Ejemplo n.º 1
0
def build_loader(config):
    config.defrost()
    dataset_train, config.MODEL.NUM_CLASSES = build_dataset(is_train=True,
                                                            config=config)
    config.freeze()
    print(f"successfully build train dataset")
    dataset_val, _ = build_dataset(is_train=False, config=config)
    print(f"successfully build val dataset")

    # For Distrubuted Training
    # num_tasks = dist.get_world_size()
    # global_rank = dist.get_rank()
    # if config.DATA.ZIP_MODE and config.DATA.CACHE_MODE == 'part':
    #     indices = np.arange(dist.get_rank(), len(dataset_train), dist.get_world_size())
    #     sampler_train = SubsetRandomSampler(indices)
    # else:
    #     sampler_train = torch.utils.data.DistributedSampler(
    #         dataset_train, num_replicas=num_tasks, rank=global_rank, shuffle=True
    #     )
    #
    # indices = np.arange(dist.get_rank(), len(dataset_val), dist.get_world_size())
    # sampler_val = SubsetRandomSampler(indices)

    sampler_train = RandomSampler(dataset_train)
    sampler_val = SequentialSampler(dataset_val)

    data_loader_train = torch.utils.data.DataLoader(
        dataset_train,
        sampler=sampler_train,
        batch_size=config.DATA.BATCH_SIZE,
        num_workers=config.DATA.NUM_WORKERS,
        pin_memory=config.DATA.PIN_MEMORY,
        drop_last=True,
    )

    data_loader_val = torch.utils.data.DataLoader(
        dataset_val,
        sampler=sampler_val,
        batch_size=config.DATA.BATCH_SIZE,
        shuffle=False,
        num_workers=config.DATA.NUM_WORKERS,
        pin_memory=config.DATA.PIN_MEMORY,
        drop_last=False)

    # setup mixup / cutmix
    mixup_fn = None
    mixup_active = config.AUG.MIXUP > 0 or config.AUG.CUTMIX > 0. or config.AUG.CUTMIX_MINMAX is not None
    if mixup_active:
        mixup_fn = Mixup(mixup_alpha=config.AUG.MIXUP,
                         cutmix_alpha=config.AUG.CUTMIX,
                         cutmix_minmax=config.AUG.CUTMIX_MINMAX,
                         prob=config.AUG.MIXUP_PROB,
                         switch_prob=config.AUG.MIXUP_SWITCH_PROB,
                         mode=config.AUG.MIXUP_MODE,
                         label_smoothing=config.MODEL.LABEL_SMOOTHING,
                         num_classes=config.MODEL.NUM_CLASSES)

    return dataset_train, dataset_val, data_loader_train, data_loader_val, mixup_fn
Ejemplo n.º 2
0
def build_loader(config):
    config.defrost()
    dataset_train, config.MODEL.NUM_CLASSES = build_dataset(is_train=True,
                                                            config=config)
    config.freeze()
    print(f"successfully build train dataset")
    dataset_val, _ = build_dataset(is_train=False, config=config)
    print(f"successfully build val dataset")

    # TODO: add sampler
    # sampler_train = RandomSampler(dataset_train)
    # sampler_val = SequentialSampler(dataset_val)

    data_loader_train = torch.utils.data.DataLoader(
        dataset_train,
        batch_size=config.DATA.BATCH_SIZE,
        num_workers=config.DATA.NUM_WORKERS,
        pin_memory=config.DATA.PIN_MEMORY,
        drop_last=True,
    )

    data_loader_val = torch.utils.data.DataLoader(
        dataset_val,
        batch_size=config.DATA.EVAL_BATCH_SIZE,
        shuffle=False,
        num_workers=config.DATA.NUM_WORKERS,
        pin_memory=config.DATA.PIN_MEMORY,
        drop_last=False)

    # setup mixup / cutmix
    mixup_fn = None
    mixup_active = config.AUG.MIXUP > 0 or config.AUG.CUTMIX > 0. or config.AUG.CUTMIX_MINMAX is not None
    if mixup_active:
        mixup_fn = Mixup(mixup_alpha=config.AUG.MIXUP,
                         cutmix_alpha=config.AUG.CUTMIX,
                         cutmix_minmax=config.AUG.CUTMIX_MINMAX,
                         prob=config.AUG.MIXUP_PROB,
                         switch_prob=config.AUG.MIXUP_SWITCH_PROB,
                         mode=config.AUG.MIXUP_MODE,
                         label_smoothing=config.MODEL.LABEL_SMOOTHING,
                         num_classes=config.MODEL.NUM_CLASSES)

    return dataset_train, dataset_val, data_loader_train, data_loader_val, mixup_fn
Ejemplo n.º 3
0
def main():
    setup_default_logging()
    args, args_text = _parse_args()

    args.prefetcher = not args.no_prefetcher
    args.distributed = False
    if 'WORLD_SIZE' in os.environ:
        args.distributed = int(os.environ['WORLD_SIZE']) > 1
    args.device = 'cuda:0'
    args.world_size = 1
    args.rank = 0  # global rank
    if args.distributed:
        args.device = 'cuda:%d' % args.local_rank
        torch.cuda.set_device(args.local_rank)
        torch.distributed.init_process_group(backend='nccl', init_method='env://')
        args.world_size = torch.distributed.get_world_size()
        args.rank = torch.distributed.get_rank()
        _logger.info('Training in distributed mode with multiple processes, 1 GPU per process. Process %d, total %d.'
                     % (args.rank, args.world_size))
    else:
        _logger.info('Training with a single process on 1 GPUs.')
    assert args.rank >= 0

    # resolve AMP arguments based on PyTorch / Apex availability
    use_amp = None
    if args.amp:
        # for backwards compat, `--amp` arg tries apex before native amp
        if has_apex:
            args.apex_amp = True
        elif has_native_amp:
            args.native_amp = True
    if args.apex_amp and has_apex:
        use_amp = 'apex'
    elif args.native_amp and has_native_amp:
        use_amp = 'native'
    elif args.apex_amp or args.native_amp:
        _logger.warning("Neither APEX or native Torch AMP is available, using float32. "
                        "Install NVIDA apex or upgrade to PyTorch 1.6")

    torch.manual_seed(args.seed + args.rank)

    ####################################################################################
    # Start - SparseML optional load weights from SparseZoo
    ####################################################################################
    if args.initial_checkpoint == "zoo":
        # Load checkpoint from base weights associated with given SparseZoo recipe
        if args.sparseml_recipe.startswith("zoo:"):
            args.initial_checkpoint = Zoo.download_recipe_base_framework_files(
                args.sparseml_recipe,
                extensions=[".pth.tar", ".pth"]
            )[0]
        else:
            raise ValueError(
                "Attempting to load weights from SparseZoo recipe, but not given a "
                "SparseZoo recipe stub.  When initial-checkpoint is set to 'zoo'. "
                "sparseml-recipe must start with 'zoo:' and be a SparseZoo model "
                f"stub. sparseml-recipe was set to {args.sparseml_recipe}"
            )
    elif args.initial_checkpoint.startswith("zoo:"):
        # Load weights from a SparseZoo model stub
        zoo_model = Zoo.load_model_from_stub(args.initial_checkpoint)
        args.initial_checkpoint = zoo_model.download_framework_files(extensions=[".pth"])
    ####################################################################################
    # End - SparseML optional load weights from SparseZoo
    ####################################################################################

    model = create_model(
        args.model,
        pretrained=args.pretrained,
        num_classes=args.num_classes,
        drop_rate=args.drop,
        drop_connect_rate=args.drop_connect,  # DEPRECATED, use drop_path
        drop_path_rate=args.drop_path,
        drop_block_rate=args.drop_block,
        global_pool=args.gp,
        bn_tf=args.bn_tf,
        bn_momentum=args.bn_momentum,
        bn_eps=args.bn_eps,
        scriptable=args.torchscript,
        checkpoint_path=args.initial_checkpoint)
    if args.num_classes is None:
        assert hasattr(model, 'num_classes'), 'Model must have `num_classes` attr if not set on cmd line/config.'
        args.num_classes = model.num_classes  # FIXME handle model default vs config num_classes more elegantly

    if args.local_rank == 0:
        _logger.info('Model %s created, param count: %d' %
                     (args.model, sum([m.numel() for m in model.parameters()])))

    data_config = resolve_data_config(vars(args), model=model, verbose=args.local_rank == 0)

    # setup augmentation batch splits for contrastive loss or split bn
    num_aug_splits = 0
    if args.aug_splits > 0:
        assert args.aug_splits > 1, 'A split of 1 makes no sense'
        num_aug_splits = args.aug_splits

    # enable split bn (separate bn stats per batch-portion)
    if args.split_bn:
        assert num_aug_splits > 1 or args.resplit
        model = convert_splitbn_model(model, max(num_aug_splits, 2))

    # move model to GPU, enable channels last layout if set
    model.cuda()
    if args.channels_last:
        model = model.to(memory_format=torch.channels_last)

    # setup synchronized BatchNorm for distributed training
    if args.distributed and args.sync_bn:
        assert not args.split_bn
        if has_apex and use_amp != 'native':
            # Apex SyncBN preferred unless native amp is activated
            model = convert_syncbn_model(model)
        else:
            model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model)
        if args.local_rank == 0:
            _logger.info(
                'Converted model to use Synchronized BatchNorm. WARNING: You may have issues if using '
                'zero initialized BN layers (enabled by default for ResNets) while sync-bn enabled.')

    if args.torchscript:
        assert not use_amp == 'apex', 'Cannot use APEX AMP with torchscripted model'
        assert not args.sync_bn, 'Cannot use SyncBatchNorm with torchscripted model'
        model = torch.jit.script(model)

    optimizer = create_optimizer(args, model)

    # setup automatic mixed-precision (AMP) loss scaling and op casting
    amp_autocast = suppress  # do nothing
    loss_scaler = None
    if use_amp == 'apex':
        model, optimizer = amp.initialize(model, optimizer, opt_level='O1')
        loss_scaler = ApexScaler()
        if args.local_rank == 0:
            _logger.info('Using NVIDIA APEX AMP. Training in mixed precision.')
    elif use_amp == 'native':
        amp_autocast = torch.cuda.amp.autocast
        loss_scaler = NativeScaler()
        if args.local_rank == 0:
            _logger.info('Using native Torch AMP. Training in mixed precision.')
    else:
        if args.local_rank == 0:
            _logger.info('AMP not enabled. Training in float32.')

    # optionally resume from a checkpoint
    resume_epoch = None
    if args.resume:
        resume_epoch = resume_checkpoint(
            model, args.resume,
            optimizer=None if args.no_resume_opt else optimizer,
            loss_scaler=None if args.no_resume_opt else loss_scaler,
            log_info=args.local_rank == 0)

    # setup exponential moving average of model weights, SWA could be used here too
    model_ema = None
    if args.model_ema:
        # Important to create EMA model after cuda(), DP wrapper, and AMP but before SyncBN and DDP wrapper
        model_ema = ModelEmaV2(
            model, decay=args.model_ema_decay, device='cpu' if args.model_ema_force_cpu else None)
        if args.resume:
            load_checkpoint(model_ema.module, args.resume, use_ema=True)

    # setup distributed training
    if args.distributed:
        if has_apex and use_amp != 'native':
            # Apex DDP preferred unless native amp is activated
            if args.local_rank == 0:
                _logger.info("Using NVIDIA APEX DistributedDataParallel.")
            model = ApexDDP(model, delay_allreduce=True)
        else:
            if args.local_rank == 0:
                _logger.info("Using native Torch DistributedDataParallel.")
            model = NativeDDP(model, device_ids=[args.local_rank])  # can use device str in Torch >= 1.1
        # NOTE: EMA model does not need to be wrapped by DDP

    # setup learning rate schedule and starting epoch
    lr_scheduler, num_epochs = create_scheduler(args, optimizer)
    start_epoch = 0
    if args.start_epoch is not None:
        # a specified start_epoch will always override the resume epoch
        start_epoch = args.start_epoch
    elif resume_epoch is not None:
        start_epoch = resume_epoch
    if lr_scheduler is not None and start_epoch > 0:
        lr_scheduler.step(start_epoch)

    # create the train and eval datasets
    dataset_train = create_dataset(
        args.dataset, root=args.data_dir, split=args.train_split, is_training=True, batch_size=args.batch_size)
    dataset_eval = create_dataset(
        args.dataset, root=args.data_dir, split=args.val_split, is_training=False, batch_size=args.batch_size)

    # setup mixup / cutmix
    collate_fn = None
    mixup_fn = None
    mixup_active = args.mixup > 0 or args.cutmix > 0. or args.cutmix_minmax is not None
    if mixup_active:
        mixup_args = dict(
            mixup_alpha=args.mixup, cutmix_alpha=args.cutmix, cutmix_minmax=args.cutmix_minmax,
            prob=args.mixup_prob, switch_prob=args.mixup_switch_prob, mode=args.mixup_mode,
            label_smoothing=args.smoothing, num_classes=args.num_classes)
        if args.prefetcher:
            assert not num_aug_splits  # collate conflict (need to support deinterleaving in collate mixup)
            collate_fn = FastCollateMixup(**mixup_args)
        else:
            mixup_fn = Mixup(**mixup_args)

    # wrap dataset in AugMix helper
    if num_aug_splits > 1:
        dataset_train = AugMixDataset(dataset_train, num_splits=num_aug_splits)

    # create data loaders w/ augmentation pipeiine
    train_interpolation = args.train_interpolation
    if args.no_aug or not train_interpolation:
        train_interpolation = data_config['interpolation']
    loader_train = create_loader(
        dataset_train,
        input_size=data_config['input_size'],
        batch_size=args.batch_size,
        is_training=True,
        use_prefetcher=args.prefetcher,
        no_aug=args.no_aug,
        re_prob=args.reprob,
        re_mode=args.remode,
        re_count=args.recount,
        re_split=args.resplit,
        scale=args.scale,
        ratio=args.ratio,
        hflip=args.hflip,
        vflip=args.vflip,
        color_jitter=args.color_jitter,
        auto_augment=args.aa,
        num_aug_splits=num_aug_splits,
        interpolation=train_interpolation,
        mean=data_config['mean'],
        std=data_config['std'],
        num_workers=args.workers,
        distributed=args.distributed,
        collate_fn=collate_fn,
        pin_memory=args.pin_mem,
        use_multi_epochs_loader=args.use_multi_epochs_loader
    )

    loader_eval = create_loader(
        dataset_eval,
        input_size=data_config['input_size'],
        batch_size=args.validation_batch_size_multiplier * args.batch_size,
        is_training=False,
        use_prefetcher=args.prefetcher,
        interpolation=data_config['interpolation'],
        mean=data_config['mean'],
        std=data_config['std'],
        num_workers=args.workers,
        distributed=args.distributed,
        crop_pct=data_config['crop_pct'],
        pin_memory=args.pin_mem,
    )

    # setup loss function
    if args.jsd:
        assert num_aug_splits > 1  # JSD only valid with aug splits set
        train_loss_fn = JsdCrossEntropy(num_splits=num_aug_splits, smoothing=args.smoothing).cuda()
    elif mixup_active:
        # smoothing is handled with mixup target transform
        train_loss_fn = SoftTargetCrossEntropy().cuda()
    elif args.smoothing:
        train_loss_fn = LabelSmoothingCrossEntropy(smoothing=args.smoothing).cuda()
    else:
        train_loss_fn = nn.CrossEntropyLoss().cuda()
    validate_loss_fn = nn.CrossEntropyLoss().cuda()

    # setup checkpoint saver and eval metric tracking
    eval_metric = args.eval_metric
    best_metric = None
    best_epoch = None
    saver = None
    output_dir = ''
    if args.local_rank == 0:
        output_base = args.output if args.output else './output'
        exp_name = '-'.join([
            datetime.now().strftime("%Y%m%d-%H%M%S"),
            args.model,
            str(data_config['input_size'][-1])
        ])
        output_dir = get_outdir(output_base, 'train', exp_name)
        decreasing = True if eval_metric == 'loss' else False
        saver = CheckpointSaver(
            model=model, optimizer=optimizer, args=args, model_ema=model_ema, amp_scaler=loss_scaler,
            checkpoint_dir=output_dir, recovery_dir=output_dir, decreasing=decreasing, max_history=args.checkpoint_hist)
        with open(os.path.join(output_dir, 'args.yaml'), 'w') as f:
            f.write(args_text)

