/ integrate advection
        self.tscheme.set(self.dynamics, self.timestepping)
        self.tscheme.forward(self.var.state, t, dt)

        # 2/ integrate source
        if self.forcing or self.noslip:
            self.tscheme.set(self.sources, 'EF')
            self.tscheme.forward(self.var.state, t, dt)

        self.compute_pv()

    def compute_pv(self):
        qE = self.var.get('qE')
        v = self.var.get('V')
        b = self.var.get('buoyancy')

        # Ertel PV
        y = qE * 0.
        y[1:-1, 1:-1] = self.ope.jacobian(v + self.f0 * self.xr, b)
        y *= self.msk
        self.ope.fill_halo(y)
        qE[:, :] = y

    def dynamics(self, x, t, dxdt):
        self.ope.rhs_adv(x, t, dxdt)
        self.ope.rhs_thermalwind(x, t, dxdt)  # add the r.h.s. terms
        if (self.tscheme.kstage == self.tscheme.kforcing):
            if self.forcing:
                self.forc.add_forcing(x, t, dxdt)
            if self.diffusion:
                self.ope.rhs_diffusion(x, t, dxdt)

        self.ope.invert_vorticity(dxdt, flag='fast')

    def sources(self, x, t, dxdt):
        if self.noslip:
            self.ope.rhs_noslip(x, t, dxdt)
            self.ope.invert_vorticity(x, flag='full')

    def set_psi_from_vorticity(self):
        self.ope.invert_vorticity(self.var.state)

    def diagnostics(self, var, t):
        """ should provide at least 'maxspeed' (for cfl determination) """

        nh = self.nh
        u = var.get('u')
        v = var.get('v')
        vort = var.get('vorticity')
        buoy = var.get('buoyancy')
        V = var.get('V')
        qE = var.get('qE')
        qEneg = qE.copy()
        qEneg[qE > 0] = 0.

        ke, maxu = fd.computekemaxu(self.msk, u, v, self.nh)

        z, z2 = fd.computesumandnorm(self.msk, vort, self.nh)

        b, b2 = fd.computesumandnorm(self.msk, buoy, self.nh)

        vm, v2 = fd.computesumandnorm(self.msk, V, self.nh)

        q, q2 = fd.computesumandnorm(self.msk, qE, self.nh)
        qn, qn2 = fd.computesumandnorm(self.msk, qEneg, self.nh)

        # potential energy (minus sign because buoyancy is minus density)
        pe = fd.computesum(self.msk, buoy * self.yr, nh)
        pe = -self.gravity * pe

        cst = self.mpitools.local_to_global([(maxu, 'max'), (ke, 'sum'),
                                             (z, 'sum'), (z2, 'sum'),
                                             (pe, 'sum'), (b, 'sum'),
                                             (b2, 'sum'), (q, 'sum'),
                                             (q2, 'sum'), (qn, 'sum'),
                                             (qn2, 'sum'), (v2, 'sum')])

        a = self.area
        self.diags['maxspeed'] = cst[0]
        self.diags['ke'] = (cst[1]) / a
        self.diags['keV'] = (0.5 * cst[11]) / a
        self.diags['pe'] = cst[4] / a
        self.diags[
            'energy'] = self.diags['ke'] + self.diags['pe'] + self.diags['keV']

        self.diags['vorticity'] = cst[2] / a
        self.diags['enstrophy'] = 0.5 * cst[3] / a

        bm = cst[5] / a
        self.diags['buoyancy'] = bm
        self.diags['brms'] = sqrt(cst[6] / a - bm**2)

        pvm = cst[7] / a
        pvneg_mean = cst[9] / a
        self.diags['pv_mean'] = pvm
        self.diags['pv_std'] = sqrt(cst[8] / a - pvm**2)
        self.diags['pvneg_mean'] = pvneg_mean
        self.diags['pvneg_std'] = sqrt(cst[10] / a - pvneg_mean**2)
Ejemplo n.º 26
0
    def __init__(self, param, grid):

        self.list_param = [
            'forcing', 'noslip', 'timestepping', 'diffusion', 'Kdiff',
            'myrank', 'forcing_module', 'gravity', 'isisland', 'customized',
            'custom_module', 'additional_tracer'
        ]
        param.copy(self, self.list_param)

        # for potential energy
        self.list_param = ['xr', 'yr', 'nh', 'Lx', 'msk', 'area', 'mpitools']
        grid.copy(self, self.list_param)

        # for variables
        param.varname_list = [
            'vorticity', 'psi', 'u', 'v', 'buoyancy', 'banom'
        ]
        param.tracer_list = ['vorticity', 'buoyancy']
        param.whosetspsi = ('vorticity')

        if hasattr(self, 'additional_tracer'):
            for k in range(len(self.additional_tracer)):
                trac = self.additional_tracer[k]
                param.varname_list.append(trac)
                param.tracer_list.append(trac)

        param.sizevar = [grid.nyl, grid.nxl]
        self.var = Var(param)
        bref = self.var.get('buoyancy').copy()
        self.bref = bref
        self.source = np.zeros(param.sizevar)

        # for operators
        self.ope = Operators(param, grid)

        # for timescheme
        self.tscheme = Timescheme(param, self.var.state)
        self.tscheme.set(self.dynamics, self.timestepping)

        if self.forcing:
            if hasattr(self, 'forcing_module'):
                f = import_module(self.forcing_module)
                self.forc = f.Forcing(param, grid)
            else:
                if self.myrank == 0:
                    print('-' * 50)
                    print('did not find an external forcing module')
                    print(
                        'make sure file you define a class Forcing() in your script'
                    )
                    print('and that you attach it.')
                    print(
                        'You should have the following line before f2d.loop()')
                    print('model.forc = Forcing(param, grid)')

        self.diags = {}

        if self.customized:
            try:
                f = import_module(self.custom_module)
                print(f)
                self.extrastep = f.Step(param, grid)
            except ImportError:
                print('module %s for forcing cannot be found' %
                      self.custom_module)
                print('make sure file **%s.py** exists' % self.custom_module)
                exit(0)