Ejemplo n.º 1
0
def run(fns_in, fnout, tile_json_fn, verbose=False):
    # modified in place
    tilej = json.load(open(tile_json_fn, 'r'))

    for fnin in fns_in:
        Ads, bs = loadc_Ads_bs([fnin], ico=True)
        bounds = Ads2bounds(Ads, bs)

        for tile in tilej['tiles'].values():
            pips = tile['pips']
            for k, v in pips.items():
                pips[k] = bounds.get('PIP_' + v, [None, None, None, None])

            wires = tile['wires']
            for k, v in wires.items():
                wires[k] = bounds.get('WIRE_' + v, [None, None, None, None])

    timfuz.tilej_stats(tilej)

    json.dump(
        tilej,
        open(fnout, 'w'),
        sort_keys=True,
        indent=4,
        separators=(',', ': '))
Ejemplo n.º 2
0
def gen_flat(fns_in, sub_json, corner=None):
    Ads, bs = loadc_Ads_bs(fns_in, ico=True)
    bounds = Ads2bounds(Ads, bs)
    zeros = set()
    nonzeros = set()

    for bound_name, bound_bs in bounds.items():
        sub = sub_json['subs'].get(bound_name, None)
        if sub:
            # put entire delay into pivot
            pivot = sub_json['pivots'][bound_name]
            assert pivot not in zeros
            nonzeros.add(pivot)
            non_pivot = set(sub.keys() - set([pivot]))
            #for name in non_pivot:
            #    assert name not in nonzeros, (pivot, name, nonzeros)
            zeros.update(non_pivot)
            yield pivot, bound_bs
        else:
            nonzeros.add(bound_name)
            yield bound_name, bound_bs
    # non-pivots can appear multiple times, but they should always be zero
    # however, due to substitution limitations, just warn
    violations = zeros.intersection(nonzeros)
    if len(violations):
        print('WARNING: %s non-0 non-pivot' % (len(violations)))

    # XXX: how to best handle these?
    # should they be fixed 0?
    if corner:
        zero_row = [None, None, None, None]
        zero_row[corner_s2i[corner]] = 0
        for zero in zeros - violations:
            yield zero, zero_row
Ejemplo n.º 3
0
def gen_flat(fns_in, sub_json, corner=None):
    Ads, bs = loadc_Ads_bs(fns_in)
    bounds = Ads2bounds(Ads, bs)
    # Elements with zero delay assigned due to sub group
    group_zeros = set()
    # Elements with a concrete delay
    nonzeros = set()

    if corner:
        zero_row = [None, None, None, None]
        zero_row[corner_s2i[corner]] = 0
    else:
        zero_row = None

    for bound_name, bound_bs in bounds.items():
        sub = sub_json['subs'].get(bound_name, None)
        if bound_name in sub_json['zero_names']:
            if zero_row:
                yield bound_name, 0
        elif sub:
            #print('sub', sub)
            # put entire delay into pivot
            pivot = sub_json['pivots'][bound_name]
            assert pivot not in group_zeros
            nonzeros.add(pivot)
            non_pivot = set(sub.keys() - set([pivot]))
            #for name in non_pivot:
            #    assert name not in nonzeros, (pivot, name, nonzeros)
            group_zeros.update(non_pivot)
            #print('yield PIVOT', pivot)
            yield pivot, bound_bs
        else:
            nonzeros.add(bound_name)
            yield bound_name, bound_bs
    # non-pivots can appear multiple times, but they should always be zero
    # however, due to substitution limitations, just warn
    violations = group_zeros.intersection(nonzeros)
    if len(violations):
        print('WARNING: %s non-0 non-pivot' % (len(violations)))

    # XXX: how to best handle these?
    # should they be fixed 0?
    if zero_row:
        # ZERO names should always be zero
        #print('ZEROs: %u' % len(sub_json['zero_names']))
        for zero in sub_json['zero_names']:
            #print('yield ZERO', zero)
            yield zero, zero_row

        real_zeros = group_zeros - violations
        print(
            'Zero candidates: %u w/ %u non-pivot conflicts => %u zeros as solved'
            % (len(group_zeros), len(violations), len(real_zeros)))
        # Only yield elements not already yielded
        for zero in real_zeros:
            #print('yield solve-0', zero)
            yield zero, zero_row
Ejemplo n.º 4
0
def run(fns_in, fnout, tile_json_fn, verbose=False):
    # modified in place
    tilej = json.load(open(tile_json_fn, 'r'))

    for fnin in fns_in:
        Ads, bs = loadc_Ads_bs([fnin])
        bounds = Ads2bounds(Ads, bs)
        bounds_pw, bounds_sites = sep_bounds(bounds)
        print(len(bounds), len(bounds_pw), len(bounds_sites))

        add_pip_wire(tilej, bounds_pw)
        add_sites(tilej, bounds_sites)

    timfuz.tilej_stats(tilej)

    json.dump(tilej,
              open(fnout, 'w'),
              sort_keys=True,
              indent=4,
              separators=(',', ': '))
Ejemplo n.º 5
0
def run(fns_in,
        corner,
        run_corner,
        sub_json=None,
        bounds_csv=None,
        dedup=True,
        massage=False,
        outfn=None,
        verbose=False,
        **kwargs):
    print('Loading data')
    Ads, b = loadc_Ads_b(fns_in, corner, ico=True)

    # Remove duplicate rows
    # is this necessary?
    # maybe better to just add them into the matrix directly
    if dedup:
        oldn = len(Ads)
        iold = instances(Ads)
        Ads, b = simplify_rows(Ads, b, corner=corner)
        print('Simplify %u => %u rows' % (oldn, len(Ads)))
        print('Simplify %u => %u instances' % (iold, instances(Ads)))

    if sub_json:
        print('Sub: %u rows' % len(Ads))
        iold = instances(Ads)
        names_old = index_names(Ads)
        run_sub_json(Ads, sub_json, verbose=verbose)
        names = index_names(Ads)
        print("Sub: %u => %u names" % (len(names_old), len(names)))
        print('Sub: %u => %u instances' % (iold, instances(Ads)))
    else:
        names = index_names(Ads)
    '''
    Substitution .csv
    Special .csv containing one variable per line
    Used primarily for multiple optimization passes, such as different algorithms or additional constraints
    '''
    if bounds_csv:
        Ads2, b2 = loadc_Ads_b([bounds_csv], corner, ico=True)
        bounds = Ads2bounds(Ads2, b2)
        assert len(bounds), 'Failed to load bounds'
        rows_old = len(Ads)
        Ads, b = filter_bounds(Ads, b, bounds, corner)
        print('Filter bounds: %s => %s + %s rows' %
              (rows_old, len(Ads), len(Ads2)))
        Ads = Ads + Ads2
        b = b + b2
        assert len(Ads) or allow_zero_eqns()
        assert len(Ads) == len(b), 'Ads, b length mismatch'

    if verbose:
        print
        print_eqns(Ads, b, verbose=verbose)

        #print
        #col_dist(A_ubd, 'final', names)
    if massage:
        try:
            Ads, b = massage_equations(Ads, b, corner=corner)
        except SimplifiedToZero:
            if not allow_zero_eqns():
                raise
            print('WARNING: simplified to zero equations')
            Ads = []
            b = []

    print('Converting to numpy...')
    names, Anp = A_ds2np(Ads)
    run_corner(Anp,
               np.asarray(b),
               names,
               corner,
               outfn=outfn,
               verbose=verbose,
               **kwargs)