    ####################################################################################
    # Start SparseML Integration
    ####################################################################################
    sparseml_loggers = (
        [PythonLogger(), TensorBoardLogger(log_path=output_dir)]
        if output_dir
        else None
    )
    manager = ScheduledModifierManager.from_yaml(args.sparseml_recipe)
    optimizer = ScheduledOptimizer(
        optimizer,
        model,
        manager,
        steps_per_epoch=len(loader_train),
        loggers=sparseml_loggers
    )
    # override lr scheduler if recipe makes any LR updates
    if any("LearningRate" in str(modifier) for modifier in manager.modifiers):
        _logger.info("Disabling timm LR scheduler, managing LR using SparseML recipe")
        lr_scheduler = None
    if manager.max_epochs:
        _logger.info(
            f"Overriding max_epochs to {manager.max_epochs} from SparseML recipe"
        )
        num_epochs = manager.max_epochs or num_epochs
    ####################################################################################
    # End SparseML Integration
    ####################################################################################

    if args.local_rank == 0:
        _logger.info('Scheduled epochs: {}'.format(num_epochs))

    try:
        for epoch in range(start_epoch, num_epochs):
            if args.distributed and hasattr(loader_train.sampler, 'set_epoch'):
                loader_train.sampler.set_epoch(epoch)

            train_metrics = train_one_epoch(
                epoch, model, loader_train, optimizer, train_loss_fn, args,
                lr_scheduler=lr_scheduler, saver=saver, output_dir=output_dir,
                amp_autocast=amp_autocast, loss_scaler=loss_scaler, model_ema=model_ema, mixup_fn=mixup_fn)

            if args.distributed and args.dist_bn in ('broadcast', 'reduce'):
                if args.local_rank == 0:
                    _logger.info("Distributing BatchNorm running means and vars")
                distribute_bn(model, args.world_size, args.dist_bn == 'reduce')

            eval_metrics = validate(model, loader_eval, validate_loss_fn, args, amp_autocast=amp_autocast)

            if model_ema is not None and not args.model_ema_force_cpu:
                if args.distributed and args.dist_bn in ('broadcast', 'reduce'):
                    distribute_bn(model_ema, args.world_size, args.dist_bn == 'reduce')
                ema_eval_metrics = validate(
                    model_ema.module, loader_eval, validate_loss_fn, args, amp_autocast=amp_autocast, log_suffix=' (EMA)')
                eval_metrics = ema_eval_metrics

            if lr_scheduler is not None:
                # step LR for next epoch
                lr_scheduler.step(epoch + 1, eval_metrics[eval_metric])

            update_summary(
                epoch, train_metrics, eval_metrics, os.path.join(output_dir, 'summary.csv'),
                write_header=best_metric is None)

            if saver is not None:
                # save proper checkpoint with eval metric
                save_metric = eval_metrics[eval_metric]
                best_metric, best_epoch = saver.save_checkpoint(epoch, metric=save_metric)

        #################################################################################
        # Start SparseML ONNX Export
        #################################################################################
        if output_dir:
            _logger.info(
                f"training complete, exporting ONNX to {output_dir}/model.onnx"
            )
            exporter = ModuleExporter(model, output_dir)
            exporter.export_onnx(torch.randn((1, *data_config["input_size"])))
        #################################################################################
        # End SparseML ONNX Export
        #################################################################################

    except KeyboardInterrupt:
        pass
    if best_metric is not None:
        _logger.info('*** Best metric: {0} (epoch {1})'.format(best_metric, best_epoch))
Ejemplo n.º 4
0
def train_epoch(train_loader,
                model,
                optimizer,
                train_meter,
                cur_epoch,
                cfg,
                writer=None):
    """
    Perform the video training for one epoch.
    Args:
        train_loader (loader): video training loader.
        model (model): the video model to train.
        optimizer (optim): the optimizer to perform optimization on the model's
            parameters.
        train_meter (TrainMeter): training meters to log the training performance.
        cur_epoch (int): current epoch of training.
        cfg (CfgNode): configs. Details can be found in
            slowfast/config/defaults.py
        writer (TensorboardWriter, optional): TensorboardWriter object
            to writer Tensorboard log.
    """
    # Enable train mode.
    model.train()
    train_meter.iter_tic()
    data_size = len(train_loader)

    cur_global_batch_size = cfg.NUM_SHARDS * cfg.TRAIN.BATCH_SIZE
    num_iters = cfg.GLOBAL_BATCH_SIZE // cur_global_batch_size

    for cur_iter, (inputs, labels, _, meta) in enumerate(train_loader):
        # Transfer the data to the current GPU device.
        if cfg.NUM_GPUS:
            if isinstance(inputs, (list, )):
                for i in range(len(inputs)):
                    inputs[i] = inputs[i].cuda(non_blocking=True)
            else:
                inputs = inputs.cuda(non_blocking=True)
            labels = labels.cuda()
            for key, val in meta.items():
                if isinstance(val, (list, )):
                    for i in range(len(val)):
                        val[i] = val[i].cuda(non_blocking=True)
                else:
                    meta[key] = val.cuda(non_blocking=True)

        # Update the learning rate.
        lr = optim.get_epoch_lr(cur_epoch + float(cur_iter) / data_size, cfg)
        optim.set_lr(optimizer, lr)

        train_meter.data_toc()

        # Explicitly declare reduction to mean.
        if not cfg.MIXUP.ENABLED:
            loss_fun = losses.get_loss_func(
                cfg.MODEL.LOSS_FUNC)(reduction="mean")
        else:
            mixup_fn = Mixup(mixup_alpha=cfg.MIXUP.ALPHA,
                             cutmix_alpha=cfg.MIXUP.CUTMIX_ALPHA,
                             cutmix_minmax=cfg.MIXUP.CUTMIX_MINMAX,
                             prob=cfg.MIXUP.PROB,
                             switch_prob=cfg.MIXUP.SWITCH_PROB,
                             mode=cfg.MIXUP.MODE,
                             label_smoothing=0.1,
                             num_classes=cfg.MODEL.NUM_CLASSES)
            hard_labels = labels
            inputs, labels = mixup_fn(inputs, labels)
            loss_fun = SoftTargetCrossEntropy()

        if cfg.DETECTION.ENABLE:
            preds = model(inputs, meta["boxes"])
        else:
            preds = model(inputs)

        # Compute the loss.
        loss = loss_fun(preds, labels)

        if cfg.MIXUP.ENABLED:
            labels = hard_labels

        # check Nan Loss.
        misc.check_nan_losses(loss)

        if cur_global_batch_size >= cfg.GLOBAL_BATCH_SIZE:
            # Perform the backward pass.
            optimizer.zero_grad()
            loss.backward()
            # Update the parameters.
            optimizer.step()
        else:
            if cur_iter == 0:
                optimizer.zero_grad()
            loss.backward()
            if (cur_iter + 1) % num_iters == 0:
                for p in model.parameters():
                    p.grad /= num_iters
                optimizer.step()
                optimizer.zero_grad()

        if cfg.DETECTION.ENABLE:
            if cfg.NUM_GPUS > 1:
                loss = du.all_reduce([loss])[0]
            loss = loss.item()

            # Update and log stats.
            train_meter.update_stats(None, None, None, loss, lr)
            # write to tensorboard format if available.
            if writer is not None:
                writer.add_scalars(
                    {
                        "Train/loss": loss,
                        "Train/lr": lr
                    },
                    global_step=data_size * cur_epoch + cur_iter,
                )

        else:
            top1_err, top5_err = None, None
            if cfg.DATA.MULTI_LABEL:
                # Gather all the predictions across all the devices.
                if cfg.NUM_GPUS > 1:
                    [loss] = du.all_reduce([loss])
                loss = loss.item()
            else:
                # Compute the errors.
                num_topks_correct = metrics.topks_correct(
                    preds, labels, (1, 5))
                top1_err, top5_err = [(1.0 - x / preds.size(0)) * 100.0
                                      for x in num_topks_correct]
                # Gather all the predictions across all the devices.
                if cfg.NUM_GPUS > 1:
                    loss, top1_err, top5_err = du.all_reduce(
                        [loss, top1_err, top5_err])

                # Copy the stats from GPU to CPU (sync point).
                loss, top1_err, top5_err = (
                    loss.item(),
                    top1_err.item(),
                    top5_err.item(),
                )

            # Update and log stats.
            train_meter.update_stats(
                top1_err,
                top5_err,
                loss,
                lr,
                inputs[0].size(0) * max(
                    cfg.NUM_GPUS, 1
                ),  # If running  on CPU (cfg.NUM_GPUS == 1), use 1 to represent 1 CPU.
            )
            # write to tensorboard format if available.
            if writer is not None:
                writer.add_scalars(
                    {
                        "Train/loss": loss,
                        "Train/lr": lr,
                        "Train/Top1_err": top1_err,
                        "Train/Top5_err": top5_err,
                    },
                    global_step=data_size * cur_epoch + cur_iter,
                )

        train_meter.iter_toc()  # measure allreduce for this meter
        train_meter.log_iter_stats(cur_epoch, cur_iter)
        train_meter.iter_tic()

    # Log epoch stats.
    train_meter.log_epoch_stats(cur_epoch)
    train_meter.reset()
Ejemplo n.º 5
0
def main(args):
    utils.init_distributed_mode(args)

    print(args)

    device = torch.device(args.device)

    # fix the seed for reproducibility
    seed = args.seed + utils.get_rank()
    torch.manual_seed(seed)
    np.random.seed(seed)
    # random.seed(seed)

    cudnn.benchmark = True

    dataset_train, args.nb_classes = build_dataset(is_train=True, args=args)
    dataset_val, _ = build_dataset(is_train=False, args=args)

    if True:  # args.distributed:
        num_tasks = utils.get_world_size()
        global_rank = utils.get_rank()
        if args.repeated_aug:
            sampler_train = RASampler(dataset_train,
                                      num_replicas=num_tasks,
                                      rank=global_rank,
                                      shuffle=True)
        else:
            sampler_train = torch.utils.data.DistributedSampler(
                dataset_train,
                num_replicas=num_tasks,
                rank=global_rank,
                shuffle=True)
    else:
        sampler_train = torch.utils.data.RandomSampler(dataset_train)

    data_loader_train = torch.utils.data.DataLoader(
        dataset_train,
        sampler=sampler_train,
        batch_size=args.batch_size,
        num_workers=args.num_workers,
        pin_memory=args.pin_mem,
        drop_last=True,
    )

    data_loader_val = torch.utils.data.DataLoader(dataset_val,
                                                  batch_size=int(
                                                      1.5 * args.batch_size),
                                                  shuffle=False,
                                                  num_workers=args.num_workers,
                                                  pin_memory=args.pin_mem,
                                                  drop_last=False)

    mixup_fn = None
    mixup_active = args.mixup > 0 or args.cutmix > 0. or args.cutmix_minmax is not None
    if mixup_active:
        mixup_fn = Mixup(mixup_alpha=args.mixup,
                         cutmix_alpha=args.cutmix,
                         cutmix_minmax=args.cutmix_minmax,
                         prob=args.mixup_prob,
                         switch_prob=args.mixup_switch_prob,
                         mode=args.mixup_mode,
                         label_smoothing=args.smoothing,
                         num_classes=args.nb_classes)

    print(f"Creating model: {args.model}")
    model = create_model(
        args.model,
        pretrained=False,
        num_classes=args.nb_classes,
        drop_rate=args.drop,
        drop_path_rate=args.drop_path,
        drop_block_rate=args.drop_block,
    )

    # TODO: finetuning

    model.to(device)

    model_ema = None
    if args.model_ema:
        # Important to create EMA model after cuda(), DP wrapper, and AMP but before SyncBN and DDP wrapper
        model_ema = ModelEma(model,
                             decay=args.model_ema_decay,
                             device='cpu' if args.model_ema_force_cpu else '',
                             resume='')

    model_without_ddp = model
    if args.distributed:
        model = torch.nn.parallel.DistributedDataParallel(
            model, device_ids=[args.gpu])
        model_without_ddp = model.module
    n_parameters = sum(p.numel() for p in model.parameters()
                       if p.requires_grad)
    print('number of params:', n_parameters)

    linear_scaled_lr = args.lr * args.batch_size * utils.get_world_size(
    ) / 512.0
    args.lr = linear_scaled_lr
    optimizer = create_optimizer(args, model)
    loss_scaler = NativeScaler()

    lr_scheduler, _ = create_scheduler(args, optimizer)

    criterion = LabelSmoothingCrossEntropy()

    if args.mixup > 0.:
        # smoothing is handled with mixup label transform
        criterion = SoftTargetCrossEntropy()
    elif args.smoothing:
        criterion = LabelSmoothingCrossEntropy(smoothing=args.smoothing)
    else:
        criterion = torch.nn.CrossEntropyLoss()

    output_dir = Path(args.output_dir)
    if args.resume:
        if args.resume.startswith('https'):
            checkpoint = torch.hub.load_state_dict_from_url(args.resume,
                                                            map_location='cpu',
                                                            check_hash=True)
        else:
            checkpoint = torch.load(args.resume, map_location='cpu')
        model_without_ddp.load_state_dict(checkpoint['model'])
        if not args.eval and 'optimizer' in checkpoint and 'lr_scheduler' in checkpoint and 'epoch' in checkpoint:
            optimizer.load_state_dict(checkpoint['optimizer'])
            lr_scheduler.load_state_dict(checkpoint['lr_scheduler'])
            args.start_epoch = checkpoint['epoch'] + 1
            if args.model_ema:
                utils._load_checkpoint_for_ema(model_ema,
                                               checkpoint['model_ema'])

    if args.eval:
        test_stats = evaluate(data_loader_val, model, device)
        print(
            f"Accuracy of the network on the {len(dataset_val)} test images: {test_stats['acc1']:.1f}%"
        )
        return

    print("Start training")
    start_time = time.time()
    max_accuracy = 0.0
    for epoch in range(args.start_epoch, args.epochs):
        if args.distributed:
            data_loader_train.sampler.set_epoch(epoch)

        train_stats = train_one_epoch(model, criterion, data_loader_train,
                                      optimizer, device, epoch, loss_scaler,
                                      args.clip_grad, model_ema, mixup_fn)

        lr_scheduler.step(epoch)
        if args.output_dir:
            checkpoint_paths = [output_dir / 'checkpoint.pth']
            for checkpoint_path in checkpoint_paths:
                utils.save_on_master(
                    {
                        'model': model_without_ddp.state_dict(),
                        'optimizer': optimizer.state_dict(),
                        'lr_scheduler': lr_scheduler.state_dict(),
                        'epoch': epoch,
                        'model_ema': get_state_dict(model_ema),
                        'args': args,
                    }, checkpoint_path)

        test_stats = evaluate(data_loader_val, model, device)
        print(
            f"Accuracy of the network on the {len(dataset_val)} test images: {test_stats['acc1']:.1f}%"
        )
        max_accuracy = max(max_accuracy, test_stats["acc1"])
        print(f'Max accuracy: {max_accuracy:.2f}%')

        log_stats = {
            **{f'train_{k}': v
               for k, v in train_stats.items()},
            **{f'test_{k}': v
               for k, v in test_stats.items()}, 'epoch': epoch,
            'n_parameters': n_parameters
        }

        if args.output_dir and utils.is_main_process():
            with (output_dir / "log.txt").open("a") as f:
                f.write(json.dumps(log_stats) + "\n")

    total_time = time.time() - start_time
    total_time_str = str(datetime.timedelta(seconds=int(total_time)))
    print('Training time {}'.format(total_time_str))
Ejemplo n.º 6
0
def main(args):
    utils.init_distributed_mode(args)

    # disable any harsh augmentation in case of Self-supervise training
    if args.training_mode == 'SSL':
        print("NOTE: Smoothing, Mixup, CutMix, and AutoAugment will be disabled in case of Self-supervise training")
        args.smoothing = args.reprob = args.reprob = args.recount = args.mixup = args.cutmix = 0.0
        args.aa = ''

        if args.SiT_LinearEvaluation == 1:
            print("Warning: Linear Evaluation should be set to 0 during SSL training - changing SiT_LinearEvaluation to 0")
            args.SiT_LinearEvaluation = 0
        
    utils.print_args(args)

    device = torch.device(args.device)
    seed = args.seed + utils.get_rank()
    torch.manual_seed(seed)
    np.random.seed(seed)
    cudnn.benchmark = True

    print("Loading dataset ....")
    dataset_train, args.nb_classes = build_dataset(is_train=True, args=args)   
    dataset_val, _ = build_dataset(is_train=False, args=args)
    

    num_tasks = utils.get_world_size()
    global_rank = utils.get_rank()
    if args.repeated_aug:
        sampler_train = RASampler(dataset_train, num_replicas=num_tasks, rank=global_rank, shuffle=True)
    else:
        sampler_train = torch.utils.data.DistributedSampler(dataset_train, num_replicas=num_tasks, rank=global_rank, shuffle=True)
    
    sampler_val = torch.utils.data.SequentialSampler(dataset_val)


    data_loader_train = torch.utils.data.DataLoader(dataset_train, sampler=sampler_train,
        batch_size=args.batch_size, num_workers=args.num_workers,
        pin_memory=args.pin_mem, drop_last=True, collate_fn=collate_fn)

    data_loader_val = torch.utils.data.DataLoader(dataset_val, sampler=sampler_val,
        batch_size=int(1.5 * args.batch_size), num_workers=args.num_workers,
        pin_memory=args.pin_mem, drop_last=False, collate_fn=collate_fn)

    mixup_fn = None
    mixup_active = args.mixup > 0 or args.cutmix > 0. or args.cutmix_minmax is not None
    if mixup_active:
        mixup_fn = Mixup(
            mixup_alpha=args.mixup, cutmix_alpha=args.cutmix, cutmix_minmax=args.cutmix_minmax,
            prob=args.mixup_prob, switch_prob=args.mixup_switch_prob, mode=args.mixup_mode,
            label_smoothing=args.smoothing, num_classes=args.nb_classes)

    print(f"Creating model: {args.model}")
    model = create_model(
        args.model, pretrained=False, num_classes=args.nb_classes,
        drop_rate=args.drop, drop_path_rate=args.drop_path, representation_size=args.representation_size,
        drop_block_rate=None, training_mode=args.training_mode)

    if args.finetune:
        checkpoint = torch.load(args.finetune, map_location='cpu')

        checkpoint_model = checkpoint['model']
        state_dict = model.state_dict()
        for k in ['rot_head.weight', 'rot_head.bias', 'contrastive_head.weight', 'contrastive_head.bias']:
            if k in checkpoint_model and checkpoint_model[k].shape != state_dict[k].shape:
                print(f"Removing key {k} from pretrained checkpoint")
                del checkpoint_model[k]

        # interpolate position embedding
        pos_embed_checkpoint = checkpoint_model['pos_embed']
        embedding_size = pos_embed_checkpoint.shape[-1]
        num_patches = model.patch_embed.num_patches
        num_extra_tokens = model.pos_embed.shape[-2] - num_patches
        orig_size = int((pos_embed_checkpoint.shape[-2] - num_extra_tokens) ** 0.5)
        new_size = int(num_patches ** 0.5)
        extra_tokens = pos_embed_checkpoint[:, :num_extra_tokens]
        pos_tokens = pos_embed_checkpoint[:, num_extra_tokens:]
        pos_tokens = pos_tokens.reshape(-1, orig_size, orig_size, embedding_size).permute(0, 3, 1, 2)
        pos_tokens = torch.nn.functional.interpolate(
            pos_tokens, size=(new_size, new_size), mode='bicubic', align_corners=False)
        pos_tokens = pos_tokens.permute(0, 2, 3, 1).flatten(1, 2)
        new_pos_embed = torch.cat((extra_tokens, pos_tokens), dim=1)
        checkpoint_model['pos_embed'] = new_pos_embed

        model.load_state_dict(checkpoint_model, strict=False)

    model.to(device)

    # Freeze the backbone in case of linear evaluation
    if args.SiT_LinearEvaluation == 1:
        requires_grad(model, False)
        
        model.rot_head.weight.requires_grad = True
        model.rot_head.bias.requires_grad = True
        
        model.contrastive_head.weight.requires_grad = True
        model.contrastive_head.bias.requires_grad = True
        
        if args.representation_size is not None:
            model.pre_logits_rot.fc.weight.requires_grad = True
            model.pre_logits_rot.fc.bias.requires_grad = True
            
            model.pre_logits_contrastive.fc.weight.requires_grad = True
            model.pre_logits_contrastive.fc.bias.requires_grad = True            


    model_ema = None
    if args.model_ema:
        model_ema = ModelEma(model, decay=args.model_ema_decay,
            device='cpu' if args.model_ema_force_cpu else '', resume='')

    model_without_ddp = model
    if args.distributed:
        model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu])
        model_without_ddp = model.module
        
    n_parameters = sum(p.numel() for p in model.parameters() if p.requires_grad)
    print('number of params:', n_parameters)

    linear_scaled_lr = args.lr * args.batch_size * utils.get_world_size() / 512.0
    args.lr = linear_scaled_lr
    optimizer = create_optimizer(args, model_without_ddp)
    loss_scaler = NativeScaler()

    lr_scheduler, _ = create_scheduler(args, optimizer)

    if args.training_mode == 'SSL':
        criterion = MTL_loss(args.device, args.batch_size)
    elif args.training_mode == 'finetune' and args.mixup > 0.:
        criterion = SoftTargetCrossEntropy()
    else:
        criterion = torch.nn.CrossEntropyLoss()



    output_dir = Path(args.output_dir)
    if args.resume:
        checkpoint = torch.load(args.resume, map_location='cpu')
        model_without_ddp.load_state_dict(checkpoint['model'])
        if not args.eval and 'optimizer' in checkpoint and 'lr_scheduler' in checkpoint and 'epoch' in checkpoint:
            optimizer.load_state_dict(checkpoint['optimizer'])
            lr_scheduler.load_state_dict(checkpoint['lr_scheduler'])
            args.start_epoch = checkpoint['epoch'] + 1
            if args.model_ema:
                utils._load_checkpoint_for_ema(model_ema, checkpoint['model_ema'])
            if 'scaler' in checkpoint:
                loss_scaler.load_state_dict(checkpoint['scaler'])

    if args.eval:
        test_stats = evaluate_SSL(data_loader_val, model, device)
        print(f"Accuracy of the network on the {len(dataset_val)} test images: {test_stats['acc1']:.1f}%")
        return

    print(f"Start training for {args.epochs} epochs")
    start_time = time.time()
    max_accuracy = 0.0
    for epoch in range(args.start_epoch, args.epochs):
        if args.distributed:
            data_loader_train.sampler.set_epoch(epoch)

        if args.training_mode == 'SSL':
            train_stats = train_SSL(
                model, criterion, data_loader_train, optimizer, device, epoch, loss_scaler,
                args.clip_grad, model_ema, mixup_fn)
        else:
            train_stats = train_finetune(
                model, criterion, data_loader_train, optimizer, device, epoch, loss_scaler,
                args.clip_grad, model_ema, mixup_fn)
            
        lr_scheduler.step(epoch)
            
        if epoch%args.validate_every == 0:
            if args.output_dir:
                checkpoint_paths = [output_dir / 'checkpoint.pth']
                for checkpoint_path in checkpoint_paths:
                    utils.save_on_master({
                        'model': model_without_ddp.state_dict(),
                        'optimizer': optimizer.state_dict(),
                        'lr_scheduler': lr_scheduler.state_dict(),
                        'epoch': epoch,
                        'model_ema': get_state_dict(model_ema),
                        'scaler': loss_scaler.state_dict(),
                        'args': args,
                    }, checkpoint_path)
    
            if args.training_mode == 'SSL':
                test_stats = evaluate_SSL(data_loader_val, model, device, epoch, args.output_dir)
            else:
                test_stats = evaluate_finetune(data_loader_val, model, device)

                print(f"Accuracy of the network on the {len(dataset_val)} test images: {test_stats['acc1']:.1f}%")
                max_accuracy = max(max_accuracy, test_stats["acc1"])
                print(f'Max accuracy: {max_accuracy:.2f}%')

        log_stats = {**{f'train_{k}': v for k, v in train_stats.items()},
                     **{f'test_{k}': v for k, v in test_stats.items()},
                     'epoch': epoch,
                     'n_parameters': n_parameters}

        if args.output_dir and utils.is_main_process():
            with (output_dir / "log.txt").open("a") as f:
                f.write(json.dumps(log_stats) + "\n")

    total_time = time.time() - start_time
    total_time_str = str(datetime.timedelta(seconds=int(total_time)))
    print('Training time {}'.format(total_time_str))
Ejemplo n.º 7
0
def main():

    setup_default_logging()
    args, args_text = _parse_args()

    args.prefetcher = not args.no_prefetcher
    args.distributed = False
    if 'WORLD_SIZE' in os.environ:
        args.distributed = int(os.environ['WORLD_SIZE']) > 1
    args.device = 'cuda:0'
    args.world_size = 1
    args.rank = 0  # global rank
    if args.distributed:
        args.device = 'cuda:%d' % args.local_rank
        torch.cuda.set_device(args.local_rank)
        torch.distributed.init_process_group(backend='nccl',
                                             init_method='env://')
        args.world_size = torch.distributed.get_world_size()
        args.rank = torch.distributed.get_rank()
        _logger.info(
            'Training in distributed mode with multiple processes, 1 GPU per process. Process %d, total %d.'
            % (args.rank, args.world_size))
    else:
        _logger.info('Training with a single process on 1 GPUs.')
    assert args.rank >= 0

    # resolve AMP arguments based on PyTorch / Apex availability
    use_amp = None
    if args.amp:
        # for backwards compat, `--amp` arg tries apex before native amp
        if has_apex:
            args.apex_amp = True
        elif has_native_amp:
            args.native_amp = True
    if args.apex_amp and has_apex:
        use_amp = 'apex'
    elif args.native_amp and has_native_amp:
        use_amp = 'native'
    elif args.apex_amp or args.native_amp:
        _logger.warning(
            "Neither APEX or native Torch AMP is available, using float32. "
            "Install NVIDA apex or upgrade to PyTorch 1.6")

    torch.manual_seed(args.seed + args.rank)

    model = create_model(
        args.model,
        pretrained=args.pretrained,
        num_classes=args.num_classes,
        drop_rate=args.drop,
        drop_connect_rate=args.drop_connect,  # DEPRECATED, use drop_path
        drop_path_rate=args.drop_path,
        drop_block_rate=args.drop_block,
        global_pool=args.gp,
        bn_tf=args.bn_tf,
        bn_momentum=args.bn_momentum,
        bn_eps=args.bn_eps,
        scriptable=args.torchscript,
        use_cos_reg=args.cos_reg_component > 0,
        checkpoint_path=args.initial_checkpoint)
    with torch.cuda.device(0):
        input = torch.randn(1, 3, 224, 224)
        size_for_madd = 224 if args.img_size is None else args.img_size
        # flops, params = get_model_complexity_info(model, (3, size_for_madd, size_for_madd), as_strings=True, print_per_layer_stat=True)
        # print("=>Flops:  " + flops)
        # print("=>Params: " + params)
    if args.local_rank == 0:
        _logger.info('Model %s created, param count: %d' %
                     (args.model, sum([m.numel()
                                       for m in model.parameters()])))

    data_config = resolve_data_config(vars(args),
                                      model=model,
                                      verbose=args.local_rank == 0)

    # setup augmentation batch splits for contrastive loss or split bn
    num_aug_splits = 0
    if args.aug_splits > 0:
        assert args.aug_splits > 1, 'A split of 1 makes no sense'
        num_aug_splits = args.aug_splits

    # enable split bn (separate bn stats per batch-portion)
    if args.split_bn:
        assert num_aug_splits > 1 or args.resplit
        model = convert_splitbn_model(model, max(num_aug_splits, 2))

    # move model to GPU, enable channels last layout if set
    model.cuda()
    if args.channels_last:
        model = model.to(memory_format=torch.channels_last)

    # setup synchronized BatchNorm for distributed training
    if args.distributed and args.sync_bn:
        assert not args.split_bn
        if has_apex and use_amp != 'native':
            # Apex SyncBN preferred unless native amp is activated
            model = convert_syncbn_model(model)
        else:
            model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model)
        if args.local_rank == 0:
            _logger.info(
                'Converted model to use Synchronized BatchNorm. WARNING: You may have issues if using '
                'zero initialized BN layers (enabled by default for ResNets) while sync-bn enabled.'
            )

    if args.torchscript:
        assert not use_amp == 'apex', 'Cannot use APEX AMP with torchscripted model'
        assert not args.sync_bn, 'Cannot use SyncBatchNorm with torchscripted model'
        model = torch.jit.script(model)

    optimizer = create_optimizer(args, model)

    # setup automatic mixed-precision (AMP) loss scaling and op casting
    amp_autocast = suppress  # do nothing
    loss_scaler = None
    if use_amp == 'apex':
        model, optimizer = amp.initialize(model, optimizer, opt_level='O1')
        loss_scaler = ApexScaler()
        if args.local_rank == 0:
            _logger.info('Using NVIDIA APEX AMP. Training in mixed precision.')
    elif use_amp == 'native':
        amp_autocast = torch.cuda.amp.autocast
        loss_scaler = NativeScaler()
        if args.local_rank == 0:
            _logger.info(
                'Using native Torch AMP. Training in mixed precision.')
    else:
        if args.local_rank == 0:
            _logger.info('AMP not enabled. Training in float32.')

    # optionally resume from a checkpoint
    resume_epoch = None
    if args.resume:
        resume_epoch = resume_checkpoint(
            model,
            args.resume,
            optimizer=None if args.no_resume_opt else optimizer,
            loss_scaler=None if args.no_resume_opt else loss_scaler,
            log_info=args.local_rank == 0)

    # setup exponential moving average of model weights, SWA could be used here too
    model_ema = None
    if args.model_ema:
        # Important to create EMA model after cuda(), DP wrapper, and AMP but before SyncBN and DDP wrapper
        model_ema = ModelEmaV2(
            model,
            decay=args.model_ema_decay,
            device='cpu' if args.model_ema_force_cpu else None)
        if args.resume:
            load_checkpoint(model_ema.module, args.resume, use_ema=True)

    # setup distributed training
    if args.distributed:
        if has_apex and use_amp != 'native':
            # Apex DDP preferred unless native amp is activated
            if args.local_rank == 0:
                _logger.info("Using NVIDIA APEX DistributedDataParallel.")
            model = ApexDDP(model, delay_allreduce=True)
        else:
            if args.local_rank == 0:
                _logger.info("Using native Torch DistributedDataParallel.")
            model = NativeDDP(model, device_ids=[
                args.local_rank
            ])  # can use device str in Torch >= 1.1
        # NOTE: EMA model does not need to be wrapped by DDP

    # setup learning rate schedule and starting epoch
    lr_scheduler, num_epochs = create_scheduler(args, optimizer)
    start_epoch = 0
    if args.start_epoch is not None:
        # a specified start_epoch will always override the resume epoch
        start_epoch = args.start_epoch
    elif resume_epoch is not None:
        start_epoch = resume_epoch
    if lr_scheduler is not None and start_epoch > 0:
        lr_scheduler.step(start_epoch)

    if args.local_rank == 0:
        _logger.info('Scheduled epochs: {}'.format(num_epochs))

    # create the train and eval datasets
    train_dir = os.path.join(args.data, 'train')
    if not os.path.exists(train_dir):
        _logger.error(
            'Training folder does not exist at: {}'.format(train_dir))
        exit(1)
    if args.use_lmdb:
        dataset_train = ImageFolderLMDB('../dataset_lmdb/train')
    else:
        dataset_train = Dataset(train_dir)
    # dataset_train = Dataset(train_dir)

    eval_dir = os.path.join(args.data, 'val')
    if not os.path.isdir(eval_dir):
        eval_dir = os.path.join(args.data, 'validation')
        if not os.path.isdir(eval_dir):
            _logger.error(
                'Validation folder does not exist at: {}'.format(eval_dir))
            exit(1)
    if args.use_lmdb:
        dataset_eval = ImageFolderLMDB('../dataset_lmdb/val')
    else:
        dataset_eval = Dataset(eval_dir)
    # dataset_eval = Dataset(eval_dir)

    # setup mixup / cutmix
    collate_fn = None
    mixup_fn = None
    mixup_active = args.mixup > 0 or args.cutmix > 0. or args.cutmix_minmax is not None
    if mixup_active:
        mixup_args = dict(mixup_alpha=args.mixup,
                          cutmix_alpha=args.cutmix,
                          cutmix_minmax=args.cutmix_minmax,
                          prob=args.mixup_prob,
                          switch_prob=args.mixup_switch_prob,
                          mode=args.mixup_mode,
                          label_smoothing=args.smoothing,
                          num_classes=args.num_classes)
        if args.prefetcher:
            assert not num_aug_splits  # collate conflict (need to support deinterleaving in collate mixup)
            collate_fn = FastCollateMixup(**mixup_args)
        else:
            mixup_fn = Mixup(**mixup_args)

    # wrap dataset in AugMix helper
    if num_aug_splits > 1:
        dataset_train = AugMixDataset(dataset_train, num_splits=num_aug_splits)

    # create data loaders w/ augmentation pipeiine
    train_interpolation = args.train_interpolation
    if args.no_aug or not train_interpolation:
        train_interpolation = data_config['interpolation']
    loader_train = create_loader(
        dataset_train,
        input_size=data_config['input_size'],
        batch_size=args.batch_size,
        is_training=True,
        use_prefetcher=args.prefetcher,
        no_aug=args.no_aug,
        re_prob=args.reprob,
        re_mode=args.remode,
        re_count=args.recount,
        re_split=args.resplit,
        scale=args.scale,
        ratio=args.ratio,
        hflip=args.hflip,
        vflip=args.vflip,
        color_jitter=args.color_jitter,
        auto_augment=args.aa,
        num_aug_splits=num_aug_splits,
        interpolation=train_interpolation,
        mean=data_config['mean'],
        std=data_config['std'],
        num_workers=args.workers,
        distributed=args.distributed,
        collate_fn=collate_fn,
        pin_memory=args.pin_mem,
        use_multi_epochs_loader=args.use_multi_epochs_loader,
        repeated_aug=args.use_repeated_aug,
        world_size=args.world_size,
        rank=args.rank)

    loader_eval = create_loader(
        dataset_eval,
        input_size=data_config['input_size'],
        batch_size=args.validation_batch_size_multiplier * args.batch_size,
        is_training=False,
        use_prefetcher=args.prefetcher,
        interpolation=data_config['interpolation'],
        mean=data_config['mean'],
        std=data_config['std'],
        num_workers=args.workers,
        distributed=args.distributed,
        crop_pct=data_config['crop_pct'],
        pin_memory=args.pin_mem,
    )

    loader_cali = create_loader(
        dataset_train,
        input_size=data_config['input_size'],
        batch_size=args.cali_batch_size,
        is_training=False,
        use_prefetcher=args.prefetcher,
        no_aug=True,
        re_prob=args.reprob,
        re_mode=args.remode,
        re_count=args.recount,
        re_split=args.resplit,
        scale=args.scale,
        ratio=args.ratio,
        hflip=args.hflip,
        vflip=args.vflip,
        color_jitter=args.color_jitter,
        auto_augment=args.aa,
        num_aug_splits=num_aug_splits,
        interpolation=train_interpolation,
        mean=data_config['mean'],
        std=data_config['std'],
        num_workers=args.workers,
        distributed=args.distributed,
        collate_fn=None,
        pin_memory=args.pin_mem,
        use_multi_epochs_loader=args.use_multi_epochs_loader,
        repeated_aug=args.use_repeated_aug,
        world_size=args.world_size,
        rank=args.rank)

    # setup loss function
    if args.jsd:
        assert num_aug_splits > 1  # JSD only valid with aug splits set
        train_loss_fn = JsdCrossEntropy(num_splits=num_aug_splits,
                                        smoothing=args.smoothing).cuda()
    elif mixup_active:
        # smoothing is handled with mixup target transform
        if args.cos_reg_component > 0:
            args.use_cos_reg_component = True
            train_loss_fn = SoftTargetCrossEntropyCosReg(
                n_comn=args.cos_reg_component).cuda()
        else:
            train_loss_fn = SoftTargetCrossEntropy().cuda()
            args.use_cos_reg_component = False

    elif args.smoothing:
        train_loss_fn = LabelSmoothingCrossEntropy(
            smoothing=args.smoothing).cuda()
    else:
        train_loss_fn = nn.CrossEntropyLoss().cuda()
    validate_loss_fn = nn.CrossEntropyLoss().cuda()

    # setup checkpoint saver and eval metric tracking
    eval_metric = args.eval_metric
    best_metric = None
    best_epoch = None
    saver = None
    output_dir = ''
    if args.local_rank == 0:
        output_base = args.output if args.output else './output'
        exp_name = '-'.join([
            datetime.now().strftime("%Y%m%d-%H%M%S"), args.model,
            str(data_config['input_size'][-1])
        ])
        output_dir = get_outdir(output_base, 'train', exp_name)
        code_dir = get_outdir(output_dir, 'code')
        copy_tree(os.getcwd(), code_dir)
        decreasing = True if eval_metric == 'loss' else False
        saver = CheckpointSaver(model=model,
                                optimizer=optimizer,
                                args=args,
                                model_ema=model_ema,
                                amp_scaler=loss_scaler,
                                checkpoint_dir=output_dir,
                                recovery_dir=output_dir,
                                decreasing=decreasing)
        with open(os.path.join(output_dir, 'args.yaml'), 'w') as f:
            f.write(args_text)

    try:
        for epoch in range(start_epoch, num_epochs):
            if args.distributed:
                loader_train.sampler.set_epoch(epoch)
            if not args.eval_only:
                train_metrics = train_epoch(epoch,
                                            model,
                                            loader_train,
                                            optimizer,
                                            train_loss_fn,
                                            args,
                                            lr_scheduler=lr_scheduler,
                                            saver=saver,
                                            output_dir=output_dir,
                                            amp_autocast=amp_autocast,
                                            loss_scaler=loss_scaler,
                                            model_ema=model_ema,
                                            mixup_fn=mixup_fn)

            if args.distributed and args.dist_bn in ('broadcast', 'reduce'):
                if args.local_rank == 0:
                    _logger.info(
                        "Distributing BatchNorm running means and vars")
                distribute_bn(model, args.world_size, args.dist_bn == 'reduce')
            if args.max_iter > 0:
                _ = validate(model,
                             loader_cali,
                             validate_loss_fn,
                             args,
                             amp_autocast=amp_autocast,
                             use_bn_calibration=True)
            eval_metrics = validate(model,
                                    loader_eval,
                                    validate_loss_fn,
                                    args,
                                    amp_autocast=amp_autocast)

            if model_ema is not None and not args.model_ema_force_cpu:
                if args.distributed and args.dist_bn in ('broadcast',
                                                         'reduce'):
                    distribute_bn(model_ema, args.world_size,
                                  args.dist_bn == 'reduce')
                ema_eval_metrics = validate(model_ema.module,
                                            loader_eval,
                                            validate_loss_fn,
                                            args,
                                            amp_autocast=amp_autocast,
                                            log_suffix=' (EMA)')
                eval_metrics = ema_eval_metrics

            if lr_scheduler is not None:
                # step LR for next epoch
                lr_scheduler.step(epoch + 1, eval_metrics[eval_metric])
            if not args.eval_only:
                update_summary(epoch,
                               train_metrics,
                               eval_metrics,
                               os.path.join(output_dir, 'summary.csv'),
                               write_header=best_metric is None)

            if saver is not None:
                # save proper checkpoint with eval metric
                save_metric = eval_metrics[eval_metric]
                best_metric, best_epoch = saver.save_checkpoint(
                    epoch, metric=save_metric)
                if args.eval_only:
                    break

    except KeyboardInterrupt:
        pass
    if best_metric is not None:
        _logger.info('*** Best metric: {0} (epoch {1})'.format(
            best_metric, best_epoch))
Ejemplo n.º 8
0
def main(args):
    utils.my_init_distributed_mode(args)
    print(args)
    # if args.distillation_type != 'none' and args.finetune and not args.eval:
    #     raise NotImplementedError("Finetuning with distillation not yet supported")

    device = torch.device(args.device)

    # fix the seed for reproducibility
    seed = args.seed + utils.get_rank()
    torch.manual_seed(seed)
    np.random.seed(seed)
    # random.seed(seed)

    cudnn.benchmark = True

    dataset_train, args.nb_classes = build_dataset(is_train=True, args=args)
    dataset_val, _ = build_dataset(is_train=False, args=args)

    # if True:  # args.distributed:
    #     num_tasks = utils.get_world_size()
    #     global_rank = utils.get_rank()
    #     if args.repeated_aug:
    #         sampler_train = RASampler(
    #             dataset_train, num_replicas=num_tasks, rank=global_rank, shuffle=True
    #         )
    #     else:
    #         sampler_train = torch.utils.data.DistributedSampler(
    #             dataset_train,
    #             # num_replicas=num_tasks,
    #             num_replicas=0,
    #             rank=global_rank, shuffle=True
    #         )
    #     if args.dist_eval:
    #         if len(dataset_val) % num_tasks != 0:
    #             print('Warning: Enabling distributed evaluation with an eval dataset not divisible by process number. '
    #                   'This will slightly alter validation results as extra duplicate entries are added to achieve '
    #                   'equal num of samples per-process.')
    #         sampler_val = torch.utils.data.DistributedSampler(
    #             dataset_val,
    #             # num_replicas=num_tasks,
    #             num_replicas=0,
    #             rank=global_rank, shuffle=False)
    #     else:
    #         sampler_val = torch.utils.data.SequentialSampler(dataset_val)
    # else:
    #     sampler_train = torch.utils.data.RandomSampler(dataset_train)
    #     sampler_val = torch.utils.data.SequentialSampler(dataset_val)
    #
    # data_loader_train = torch.utils.data.DataLoader(
    #     dataset_train, sampler=sampler_train,
    #     batch_size=args.batch_size,
    #     num_workers=args.num_workers,
    #     pin_memory=args.pin_mem,
    #     drop_last=True,
    # )
    #
    # data_loader_val = torch.utils.data.DataLoader(
    #     dataset_val, sampler=sampler_val,
    #     batch_size=int(1.5 * args.batch_size),
    #     num_workers=args.num_workers,
    #     pin_memory=args.pin_mem,
    #     drop_last=False
    # )
    #

    if args.distributed:
        if args.cache_mode:
            sampler_train = samplers.NodeDistributedSampler(dataset_train)
            sampler_val = samplers.NodeDistributedSampler(dataset_val,
                                                          shuffle=False)
        else:
            sampler_train = samplers.DistributedSampler(dataset_train)
            sampler_val = samplers.DistributedSampler(dataset_val,
                                                      shuffle=False)
    else:
        sampler_train = torch.utils.data.RandomSampler(dataset_train)
        sampler_val = torch.utils.data.SequentialSampler(dataset_val)

    batch_sampler_train = torch.utils.data.BatchSampler(sampler_train,
                                                        args.batch_size,
                                                        drop_last=True)

    data_loader_train = DataLoader(dataset_train,
                                   batch_sampler=batch_sampler_train,
                                   num_workers=args.num_workers,
                                   pin_memory=True)
    data_loader_val = DataLoader(dataset_val,
                                 args.batch_size,
                                 sampler=sampler_val,
                                 drop_last=False,
                                 num_workers=args.num_workers,
                                 pin_memory=True)

    mixup_fn = None
    mixup_active = args.mixup > 0 or args.cutmix > 0. or args.cutmix_minmax is not None
    if mixup_active:
        mixup_fn = Mixup(mixup_alpha=args.mixup,
                         cutmix_alpha=args.cutmix,
                         cutmix_minmax=args.cutmix_minmax,
                         prob=args.mixup_prob,
                         switch_prob=args.mixup_switch_prob,
                         mode=args.mixup_mode,
                         label_smoothing=args.smoothing,
                         num_classes=args.nb_classes)

    print(f"Creating model: {args.model}")
    model = create_model(
        args.model,
        pretrained=False,
        num_classes=args.nb_classes,
        drop_rate=args.drop,
        drop_path_rate=args.drop_path,
        drop_block_rate=None,
    )
    model_without_ddp = model

    # # there are bugs
    # if args.finetune:
    #     if args.finetune.startswith('https'):
    #         checkpoint = torch.hub.load_state_dict_from_url(
    #             args.finetune, map_location='cpu', check_hash=True)
    #     else:
    #         checkpoint = torch.load(args.finetune, map_location='cpu')
    #
    #     checkpoint_model = checkpoint['model']
    #
    #     state_dict = model.state_dict()
    #     for k in ['head.weight', 'head.bias', 'head_dist.weight', 'head_dist.bias']:
    #         if k in checkpoint_model and checkpoint_model[k].shape != state_dict[k].shape:
    #             print(f"Removing key {k} from pretrained checkpoint")
    #             del checkpoint_model[k]
    #
    #     _ = model.load_state_dict(checkpoint_model, strict=False)

    model.to(device)

    model_ema = None
    # if args.model_ema:
    #     # Important to create EMA model after cuda(), DP wrapper, and AMP but before SyncBN and DDP wrapper
    #     model_ema = ModelEma(
    #         model,
    #         decay=args.model_ema_decay,
    #         device='cpu' if args.model_ema_force_cpu else '',
    #         resume='')

    model_without_ddp = model
    if args.distributed:
        model = torch.nn.parallel.DistributedDataParallel(
            model, device_ids=[args.gpu])
        model_without_ddp = model.module
    n_parameters = sum(p.numel() for p in model.parameters()
                       if p.requires_grad)
    print('number of params:', n_parameters)

    linear_scaled_lr = args.lr * args.batch_size * utils.get_world_size(
    ) / 512.0
    args.lr = linear_scaled_lr
    optimizer = create_optimizer(args, model_without_ddp)
    loss_scaler = NativeScaler()
    lr_scheduler, _ = create_scheduler(args, optimizer)

    criterion = LabelSmoothingCrossEntropy()

    if args.mixup > 0.:
        # smoothing is handled with mixup label transform
        criterion = SoftTargetCrossEntropy()
    elif args.smoothing:
        criterion = LabelSmoothingCrossEntropy(smoothing=args.smoothing)
    else:
        criterion = torch.nn.CrossEntropyLoss()

    criterion = DistillationLoss(criterion, None, 'none', 0, 0)

    output_dir = Path(args.output_dir)

    # for finetune
    if args.finetune:
        if args.finetune.startswith('https'):
            checkpoint = torch.hub.load_state_dict_from_url(args.finetune,
                                                            map_location='cpu',
                                                            check_hash=True)
        else:
            if not os.path.exists(args.finetune):
                checkpoint = None
                print('NOTICE:' + args.finetune + ' does not exist!')
            else:
                checkpoint = torch.load(args.finetune, map_location='cpu')

        if checkpoint is not None:
            if 'model' in checkpoint:
                check_model = checkpoint['model']
            else:
                check_model = checkpoint

            missing_keys = model_without_ddp.load_state_dict(
                check_model, strict=False).missing_keys
            skip_keys = model_without_ddp.no_weight_decay()
            # create optimizer manually
            param_dicts = [
                {
                    "params": [
                        p for n, p in model_without_ddp.named_parameters()
                        if n in missing_keys and n not in skip_keys
                    ],
                    "lr":
                    args.lr,
                    'weight_decay':
                    args.weight_decay,
                },
                {
                    "params": [
                        p for n, p in model_without_ddp.named_parameters()
                        if n in missing_keys and n in skip_keys
                    ],
                    "lr":
                    args.lr,
                    'weight_decay':
                    0,
                },
                {
                    "params": [
                        p for n, p in model_without_ddp.named_parameters()
                        if n not in missing_keys and n not in skip_keys
                    ],
                    "lr":
                    args.lr * args.fine_factor,
                    'weight_decay':
                    args.weight_decay,
                },
                {
                    "params": [
                        p for n, p in model_without_ddp.named_parameters()
                        if n not in missing_keys and n in skip_keys
                    ],
                    "lr":
                    args.lr * args.fine_factor,
                    'weight_decay':
                    0,
                },
            ]

            optimizer = torch.optim.AdamW(param_dicts,
                                          lr=args.lr,
                                          weight_decay=args.weight_decay)
            loss_scaler = NativeScaler()
            lr_scheduler, _ = create_scheduler(args, optimizer)

            # if not args.eval and 'optimizer' in checkpoint and 'lr_scheduler' in checkpoint and 'epoch' in checkpoint:
            #     optimizer.load_state_dict(checkpoint['optimizer'])
            #     lr_scheduler.load_state_dict(checkpoint['lr_scheduler'])
            #     args.start_epoch = checkpoint['epoch'] + 1
            #     # if args.model_ema:
            #     #     utils._load_checkpoint_for_ema(model_ema, checkpoint['model_ema'])
            #     if 'scaler' in checkpoint:
            #         loss_scaler.load_state_dict(checkpoint['scaler'])

            print('finetune from' + args.finetune)

            # for debug
            # lr_scheduler.step(10)
            # lr_scheduler.step(100)
            # lr_scheduler.step(200)

    if args.resume:
        if args.resume.startswith('https'):
            checkpoint = torch.hub.load_state_dict_from_url(args.resume,
                                                            map_location='cpu',
                                                            check_hash=True)
        else:
            if not os.path.exists(args.resume):
                checkpoint = None
                print('NOTICE:' + args.resume + ' does not exist!')
            else:
                checkpoint = torch.load(args.resume, map_location='cpu')

        if checkpoint is not None:
            if 'model' in checkpoint:
                model_without_ddp.load_state_dict(checkpoint['model'])
            else:
                model_without_ddp.load_state_dict(checkpoint)

            if not args.eval and 'optimizer' in checkpoint and 'lr_scheduler' in checkpoint and 'epoch' in checkpoint:
                optimizer.load_state_dict(checkpoint['optimizer'])
                lr_scheduler.load_state_dict(checkpoint['lr_scheduler'])
                args.start_epoch = checkpoint['epoch'] + 1
                # if args.model_ema:
                #     utils._load_checkpoint_for_ema(model_ema, checkpoint['model_ema'])
                if 'scaler' in checkpoint:
                    loss_scaler.load_state_dict(checkpoint['scaler'])

            print('resume from' + args.resume)

    if args.eval:
        test_stats = evaluate(data_loader_val, model, device)
        print(
            f"Accuracy of the network on the {len(dataset_val)} test images: {test_stats['acc1']:.1f}%"
        )
        return

    print(f"Start training for {args.epochs} epochs")
    start_time = time.time()
    max_accuracy = 0.0
    max_epoch_dp_warm_up = 100
    if 'pvt_tiny' in args.model or 'pvt_small' in args.model:
        max_epoch_dp_warm_up = 0
    if args.start_epoch < max_epoch_dp_warm_up:
        model_without_ddp.reset_drop_path(0.0)
    for epoch in range(args.start_epoch, args.epochs):
        if args.fp32_resume and epoch > args.start_epoch + 1:
            args.fp32_resume = False
        loss_scaler._scaler = torch.cuda.amp.GradScaler(
            enabled=not args.fp32_resume)

        if epoch == max_epoch_dp_warm_up:
            model_without_ddp.reset_drop_path(args.drop_path)

        if epoch < args.warmup_epochs:
            optimizer.param_groups[2]['lr'] = 0
            optimizer.param_groups[3]['lr'] = 0

        if args.distributed:
            # data_loader_train.sampler.set_epoch(epoch)
            sampler_train.set_epoch(epoch)

        train_stats = my_train_one_epoch(
            model,
            criterion,
            data_loader_train,
            optimizer,
            device,
            epoch,
            loss_scaler,
            args.clip_grad,
            model_ema,
            mixup_fn,
            # set_training_mode=args.finetune == '',  # keep in eval mode during finetuning
            fp32=args.fp32_resume)

        lr_scheduler.step(epoch)
        if args.output_dir:
            checkpoint_paths = [output_dir / 'checkpoint.pth']
            for checkpoint_path in checkpoint_paths:
                utils.save_on_master(
                    {
                        'model': model_without_ddp.state_dict(),
                        'optimizer': optimizer.state_dict(),
                        'lr_scheduler': lr_scheduler.state_dict(),
                        'epoch': epoch,
                        # 'model_ema': get_state_dict(model_ema),
                        'scaler': loss_scaler.state_dict(),
                        'args': args,
                    },
                    checkpoint_path)

        test_stats = evaluate(data_loader_val, model, device)
        print(
            f"Accuracy of the network on the {len(dataset_val)} test images: {test_stats['acc1']:.1f}%"
        )
        max_accuracy = max(max_accuracy, test_stats["acc1"])
        print(f'Max accuracy: {max_accuracy:.2f}%')

        log_stats = {
            **{f'train_{k}': v
               for k, v in train_stats.items()},
            **{f'test_{k}': v
               for k, v in test_stats.items()}, 'epoch': epoch,
            'n_parameters': n_parameters
        }

        if args.output_dir and utils.is_main_process():
            with (output_dir / "log.txt").open("a") as f:
                f.write(json.dumps(log_stats) + "\n")

    total_time = time.time() - start_time
    total_time_str = str(datetime.timedelta(seconds=int(total_time)))
    print('Training time {}'.format(total_time_str))
Ejemplo n.º 9
0
def main(args):
    utils.init_distributed_mode(args)

    print(args)

    if args.distillation_type != 'none' and args.finetune and not args.eval:
        raise NotImplementedError(
            "Finetuning with distillation not yet supported")

    device = torch.device(args.device)

    # fix the seed for reproducibility
    seed = args.seed + utils.get_rank()
    torch.manual_seed(seed)
    np.random.seed(seed)
    # random.seed(seed)

    cudnn.benchmark = True

    dataset_train, args.nb_classes = build_dataset(is_train=True, args=args)
    dataset_val, _ = build_dataset(is_train=False, args=args)

    if True:  # args.distributed:
        num_tasks = utils.get_world_size()
        global_rank = utils.get_rank()
        if args.repeated_aug:
            sampler_train = RASampler(dataset_train,
                                      num_replicas=num_tasks,
                                      rank=global_rank,
                                      shuffle=True)
        else:
            sampler_train = torch.utils.data.DistributedSampler(
                dataset_train,
                num_replicas=num_tasks,
                rank=global_rank,
                shuffle=True)
        if args.dist_eval:
            if len(dataset_val) % num_tasks != 0:
                print(
                    'Warning: Enabling distributed evaluation with an eval dataset not divisible by process number. '
                    'This will slightly alter validation results as extra duplicate entries are added to achieve '
                    'equal num of samples per-process.')
            sampler_val = torch.utils.data.DistributedSampler(
                dataset_val,
                num_replicas=num_tasks,
                rank=global_rank,
                shuffle=False)
        else:
            sampler_val = torch.utils.data.SequentialSampler(dataset_val)
    else:
        sampler_train = torch.utils.data.RandomSampler(dataset_train)
        sampler_val = torch.utils.data.SequentialSampler(dataset_val)

    data_loader_train = torch.utils.data.DataLoader(
        dataset_train,
        sampler=sampler_train,
        batch_size=args.batch_size,
        num_workers=args.num_workers,
        pin_memory=args.pin_mem,
        drop_last=True,
    )

    data_loader_val = torch.utils.data.DataLoader(dataset_val,
                                                  sampler=sampler_val,
                                                  batch_size=int(
                                                      1.5 * args.batch_size),
                                                  num_workers=args.num_workers,
                                                  pin_memory=args.pin_mem,
                                                  drop_last=False)

    mixup_fn = None
    mixup_active = args.mixup > 0 or args.cutmix > 0. or args.cutmix_minmax is not None
    if mixup_active:
        mixup_fn = Mixup(mixup_alpha=args.mixup,
                         cutmix_alpha=args.cutmix,
                         cutmix_minmax=args.cutmix_minmax,
                         prob=args.mixup_prob,
                         switch_prob=args.mixup_switch_prob,
                         mode=args.mixup_mode,
                         label_smoothing=args.smoothing,
                         num_classes=args.nb_classes)

    print(f"Creating model: {args.model}")
    model = create_model(
        args.model,
        pretrained=False,
        num_classes=args.nb_classes,
        drop_rate=args.drop,
        drop_path_rate=args.drop_path,
        drop_block_rate=None,
    )

    if args.finetune:
        if args.finetune.startswith('https'):
            checkpoint = torch.hub.load_state_dict_from_url(args.finetune,
                                                            map_location='cpu',
                                                            check_hash=True)
        else:
            checkpoint = torch.load(args.finetune, map_location='cpu')

        checkpoint_model = checkpoint['model']
        state_dict = model.state_dict()
        for k in [
                'head.weight', 'head.bias', 'head_dist.weight',
                'head_dist.bias'
        ]:
            if k in checkpoint_model and checkpoint_model[
                    k].shape != state_dict[k].shape:
                print(f"Removing key {k} from pretrained checkpoint")
                del checkpoint_model[k]

        # interpolate position embedding
        pos_embed_checkpoint = checkpoint_model['pos_embed']
        embedding_size = pos_embed_checkpoint.shape[-1]
        num_patches = model.patch_embed.num_patches
        num_extra_tokens = model.pos_embed.shape[-2] - num_patches
        # height (== width) for the checkpoint position embedding
        orig_size = int(
            (pos_embed_checkpoint.shape[-2] - num_extra_tokens)**0.5)
        # height (== width) for the new position embedding
        new_size = int(num_patches**0.5)
        # class_token and dist_token are kept unchanged
        extra_tokens = pos_embed_checkpoint[:, :num_extra_tokens]
        # only the position tokens are interpolated
        pos_tokens = pos_embed_checkpoint[:, num_extra_tokens:]
        pos_tokens = pos_tokens.reshape(-1, orig_size, orig_size,
                                        embedding_size).permute(0, 3, 1, 2)
        pos_tokens = torch.nn.functional.interpolate(pos_tokens,
                                                     size=(new_size, new_size),
                                                     mode='bicubic',
                                                     align_corners=False)
        pos_tokens = pos_tokens.permute(0, 2, 3, 1).flatten(1, 2)
        new_pos_embed = torch.cat((extra_tokens, pos_tokens), dim=1)
        checkpoint_model['pos_embed'] = new_pos_embed

        model.load_state_dict(checkpoint_model, strict=False)

    model.to(device)

    model_ema = None
    if args.model_ema:
        # Important to create EMA model after cuda(), DP wrapper, and AMP but before SyncBN and DDP wrapper
        model_ema = ModelEma(model,
                             decay=args.model_ema_decay,
                             device='cpu' if args.model_ema_force_cpu else '',
                             resume='')

    model_without_ddp = model
    if args.distributed:
        model = torch.nn.parallel.DistributedDataParallel(
            model, device_ids=[args.gpu])
        model_without_ddp = model.module
    n_parameters = sum(p.numel() for p in model.parameters()
                       if p.requires_grad)
    print('number of params:', n_parameters)

    linear_scaled_lr = args.lr * args.batch_size * utils.get_world_size(
    ) / 512.0
    args.lr = linear_scaled_lr
    optimizer = create_optimizer(args, model_without_ddp)
    loss_scaler = NativeScaler()

    lr_scheduler, _ = create_scheduler(args, optimizer)

    criterion = LabelSmoothingCrossEntropy()

    if args.mixup > 0.:
        # smoothing is handled with mixup label transform
        criterion = SoftTargetCrossEntropy()
    elif args.smoothing:
        criterion = LabelSmoothingCrossEntropy(smoothing=args.smoothing)
    else:
        criterion = torch.nn.CrossEntropyLoss()

    teacher_model = None
    if args.distillation_type != 'none':
        assert args.teacher_path, 'need to specify teacher-path when using distillation'
        print(f"Creating teacher model: {args.teacher_model}")
        teacher_model = create_model(
            args.teacher_model,
            pretrained=False,
            num_classes=args.nb_classes,
            global_pool='avg',
        )
        if args.teacher_path.startswith('https'):
            checkpoint = torch.hub.load_state_dict_from_url(args.teacher_path,
                                                            map_location='cpu',
                                                            check_hash=True)
        else:
            checkpoint = torch.load(args.teacher_path, map_location='cpu')
        teacher_model.load_state_dict(checkpoint['model'])
        teacher_model.to(device)
        teacher_model.eval()

    # wrap the criterion in our custom DistillationLoss, which
    # just dispatches to the original criterion if args.distillation_type is 'none'
    criterion = DistillationLoss(criterion, teacher_model,
                                 args.distillation_type,
                                 args.distillation_alpha,
                                 args.distillation_tau)

    output_dir = Path(args.output_dir)
    if args.resume:
        if args.resume.startswith('https'):
            checkpoint = torch.hub.load_state_dict_from_url(args.resume,
                                                            map_location='cpu',
                                                            check_hash=True)
        else:
            checkpoint = torch.load(args.resume, map_location='cpu')
        model_without_ddp.load_state_dict(checkpoint['model'])
        if not args.eval and 'optimizer' in checkpoint and 'lr_scheduler' in checkpoint and 'epoch' in checkpoint:
            optimizer.load_state_dict(checkpoint['optimizer'])
            lr_scheduler.load_state_dict(checkpoint['lr_scheduler'])
            args.start_epoch = checkpoint['epoch'] + 1
            if args.model_ema:
                utils._load_checkpoint_for_ema(model_ema,
                                               checkpoint['model_ema'])
            if 'scaler' in checkpoint:
                loss_scaler.load_state_dict(checkpoint['scaler'])

    if args.eval:
        test_stats = evaluate(data_loader_val, model, device)
        print(
            f"Accuracy of the network on the {len(dataset_val)} test images: {test_stats['acc1']:.1f}%"
        )
        return

    print(f"Start training for {args.epochs} epochs")
    start_time = time.time()
    max_accuracy = 0.0
    for epoch in range(args.start_epoch, args.epochs):
        if args.distributed:
            data_loader_train.sampler.set_epoch(epoch)

        train_stats = train_one_epoch(
            model,
            criterion,
            data_loader_train,
            optimizer,
            device,
            epoch,
            loss_scaler,
            args.clip_grad,
            model_ema,
            mixup_fn,
            set_training_mode=args.finetune ==
            ''  # keep in eval mode during finetuning
        )

        lr_scheduler.step(epoch)
        if args.output_dir:
            checkpoint_paths = [output_dir / ('checkpoint_%04d.pth' % (epoch))]
            for checkpoint_path in checkpoint_paths:
                utils.save_on_master(
                    {
                        'model': model_without_ddp.state_dict(),
                        'optimizer': optimizer.state_dict(),
                        'lr_scheduler': lr_scheduler.state_dict(),
                        'epoch': epoch,
                        'model_ema': get_state_dict(model_ema),
                        'scaler': loss_scaler.state_dict(),
                        'args': args,
                    }, checkpoint_path)

        if not args.train_without_eval:
            test_stats = evaluate(data_loader_val, model, device)
            print(
                f"Accuracy of the network on the {len(dataset_val)} test images: {test_stats['acc1']:.1f}%"
            )
            max_accuracy = max(max_accuracy, test_stats["acc1"])
            print(f'Max accuracy: {max_accuracy:.2f}%')

            log_stats = {
                **{f'train_{k}': v
                   for k, v in train_stats.items()},
                **{f'test_{k}': v
                   for k, v in test_stats.items()}, 'epoch': epoch,
                'n_parameters': n_parameters
            }
        else:
            log_stats = {
                **{f'train_{k}': v
                   for k, v in train_stats.items()}, 'epoch': epoch,
                'n_parameters': n_parameters
            }
        if args.output_dir and utils.is_main_process():
            with (output_dir / "log.txt").open("a") as f:
                f.write(json.dumps(log_stats) + "\n")

    total_time = time.time() - start_time
    total_time_str = str(datetime.timedelta(seconds=int(total_time)))
    print('Training time {}'.format(total_time_str))
Ejemplo n.º 10
0
    def _resume_fit(self, train_data, val_data, time_limit=math.inf):
        tic = time.time()
        # TODO: regression not implemented
        if self._problem_type != REGRESSION and (not self.classes or not self.num_class):
            raise ValueError('This is a classification problem and we are not able to determine classes of dataset')

        if max(self.start_epoch, self.epoch) >= self.epochs:
            return {'time': self._time_elapsed}

        # wrap DP if possible
        if self.found_gpu:
            self.net = torch.nn.DataParallel(self.net, device_ids=[int(i) for i in self.valid_gpus])
        self.net = self.net.to(self.ctx[0])

        # prepare dataset
        train_dataset = train_data.to_torch()
        val_dataset = val_data.to_torch()

        # setup mixup / cutmix
        self._collate_fn = None
        self._mixup_fn = None
        self.mixup_active = self._augmentation_cfg.mixup > 0 or self._augmentation_cfg.cutmix > 0. or self._augmentation_cfg.cutmix_minmax is not None
        if self.mixup_active:
            mixup_args = dict(
                mixup_alpha=self._augmentation_cfg.mixup, cutmix_alpha=self._augmentation_cfg.cutmix,
                cutmix_minmax=self._augmentation_cfg.cutmix_minmax, prob=self._augmentation_cfg.mixup_prob,
                switch_prob=self._augmentation_cfg.mixup_switch_prob, mode=self._augmentation_cfg.mixup_mode,
                label_smoothing=self._augmentation_cfg.smoothing, num_classes=self.num_class)
            if self._misc_cfg.prefetcher:
                self._collate_fn = FastCollateMixup(**mixup_args)
            else:
                self._mixup_fn = Mixup(**mixup_args)

        # create data loaders w/ augmentation pipeiine
        train_interpolation = self._augmentation_cfg.train_interpolation
        if self._augmentation_cfg.no_aug or not train_interpolation:
            train_interpolation = self._data_cfg.interpolation
        train_loader = create_loader(
            train_dataset,
            input_size=self._data_cfg.input_size,
            batch_size=self._train_cfg.batch_size,
            is_training=True,
            use_prefetcher=self._misc_cfg.prefetcher,
            no_aug=self._augmentation_cfg.no_aug,
            scale=self._augmentation_cfg.scale,
            ratio=self._augmentation_cfg.ratio,
            hflip=self._augmentation_cfg.hflip,
            vflip=self._augmentation_cfg.vflip,
            color_jitter=self._augmentation_cfg.color_jitter,
            auto_augment=self._augmentation_cfg.auto_augment,
            interpolation=train_interpolation,
            mean=self._data_cfg.mean,
            std=self._data_cfg.std,
            num_workers=self._misc_cfg.num_workers,
            distributed=False,
            collate_fn=self._collate_fn,
            pin_memory=self._misc_cfg.pin_mem,
            use_multi_epochs_loader=self._misc_cfg.use_multi_epochs_loader
        )

        val_loader = create_loader(
            val_dataset,
            input_size=self._data_cfg.input_size,
            batch_size=self._data_cfg.validation_batch_size_multiplier * self._train_cfg.batch_size,
            is_training=False,
            use_prefetcher=self._misc_cfg.prefetcher,
            interpolation=self._data_cfg.interpolation,
            mean=self._data_cfg.mean,
            std=self._data_cfg.std,
            num_workers=self._misc_cfg.num_workers,
            distributed=False,
            crop_pct=self._data_cfg.crop_pct,
            pin_memory=self._misc_cfg.pin_mem,
        )

        self._time_elapsed += time.time() - tic
        return self._train_loop(train_loader, val_loader, time_limit=time_limit)
Ejemplo n.º 11
0
def main(fold_i=0, data_=None, train_index=None, val_index=None):
    setup_default_logging()
    args, args_text = _parse_args()

    args.prefetcher = not args.no_prefetcher
    args.distributed = False
    if 'WORLD_SIZE' in os.environ:
        args.distributed = int(os.environ['WORLD_SIZE']) > 1
    args.device = 'cuda:0'
    args.world_size = 1
    args.rank = 0  # global rank
    best_score = 0.0
    args.output = args.output + 'fold_' + str(fold_i)
    if args.distributed:
        args.device = 'cuda:%d' % args.local_rank
        torch.cuda.set_device(args.local_rank)
        if fold_i == 0:
            torch.distributed.init_process_group(backend='nccl',
                                                 init_method='env://')
        args.world_size = torch.distributed.get_world_size()
        args.rank = torch.distributed.get_rank()
        _logger.info(
            'Training in distributed mode with multiple processes, 1 GPU per process. Process %d, total %d.'
            % (args.rank, args.world_size))
    else:
        _logger.info('Training with a single process on 1 GPUs.')
    assert args.rank >= 0

    # resolve AMP arguments based on PyTorch / Apex availability
    use_amp = None
    if args.amp:
        # for backwards compat, `--amp` arg tries apex before native amp
        if has_apex:
            args.apex_amp = True
        elif has_native_amp:
            args.native_amp = True
    if args.apex_amp and has_apex:
        use_amp = 'apex'
    elif args.native_amp and has_native_amp:
        use_amp = 'native'
    elif args.apex_amp or args.native_amp:
        _logger.warning(
            "Neither APEX or native Torch AMP is available, using float32. "
            "Install NVIDA apex or upgrade to PyTorch 1.6")

    torch.manual_seed(args.seed + args.rank)

    model = create_model(
        args.model,
        pretrained=args.pretrained,
        num_classes=args.num_classes,
        drop_rate=args.drop,
        drop_connect_rate=args.drop_connect,  # DEPRECATED, use drop_path
        drop_path_rate=args.drop_path,
        drop_block_rate=args.drop_block,
        global_pool=args.gp,
        bn_tf=args.bn_tf,
        bn_momentum=args.bn_momentum,
        bn_eps=args.bn_eps,
        scriptable=args.torchscript,
        checkpoint_path=args.initial_checkpoint)

    if args.local_rank == 0:
        _logger.info('Model %s created, param count: %d' %
                     (args.model, sum([m.numel()
                                       for m in model.parameters()])))

    data_config = resolve_data_config(vars(args),
                                      model=model,
                                      verbose=args.local_rank == 0)

    # setup augmentation batch splits for contrastive loss or split bn
    num_aug_splits = 0
    if args.aug_splits > 0:
        assert args.aug_splits > 1, 'A split of 1 makes no sense'
        num_aug_splits = args.aug_splits

    # enable split bn (separate bn stats per batch-portion)
    if args.split_bn:
        assert num_aug_splits > 1 or args.resplit
        model = convert_splitbn_model(model, max(num_aug_splits, 2))

    # move model to GPU, enable channels last layout if set
    model = nn.DataParallel(model)
    model.cuda()
    if args.channels_last:
        model = model.to(memory_format=torch.channels_last)

    # setup synchronized BatchNorm for distributed training
    if args.distributed and args.sync_bn:
        assert not args.split_bn
        if has_apex and use_amp != 'native':
            # Apex SyncBN preferred unless native amp is activated
            model = convert_syncbn_model(model)
        else:
            model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model)
        if args.local_rank == 0:
            _logger.info(
                'Converted model to use Synchronized BatchNorm. WARNING: You may have issues if using '
                'zero initialized BN layers (enabled by default for ResNets) while sync-bn enabled.'
            )

    if args.torchscript:
        assert not use_amp == 'apex', 'Cannot use APEX AMP with torchscripted model'
        assert not args.sync_bn, 'Cannot use SyncBatchNorm with torchscripted model'
        model = torch.jit.script(model)

    optimizer = create_optimizer(args, model)

    #optimizer = torch.optim.SGD(model.parameters(), lr=0.1, weight_decay=1e-6)
    # setup automatic mixed-precision (AMP) loss scaling and op casting

    amp_autocast = suppress  # do nothing
    loss_scaler = None
    if use_amp == 'apex':
        model, optimizer = amp.initialize(model, optimizer, opt_level='O1')
        loss_scaler = ApexScaler()
        if args.local_rank == 0:
            _logger.info('Using NVIDIA APEX AMP. Training in mixed precision.')
    elif use_amp == 'native':
        amp_autocast = torch.cuda.amp.autocast
        loss_scaler = NativeScaler()
        if args.local_rank == 0:
            _logger.info(
                'Using native Torch AMP. Training in mixed precision.')
    else:
        if args.local_rank == 0:
            _logger.info('AMP not enabled. Training in float32.')

    # optionally resume from a checkpoint
    resume_epoch = None
    if args.resume:
        resume_epoch = resume_checkpoint(
            model,
            args.resume,
            optimizer=None if args.no_resume_opt else optimizer,
            loss_scaler=None if args.no_resume_opt else loss_scaler,
            log_info=args.local_rank == 0)

    # setup exponential moving average of model weights, SWA could be used here too
    model_ema = None
    if args.model_ema:
        # Important to create EMA model after cuda(), DP wrapper, and AMP but before SyncBN and DDP wrapper
        model_ema = ModelEmaV2(
            model,
            decay=args.model_ema_decay,
            device='cpu' if args.model_ema_force_cpu else None)
        if args.resume:
            load_checkpoint(model_ema.module, args.resume, use_ema=True)

    # setup distributed training
    if args.distributed:
        if has_apex and use_amp != 'native':
            # Apex DDP preferred unless native amp is activated
            if args.local_rank == 0:
                _logger.info("Using NVIDIA APEX DistributedDataParallel.")
            model = ApexDDP(model, delay_allreduce=True)
        else:
            if args.local_rank == 0:
                _logger.info("Using native Torch DistributedDataParallel.")
            model = NativeDDP(model, device_ids=[
                args.local_rank
            ])  # can use device str in Torch >= 1.1
        # NOTE: EMA model does not need to be wrapped by DDP
    lr_scheduler, num_epochs = create_scheduler(args, optimizer)
    # lr_scheduler = torch.optim.lr_scheduler.CosineAnnealingWarmRestarts(optimizer, T_0=10, T_mult=1, eta_min=1e-6, last_epoch=-1)

    if args.local_rank == 0:
        _logger.info('Scheduled epochs: {}'.format(20))

    ##create DataLoader
    train_trans = get_riadd_train_transforms(args)
    valid_trans = get_riadd_valid_transforms(args)

    train_data = data_.iloc[train_index, :].reset_index(drop=True)
    dataset_train = RiaddDataSet(image_ids=train_data, baseImgPath=args.data)

    val_data = data_.iloc[val_index, :].reset_index(drop=True)
    dataset_eval = RiaddDataSet(image_ids=val_data, baseImgPath=args.data)

    # setup mixup / cutmix
    collate_fn = None
    mixup_fn = None
    mixup_active = args.mixup > 0 or args.cutmix > 0. or args.cutmix_minmax is not None
    if mixup_active:
        mixup_args = dict(mixup_alpha=args.mixup,
                          cutmix_alpha=args.cutmix,
                          cutmix_minmax=args.cutmix_minmax,
                          prob=args.mixup_prob,
                          switch_prob=args.mixup_switch_prob,
                          mode=args.mixup_mode,
                          label_smoothing=args.smoothing,
                          num_classes=args.num_classes)
        if args.prefetcher:
            assert not num_aug_splits  # collate conflict (need to support deinterleaving in collate mixup)
            collate_fn = FastCollateMixup(**mixup_args)
        else:
            mixup_fn = Mixup(**mixup_args)

    # wrap dataset in AugMix helper
    if num_aug_splits > 1:
        dataset_train = AugMixDataset(dataset_train, num_splits=num_aug_splits)

    # create data loaders w/ augmentation pipeiine
    train_interpolation = args.train_interpolation
    if args.no_aug or not train_interpolation:
        train_interpolation = data_config['interpolation']
    train_trans = get_riadd_train_transforms(args)
    loader_train = create_loader(
        dataset_train,
        input_size=data_config['input_size'],
        batch_size=args.batch_size,
        is_training=True,
        use_prefetcher=args.prefetcher,
        no_aug=args.no_aug,
        re_prob=args.reprob,
        re_mode=args.remode,
        re_count=args.recount,
        re_split=args.resplit,
        scale=args.scale,
        ratio=args.ratio,
        hflip=args.hflip,
        vflip=args.vflip,
        color_jitter=args.color_jitter,
        auto_augment=args.aa,
        num_aug_splits=num_aug_splits,
        interpolation=train_interpolation,
        mean=data_config['mean'],
        std=data_config['std'],
        num_workers=args.workers,
        distributed=args.distributed,
        collate_fn=collate_fn,
        pin_memory=args.pin_mem,
        use_multi_epochs_loader=args.use_multi_epochs_loader,
        transform=train_trans)

    valid_trans = get_riadd_valid_transforms(args)
    loader_eval = create_loader(
        dataset_eval,
        input_size=data_config['input_size'],
        batch_size=args.validation_batch_size_multiplier * args.batch_size,
        is_training=False,
        use_prefetcher=args.prefetcher,
        interpolation=data_config['interpolation'],
        mean=data_config['mean'],
        std=data_config['std'],
        num_workers=args.workers,
        distributed=args.distributed,
        crop_pct=data_config['crop_pct'],
        pin_memory=args.pin_mem,
        transform=valid_trans)

    # # setup loss function
    # if args.jsd:
    #     assert num_aug_splits > 1  # JSD only valid with aug splits set
    #     train_loss_fn = JsdCrossEntropy(num_splits=num_aug_splits, smoothing=args.smoothing).cuda()
    # elif mixup_active:
    #     # smoothing is handled with mixup target transform
    #     train_loss_fn = SoftTargetCrossEntropy().cuda()
    # elif args.smoothing:
    #     train_loss_fn = LabelSmoothingCrossEntropy(smoothing=args.smoothing).cuda()
    # else:
    #     train_loss_fn = nn.CrossEntropyLoss().cuda()

    validate_loss_fn = nn.BCEWithLogitsLoss().cuda()
    train_loss_fn = nn.BCEWithLogitsLoss().cuda()

    # setup checkpoint saver and eval metric tracking
    eval_metric = args.eval_metric
    best_metric = None
    best_epoch = None
    saver = None
    vis = None
    output_dir = ''
    if args.local_rank == 0:
        output_base = args.output if args.output else './output'
        exp_name = '-'.join([
            datetime.now().strftime("%Y%m%d-%H%M%S"), args.model,
            str(data_config['input_size'][-1])
        ])
        output_dir = get_outdir(output_base, 'train', exp_name)
        decreasing = True if eval_metric == 'loss' else False
        saver = CheckpointSaver(model=model,
                                optimizer=optimizer,
                                args=args,
                                model_ema=model_ema,
                                amp_scaler=loss_scaler,
                                checkpoint_dir=output_dir,
                                recovery_dir=output_dir,
                                decreasing=decreasing)
        with open(os.path.join(output_dir, 'args.yaml'), 'w') as f:
            f.write(args_text)
        vis = Visualizer(env=args.output)

    try:
        for epoch in range(0, args.epochs):
            if args.distributed:
                loader_train.sampler.set_epoch(epoch)

            train_metrics = train_epoch(epoch,
                                        model,
                                        loader_train,
                                        optimizer,
                                        train_loss_fn,
                                        args,
                                        lr_scheduler=lr_scheduler,
                                        saver=saver,
                                        output_dir=output_dir,
                                        amp_autocast=amp_autocast,
                                        loss_scaler=loss_scaler,
                                        model_ema=model_ema,
                                        mixup_fn=mixup_fn)

            if args.distributed and args.dist_bn in ('broadcast', 'reduce'):
                if args.local_rank == 0:
                    _logger.info(
                        "Distributing BatchNorm running means and vars")
                distribute_bn(model, args.world_size, args.dist_bn == 'reduce')

            eval_metrics = validate(model,
                                    loader_eval,
                                    validate_loss_fn,
                                    args,
                                    amp_autocast=amp_autocast)
            score, scores = get_score(eval_metrics['valid_label'],
                                      eval_metrics['predictions'])
            ##visdom
            if vis is not None:
                vis.plot_curves({'None': epoch},
                                iters=epoch,
                                title='None',
                                xlabel='iters',
                                ylabel='None')
                vis.plot_curves(
                    {'learing rate': optimizer.param_groups[0]['lr']},
                    iters=epoch,
                    title='lr',
                    xlabel='iters',
                    ylabel='learing rate')
                vis.plot_curves({'train loss': float(train_metrics['loss'])},
                                iters=epoch,
                                title='train loss',
                                xlabel='iters',
                                ylabel='train loss')
                vis.plot_curves({'val loss': float(eval_metrics['loss'])},
                                iters=epoch,
                                title='val loss',
                                xlabel='iters',
                                ylabel='val loss')
                vis.plot_curves({'val score': float(score)},
                                iters=epoch,
                                title='val score',
                                xlabel='iters',
                                ylabel='val score')

            if model_ema is not None and not args.model_ema_force_cpu:
                if args.distributed and args.dist_bn in ('broadcast',
                                                         'reduce'):
                    distribute_bn(model_ema, args.world_size,
                                  args.dist_bn == 'reduce')
                ema_eval_metrics = validate(model_ema.module,
                                            loader_eval,
                                            validate_loss_fn,
                                            args,
                                            amp_autocast=amp_autocast,
                                            log_suffix=' (EMA)')
                eval_metrics = ema_eval_metrics

            if lr_scheduler is not None:
                # step LR for next epoch
                # lr_scheduler.step(epoch + 1, eval_metrics[eval_metric])
                lr_scheduler.step(epoch + 1, score)

            update_summary(epoch,
                           train_metrics,
                           eval_metrics,
                           os.path.join(output_dir, 'summary.csv'),
                           write_header=best_metric is None)

            if saver is not None and score > best_score:
                # save proper checkpoint with eval metric
                best_score = score
                save_metric = best_score
                best_metric, best_epoch = saver.save_checkpoint(
                    epoch, metric=save_metric)
        del model
        del optimizer
        torch.cuda.empty_cache()
    except KeyboardInterrupt:
        pass
    if best_metric is not None:
        _logger.info('*** Best metric: {0} (epoch {1})'.format(
            best_metric, best_epoch))
Ejemplo n.º 12
0
def main(args):

    utils.init_distributed_mode(args)
    update_config_from_file(args.cfg)

    print(args)
    args_text = yaml.safe_dump(args.__dict__, default_flow_style=False)

    device = torch.device(args.device)

    # fix the seed for reproducibility
    seed = args.seed + utils.get_rank()
    torch.manual_seed(seed)
    np.random.seed(seed)
    # random.seed(seed)
    cudnn.benchmark = True

    dataset_train, args.nb_classes = build_dataset(is_train=True, args=args)
    dataset_val, _ = build_dataset(is_train=False, args=args)

    if args.distributed:
        num_tasks = utils.get_world_size()
        global_rank = utils.get_rank()
        if args.dist_eval:
            if len(dataset_val) % num_tasks != 0:
                print(
                    'Warning: Enabling distributed evaluation with an eval dataset not divisible by process number. '
                    'This will slightly alter validation results as extra duplicate entries are added to achieve '
                    'equal num of samples per-process.')
            sampler_val = torch.utils.data.DistributedSampler(
                dataset_val,
                num_replicas=num_tasks,
                rank=global_rank,
                shuffle=False)
        else:
            sampler_val = torch.utils.data.SequentialSampler(dataset_val)
    else:
        sampler_val = torch.utils.data.SequentialSampler(dataset_val)

    data_loader_val = torch.utils.data.DataLoader(dataset_val,
                                                  batch_size=int(
                                                      2 * args.batch_size),
                                                  sampler=sampler_val,
                                                  num_workers=args.num_workers,
                                                  pin_memory=args.pin_mem,
                                                  drop_last=False)

    mixup_fn = None
    mixup_active = args.mixup > 0 or args.cutmix > 0. or args.cutmix_minmax is not None
    if mixup_active:
        mixup_fn = Mixup(mixup_alpha=args.mixup,
                         cutmix_alpha=args.cutmix,
                         cutmix_minmax=args.cutmix_minmax,
                         prob=args.mixup_prob,
                         switch_prob=args.mixup_switch_prob,
                         mode=args.mixup_mode,
                         label_smoothing=args.smoothing,
                         num_classes=args.nb_classes)

    print(f"Creating S3-Transformer")

    model = SSSTransformer(img_size=args.input_size,
                           patch_size=args.patch_size,
                           num_classes=args.nb_classes,
                           embed_dim=cfg.EMBED_DIM,
                           depths=cfg.DEPTHS,
                           num_heads=cfg.NUM_HEADS,
                           window_size=cfg.WINDOW_SIZE,
                           mlp_ratio=cfg.MLP_RATIO,
                           qkv_bias=True,
                           drop_rate=args.drop,
                           drop_path_rate=args.drop_path,
                           patch_norm=True)
    model.to(device)

    model_ema = None

    model_without_ddp = model
    if args.distributed:

        model = torch.nn.parallel.DistributedDataParallel(
            model, device_ids=[args.gpu], find_unused_parameters=True)
        model_without_ddp = model.module

    n_parameters = sum(p.numel() for p in model.parameters()
                       if p.requires_grad)
    print('number of params:', n_parameters)

    linear_scaled_lr = args.lr * args.batch_size * utils.get_world_size(
    ) / 512.0
    args.lr = linear_scaled_lr
    optimizer = create_optimizer(args, model_without_ddp)
    loss_scaler = NativeScaler()
    lr_scheduler, _ = create_scheduler(args, optimizer)

    output_dir = Path(args.output_dir)

    if not output_dir.exists():
        output_dir.mkdir(parents=True)
    # save config for later experiments
    with open(output_dir / "config.yaml", 'w') as f:
        f.write(args_text)
    if args.resume:
        if args.resume.startswith('https'):
            checkpoint = torch.hub.load_state_dict_from_url(args.resume,
                                                            map_location='cpu',
                                                            check_hash=True)
        else:
            checkpoint = torch.load(args.resume, map_location='cpu')
        model_without_ddp.load_state_dict(checkpoint['model'])

    if args.eval:
        test_stats = evaluate(data_loader_val, model, device)
        print(
            f"Accuracy of the network on the {len(dataset_val)} test images: {test_stats['acc1']:.1f}%"
        )
        return
Ejemplo n.º 13
0
def main():
    setup_default_logging()
    args, args_text = _parse_args()

    args.prefetcher = not args.no_prefetcher
    args.distributed = False
    args.device = 'cuda:0'
    args.world_size = 1
    args.rank = 0  # global rank

    use_cuda = torch.cuda.is_available()
    device = torch.device("cuda" if use_cuda else "cpu")

    _logger.info('====================\n\n'
                 'Actfun: {}\n'
                 'LR: {}\n'
                 'Epochs: {}\n'
                 'p: {}\n'
                 'k: {}\n'
                 'g: {}\n'
                 'Extra channel multiplier: {}\n'
                 'Weight Init: {}\n'
                 '\n===================='.format(args.actfun, args.lr,
                                                 args.epochs, args.p, args.k,
                                                 args.g,
                                                 args.extra_channel_mult,
                                                 args.weight_init))

    # ================================================================================= Loading models
    pre_model = create_model(
        args.model,
        pretrained=True,
        actfun='swish',
        num_classes=args.num_classes,
        drop_rate=args.drop,
        drop_connect_rate=args.drop_connect,  # DEPRECATED, use drop_path
        drop_path_rate=args.drop_path,
        drop_block_rate=args.drop_block,
        global_pool=args.gp,
        bn_tf=args.bn_tf,
        bn_momentum=args.bn_momentum,
        bn_eps=args.bn_eps,
        scriptable=args.torchscript,
        checkpoint_path=args.initial_checkpoint,
        p=args.p,
        k=args.k,
        g=args.g,
        extra_channel_mult=args.extra_channel_mult,
        weight_init_name=args.weight_init,
        partial_ho_actfun=args.partial_ho_actfun)
    pre_model_layers = list(pre_model.children())
    pre_model = torch.nn.Sequential(*pre_model_layers[:-1])
    pre_model.to(device)

    model = MLP.MLP(actfun=args.actfun,
                    input_dim=1280,
                    output_dim=args.num_classes,
                    k=args.k,
                    p=args.p,
                    g=args.g,
                    num_params=1_000_000,
                    permute_type='shuffle')
    model.to(device)

    # ================================================================================= Loading dataset
    util.seed_all(args.seed)
    if args.data == 'caltech101' and not os.path.exists('caltech101'):
        dir_root = r'101_ObjectCategories'
        dir_new = r'caltech101'
        dir_new_train = os.path.join(dir_new, 'train')
        dir_new_val = os.path.join(dir_new, 'val')
        dir_new_test = os.path.join(dir_new, 'test')
        if not os.path.exists(dir_new):
            os.mkdir(dir_new)
            os.mkdir(dir_new_train)
            os.mkdir(dir_new_val)
            os.mkdir(dir_new_test)

        for dir2 in os.listdir(dir_root):
            if dir2 != 'BACKGROUND_Google':
                curr_path = os.path.join(dir_root, dir2)
                new_path_train = os.path.join(dir_new_train, dir2)
                new_path_val = os.path.join(dir_new_val, dir2)
                new_path_test = os.path.join(dir_new_test, dir2)
                if not os.path.exists(new_path_train):
                    os.mkdir(new_path_train)
                if not os.path.exists(new_path_val):
                    os.mkdir(new_path_val)
                if not os.path.exists(new_path_test):
                    os.mkdir(new_path_test)

                train_upper = int(0.8 * len(os.listdir(curr_path)))
                val_upper = int(0.9 * len(os.listdir(curr_path)))
                curr_files_all = os.listdir(curr_path)
                curr_files_train = curr_files_all[:train_upper]
                curr_files_val = curr_files_all[train_upper:val_upper]
                curr_files_test = curr_files_all[val_upper:]

                for file in curr_files_train:
                    copyfile(os.path.join(curr_path, file),
                             os.path.join(new_path_train, file))
                for file in curr_files_val:
                    copyfile(os.path.join(curr_path, file),
                             os.path.join(new_path_val, file))
                for file in curr_files_test:
                    copyfile(os.path.join(curr_path, file),
                             os.path.join(new_path_test, file))
    time.sleep(5)

    # create the train and eval datasets
    train_dir = os.path.join(args.data, 'train')
    if not os.path.exists(train_dir):
        _logger.error(
            'Training folder does not exist at: {}'.format(train_dir))
        exit(1)
    dataset_train = Dataset(train_dir)

    eval_dir = os.path.join(args.data, 'val')
    if not os.path.isdir(eval_dir):
        eval_dir = os.path.join(args.data, 'validation')
        if not os.path.isdir(eval_dir):
            _logger.error(
                'Validation folder does not exist at: {}'.format(eval_dir))
            exit(1)
    dataset_eval = Dataset(eval_dir)

    # setup augmentation batch splits for contrastive loss or split bn
    num_aug_splits = 0
    if args.aug_splits > 0:
        assert args.aug_splits > 1, 'A split of 1 makes no sense'
        num_aug_splits = args.aug_splits

    # enable split bn (separate bn stats per batch-portion)
    if args.split_bn:
        assert num_aug_splits > 1 or args.resplit
        model = convert_splitbn_model(model, max(num_aug_splits, 2))

    # setup mixup / cutmix
    collate_fn = None
    mixup_fn = None
    mixup_active = args.mixup > 0 or args.cutmix > 0. or args.cutmix_minmax is not None
    if mixup_active:
        mixup_args = dict(mixup_alpha=args.mixup,
                          cutmix_alpha=args.cutmix,
                          cutmix_minmax=args.cutmix_minmax,
                          prob=args.mixup_prob,
                          switch_prob=args.mixup_switch_prob,
                          mode=args.mixup_mode,
                          label_smoothing=args.smoothing,
                          num_classes=args.num_classes)
        if args.prefetcher:
            assert not num_aug_splits  # collate conflict (need to support deinterleaving in collate mixup)
            collate_fn = FastCollateMixup(**mixup_args)
        else:
            mixup_fn = Mixup(**mixup_args)

    # create data loaders w/ augmentation pipeline
    train_interpolation = args.train_interpolation
    data_config = resolve_data_config(vars(args),
                                      model=model,
                                      verbose=args.local_rank == 0)
    if args.no_aug or not train_interpolation:
        train_interpolation = data_config['interpolation']
    loader_train = create_loader(
        dataset_train,
        input_size=data_config['input_size'],
        batch_size=args.batch_size,
        is_training=True,
        use_prefetcher=args.prefetcher,
        no_aug=args.no_aug,
        re_prob=args.reprob,
        re_mode=args.remode,
        re_count=args.recount,
        re_split=args.resplit,
        scale=args.scale,
        ratio=args.ratio,
        hflip=args.hflip,
        vflip=args.vflip,
        color_jitter=args.color_jitter,
        auto_augment=args.aa,
        num_aug_splits=num_aug_splits,
        interpolation=train_interpolation,
        mean=data_config['mean'],
        std=data_config['std'],
        num_workers=args.workers,
        distributed=args.distributed,
        collate_fn=collate_fn,
        pin_memory=args.pin_mem,
        use_multi_epochs_loader=args.use_multi_epochs_loader)

    loader_eval = create_loader(
        dataset_eval,
        input_size=data_config['input_size'],
        batch_size=args.validation_batch_size_multiplier * args.batch_size,
        is_training=False,
        use_prefetcher=args.prefetcher,
        interpolation=data_config['interpolation'],
        mean=data_config['mean'],
        std=data_config['std'],
        num_workers=args.workers,
        distributed=args.distributed,
        crop_pct=data_config['crop_pct'],
        pin_memory=args.pin_mem,
    )

    # ================================================================================= Optimizer / scheduler
    criterion = nn.CrossEntropyLoss()
    optimizer = torch.optim.Adam(model.parameters(), weight_decay=1e-5)
    scheduler = OneCycleLR(
        optimizer,
        max_lr=args.lr,
        epochs=args.epochs,
        steps_per_epoch=int(math.floor(len(dataset_train) / args.batch_size)),
        cycle_momentum=False)

    # ================================================================================= Save file / checkpoints
    fieldnames = [
        'dataset', 'seed', 'epoch', 'time', 'actfun', 'model', 'batch_size',
        'alpha_primes', 'alphas', 'num_params', 'k', 'p', 'g', 'perm_method',
        'gen_gap', 'epoch_train_loss', 'epoch_train_acc',
        'epoch_aug_train_loss', 'epoch_aug_train_acc', 'epoch_val_loss',
        'epoch_val_acc', 'curr_lr', 'found_lr', 'epochs'
    ]
    filename = 'out_{}_{}_{}_{}'.format(datetime.date.today(), args.actfun,
                                        args.data, args.seed)
    outfile_path = os.path.join(args.output, filename) + '.csv'
    checkpoint_path = os.path.join(args.check_path, filename) + '.pth'
    if not os.path.exists(outfile_path):
        with open(outfile_path, mode='w') as out_file:
            writer = csv.DictWriter(out_file,
                                    fieldnames=fieldnames,
                                    lineterminator='\n')
            writer.writeheader()

    epoch = 1
    checkpoint = torch.load(checkpoint_path) if os.path.exists(
        checkpoint_path) else None
    if checkpoint is not None:
        pre_model.load_state_dict(checkpoint['pre_model_state_dict'])
        model.load_state_dict(checkpoint['model_state_dict'])
        optimizer.load_state_dict(checkpoint['optimizer'])
        scheduler.load_state_dict(checkpoint['scheduler'])
        epoch = checkpoint['epoch']
        pre_model.to(device)
        model.to(device)
        print("*** LOADED CHECKPOINT ***"
              "\n{}"
              "\nSeed: {}"
              "\nEpoch: {}"
              "\nActfun: {}"
              "\np: {}"
              "\nk: {}"
              "\ng: {}"
              "\nperm_method: {}".format(checkpoint_path,
                                         checkpoint['curr_seed'],
                                         checkpoint['epoch'],
                                         checkpoint['actfun'], checkpoint['p'],
                                         checkpoint['k'], checkpoint['g'],
                                         checkpoint['perm_method']))

    args.mix_pre_apex = False
    if args.control_amp == 'apex':
        args.mix_pre_apex = True
        model, optimizer = amp.initialize(model, optimizer, opt_level="O2")

    # ================================================================================= Training
    while epoch <= args.epochs:

        if args.check_path != '':
            torch.save(
                {
                    'pre_model_state_dict': pre_model.state_dict(),
                    'model_state_dict': model.state_dict(),
                    'optimizer': optimizer.state_dict(),
                    'scheduler': scheduler.state_dict(),
                    'curr_seed': args.seed,
                    'epoch': epoch,
                    'actfun': args.actfun,
                    'p': args.p,
                    'k': args.k,
                    'g': args.g,
                    'perm_method': 'shuffle'
                }, checkpoint_path)

        util.seed_all((args.seed * args.epochs) + epoch)
        start_time = time.time()
        args.mix_pre = False
        if args.control_amp == 'native':
            args.mix_pre = True
            scaler = torch.cuda.amp.GradScaler()

        # ---- Training
        model.train()
        total_train_loss, n, num_correct, num_total = 0, 0, 0, 0
        for batch_idx, (x, targetx) in enumerate(loader_train):
            x, targetx = x.to(device), targetx.to(device)
            optimizer.zero_grad()
            if args.mix_pre:
                with torch.cuda.amp.autocast():
                    with torch.no_grad():
                        x = pre_model(x)
                    output = model(x)
                    train_loss = criterion(output, targetx)
                total_train_loss += train_loss
                n += 1
                scaler.scale(train_loss).backward()
                scaler.step(optimizer)
                scaler.update()
            elif args.mix_pre_apex:
                with torch.no_grad():
                    x = pre_model(x)
                output = model(x)
                train_loss = criterion(output, targetx)
                total_train_loss += train_loss
                n += 1
                with amp.scale_loss(train_loss, optimizer) as scaled_loss:
                    scaled_loss.backward()
                optimizer.step()
            else:
                with torch.no_grad():
                    x = pre_model(x)
                output = model(x)
                train_loss = criterion(output, targetx)
                total_train_loss += train_loss
                n += 1
                train_loss.backward()
                optimizer.step()
            scheduler.step()
            _, prediction = torch.max(output.data, 1)
            num_correct += torch.sum(prediction == targetx.data)
            num_total += len(prediction)
        epoch_aug_train_loss = total_train_loss / n
        epoch_aug_train_acc = num_correct * 1.0 / num_total

        alpha_primes = []
        alphas = []
        if model.actfun == 'combinact':
            for i, layer_alpha_primes in enumerate(model.all_alpha_primes):
                curr_alpha_primes = torch.mean(layer_alpha_primes, dim=0)
                curr_alphas = F.softmax(curr_alpha_primes, dim=0).data.tolist()
                curr_alpha_primes = curr_alpha_primes.tolist()
                alpha_primes.append(curr_alpha_primes)
                alphas.append(curr_alphas)

        model.eval()
        with torch.no_grad():
            total_val_loss, n, num_correct, num_total = 0, 0, 0, 0
            for batch_idx, (y, targety) in enumerate(loader_eval):
                y, targety = y.to(device), targety.to(device)
                with torch.no_grad():
                    y = pre_model(y)
                output = model(y)
                val_loss = criterion(output, targety)
                total_val_loss += val_loss
                n += 1
                _, prediction = torch.max(output.data, 1)
                num_correct += torch.sum(prediction == targety.data)
                num_total += len(prediction)
            epoch_val_loss = total_val_loss / n
            epoch_val_acc = num_correct * 1.0 / num_total
        lr_curr = 0
        for param_group in optimizer.param_groups:
            lr_curr = param_group['lr']
        print(
            "    Epoch {}: LR {:1.5f} ||| aug_train_acc {:1.4f} | val_acc {:1.4f} ||| "
            "aug_train_loss {:1.4f} | val_loss {:1.4f} ||| time = {:1.4f}".
            format(epoch, lr_curr, epoch_aug_train_acc, epoch_val_acc,
                   epoch_aug_train_loss, epoch_val_loss,
                   (time.time() - start_time)),
            flush=True)

        epoch_train_loss = 0
        epoch_train_acc = 0
        if epoch == args.epochs:
            with torch.no_grad():
                total_train_loss, n, num_correct, num_total = 0, 0, 0, 0
                for batch_idx, (x, targetx) in enumerate(loader_train):
                    x, targetx = x.to(device), targetx.to(device)
                    with torch.no_grad():
                        x = pre_model(x)
                    output = model(x)
                    train_loss = criterion(output, targetx)
                    total_train_loss += train_loss
                    n += 1
                    _, prediction = torch.max(output.data, 1)
                    num_correct += torch.sum(prediction == targetx.data)
                    num_total += len(prediction)
                epoch_aug_train_loss = total_train_loss / n
                epoch_aug_train_acc = num_correct * 1.0 / num_total

                total_train_loss, n, num_correct, num_total = 0, 0, 0, 0
                for batch_idx, (x, targetx) in enumerate(loader_eval):
                    x, targetx = x.to(device), targetx.to(device)
                    with torch.no_grad():
                        x = pre_model(x)
                    output = model(x)
                    train_loss = criterion(output, targetx)
                    total_train_loss += train_loss
                    n += 1
                    _, prediction = torch.max(output.data, 1)
                    num_correct += torch.sum(prediction == targetx.data)
                    num_total += len(prediction)
                epoch_train_loss = total_val_loss / n
                epoch_train_acc = num_correct * 1.0 / num_total

        # Outputting data to CSV at end of epoch
        with open(outfile_path, mode='a') as out_file:
            writer = csv.DictWriter(out_file,
                                    fieldnames=fieldnames,
                                    lineterminator='\n')
            writer.writerow({
                'dataset': args.data,
                'seed': args.seed,
                'epoch': epoch,
                'time': (time.time() - start_time),
                'actfun': model.actfun,
                'model': args.model,
                'batch_size': args.batch_size,
                'alpha_primes': alpha_primes,
                'alphas': alphas,
                'num_params': util.get_model_params(model),
                'k': args.k,
                'p': args.p,
                'g': args.g,
                'perm_method': 'shuffle',
                'gen_gap': float(epoch_val_loss - epoch_train_loss),
                'epoch_train_loss': float(epoch_train_loss),
                'epoch_train_acc': float(epoch_train_acc),
                'epoch_aug_train_loss': float(epoch_aug_train_loss),
                'epoch_aug_train_acc': float(epoch_aug_train_acc),
                'epoch_val_loss': float(epoch_val_loss),
                'epoch_val_acc': float(epoch_val_acc),
                'curr_lr': lr_curr,
                'found_lr': args.lr,
                'epochs': args.epochs
            })

        epoch += 1
Ejemplo n.º 14
0
def main(args):
    utils.init_distributed_mode(args)

    print(args)

    device = torch.device(args.device)

    # fix the seed for reproducibility
    seed = args.seed + utils.get_rank()
    torch.manual_seed(seed)
    np.random.seed(seed)
    # random.seed(seed)

    cudnn.benchmark = True

    dataset_train, args.nb_classes = build_dataset(is_train=True, args=args)
    dataset_val, _ = build_dataset(is_train=False, args=args)

    if True:  # args.distributed:
        num_tasks = utils.get_world_size()
        global_rank = utils.get_rank()
        sampler_train = torch.utils.data.DistributedSampler(
            dataset_train,
            num_replicas=num_tasks,
            rank=global_rank,
            shuffle=True)
        if args.dist_eval:
            if len(dataset_val) % num_tasks != 0:
                print(
                    'Warning: Enabling distributed evaluation with an eval dataset not divisible by process number. '
                    'This will slightly alter validation results as extra duplicate entries are added to achieve '
                    'equal num of samples per-process.')
            sampler_val = torch.utils.data.DistributedSampler(
                dataset_val,
                num_replicas=num_tasks,
                rank=global_rank,
                shuffle=False)
        else:
            sampler_val = torch.utils.data.SequentialSampler(dataset_val)
    else:
        sampler_train = torch.utils.data.RandomSampler(dataset_train)
        sampler_val = torch.utils.data.SequentialSampler(dataset_val)

    data_loader_train = torch.utils.data.DataLoader(
        dataset_train,
        sampler=sampler_train,
        batch_size=args.batch_size,
        num_workers=args.num_workers,
        pin_memory=args.pin_mem,
        drop_last=True,
    )

    data_loader_val = torch.utils.data.DataLoader(dataset_val,
                                                  sampler=sampler_val,
                                                  batch_size=int(
                                                      1.0 * args.batch_size),
                                                  num_workers=args.num_workers,
                                                  pin_memory=args.pin_mem,
                                                  drop_last=False)

    mixup_fn = None
    mixup_active = args.mixup > 0 or args.cutmix > 0. or args.cutmix_minmax is not None
    if mixup_active:
        mixup_fn = Mixup(mixup_alpha=args.mixup,
                         cutmix_alpha=args.cutmix,
                         cutmix_minmax=args.cutmix_minmax,
                         prob=args.mixup_prob,
                         switch_prob=args.mixup_switch_prob,
                         mode=args.mixup_mode,
                         label_smoothing=args.smoothing,
                         num_classes=args.nb_classes)

    print(f"Creating model: {args.model}")
    # model = create_model(
    #     args.model,
    #     pretrained=False,
    #     num_classes=args.nb_classes,
    #     drop_rate=args.drop,
    #     drop_path_rate=args.drop_path,
    #     drop_block_rate=None,
    # )
    model = getattr(SwinTransformer, args.model)(num_classes=args.nb_classes,
                                                 drop_path_rate=args.drop_path)
    model.to(device)

    model_without_ddp = model
    if args.distributed:
        model = torch.nn.parallel.DistributedDataParallel(
            model, device_ids=[args.gpu])
        model_without_ddp = model.module
    n_parameters = sum(p.numel() for p in model.parameters()
                       if p.requires_grad)
    print('number of params:', n_parameters)

    linear_scaled_lr = args.lr * args.batch_size * utils.get_world_size(
    ) / 512.0
    args.lr = linear_scaled_lr

    linear_scaled_warmup_lr = args.warmup_lr * args.batch_size * utils.get_world_size(
    ) / 512.0
    args.warmup_lr = linear_scaled_warmup_lr

    optimizer = create_optimizer(args, model_without_ddp)
    loss_scaler = NativeScaler()

    lr_scheduler, _ = create_scheduler(args, optimizer)

    # criterion = LabelSmoothingCrossEntropy()

    if args.mixup > 0.:
        # smoothing is handled with mixup label transform
        criterion = SoftTargetCrossEntropy()
    elif args.smoothing:
        criterion = LabelSmoothingCrossEntropy(smoothing=args.smoothing)
    else:
        criterion = torch.nn.CrossEntropyLoss()

    output_dir = Path(args.output_dir)
    if args.resume:
        if args.resume.startswith('https'):
            checkpoint = torch.hub.load_state_dict_from_url(args.resume,
                                                            map_location='cpu',
                                                            check_hash=True)
        else:
            checkpoint = torch.load(args.resume, map_location='cpu')
        model_without_ddp.load_state_dict(checkpoint['model'])
        if not args.eval and 'optimizer' in checkpoint and 'lr_scheduler' in checkpoint and 'epoch' in checkpoint:
            optimizer.load_state_dict(checkpoint['optimizer'])
            lr_scheduler.load_state_dict(checkpoint['lr_scheduler'])
            args.start_epoch = checkpoint['epoch'] + 1
            if 'scaler' in checkpoint:
                loss_scaler.load_state_dict(checkpoint['scaler'])

    if args.eval:
        test_stats = evaluate(data_loader_val, model, device)
        print(
            f"Accuracy of the network on the {len(dataset_val)} test images: {test_stats['acc1']:.1f}%"
        )
        return

    print(f"Start training for {args.epochs} epochs")
    start_time = time.time()
    max_accuracy = 0.0
    for epoch in range(args.start_epoch, args.epochs):
        if args.distributed:
            data_loader_train.sampler.set_epoch(epoch)

        lr_scheduler.step(epoch + 1)
        train_stats = train_one_epoch(
            model,
            criterion,
            data_loader_train,
            optimizer,
            device,
            epoch,
            loss_scaler,
            args.clip_grad,
            mixup_fn,
            set_training_mode=True  # keep in eval mode during finetuning
        )

        if args.output_dir:
            checkpoint_paths = [output_dir / 'checkpoint.pth']
            for checkpoint_path in checkpoint_paths:
                utils.save_on_master(
                    {
                        'model': model_without_ddp.state_dict(),
                        'optimizer': optimizer.state_dict(),
                        'lr_scheduler': lr_scheduler.state_dict(),
                        'epoch': epoch,
                        'scaler': loss_scaler.state_dict(),
                        'args': args,
                    }, checkpoint_path)

        test_stats = evaluate(data_loader_val, model, device)
        print(
            f"Accuracy of the network on the {len(dataset_val)} test images: {test_stats['acc1']:.1f}%"
        )
        max_accuracy = max(max_accuracy, test_stats["acc1"])
        print(f'Max accuracy: {max_accuracy:.2f}%')

        log_stats = {
            **{f'train_{k}': v
               for k, v in train_stats.items()},
            **{f'test_{k}': v
               for k, v in test_stats.items()}, 'epoch': epoch,
            'n_parameters': n_parameters
        }

        if args.output_dir and utils.is_main_process():
            with (output_dir / "log.txt").open("a") as f:
                f.write(json.dumps(log_stats) + "\n")

    total_time = time.time() - start_time
    total_time_str = str(datetime.timedelta(seconds=int(total_time)))
    print('Training time {}'.format(total_time_str))
Ejemplo n.º 15
0
def main(args):

    utils.init_distributed_mode(args)
    update_config_from_file(args.cfg)

    print(args)
    args_text = yaml.safe_dump(args.__dict__, default_flow_style=False)

    device = torch.device(args.device)

    # fix the seed for reproducibility
    seed = args.seed + utils.get_rank()
    torch.manual_seed(seed)
    np.random.seed(seed)
    cudnn.benchmark = True

    dataset_train, args.nb_classes = build_dataset(is_train=True, args=args)
    dataset_val, _ = build_dataset(is_train=False, args=args)

    if args.distributed:
        num_tasks = utils.get_world_size()
        global_rank = utils.get_rank()
        if args.repeated_aug:
            sampler_train = RASampler(
                dataset_train, num_replicas=num_tasks, rank=global_rank, shuffle=True
            )
        else:
            sampler_train = torch.utils.data.DistributedSampler(
                dataset_train, num_replicas=num_tasks, rank=global_rank, shuffle=True
            )
        if args.dist_eval:
            if len(dataset_val) % num_tasks != 0:
                print(
                    'Warning: Enabling distributed evaluation with an eval dataset not divisible by process number. '
                    'This will slightly alter validation results as extra duplicate entries are added to achieve '
                    'equal num of samples per-process.')
            sampler_val = torch.utils.data.DistributedSampler(
                dataset_val, num_replicas=num_tasks, rank=global_rank, shuffle=False)
        else:
            sampler_val = torch.utils.data.SequentialSampler(dataset_val)
    else:
        sampler_val = torch.utils.data.SequentialSampler(dataset_val)
        sampler_train = torch.utils.data.RandomSampler(dataset_train)

    data_loader_train = torch.utils.data.DataLoader(
        dataset_train, sampler=sampler_train,
        batch_size=args.batch_size,
        num_workers=args.num_workers,
        pin_memory=args.pin_mem,
        drop_last=True,
    )

    data_loader_val = torch.utils.data.DataLoader(
        dataset_val, batch_size=args.batch_size // 2,
        sampler=sampler_val, num_workers=args.num_workers,
        pin_memory=args.pin_mem, drop_last=False
    )

    mixup_fn = None
    mixup_active = args.mixup > 0 or args.cutmix > 0. or args.cutmix_minmax is not None
    if mixup_active:
        mixup_fn = Mixup(
            mixup_alpha=args.mixup, cutmix_alpha=args.cutmix, cutmix_minmax=args.cutmix_minmax,
            prob=args.mixup_prob, switch_prob=args.mixup_switch_prob, mode=args.mixup_mode,
            label_smoothing=args.smoothing, num_classes=args.nb_classes)
    print("Creating SuperVisionTransformer")
    print(cfg)
    model = Vision_TransformerSuper(img_size=args.input_size,
                                    patch_size=args.patch_size,
                                    embed_dim=cfg.SUPERNET.EMBED_DIM, depth=cfg.SUPERNET.DEPTH,
                                    num_heads=cfg.SUPERNET.NUM_HEADS,mlp_ratio=cfg.SUPERNET.MLP_RATIO,
                                    qkv_bias=True, drop_rate=args.drop,
                                    drop_path_rate=args.drop_path,
                                    gp=args.gp,
                                    num_classes=args.nb_classes,
                                    max_relative_position=args.max_relative_position,
                                    relative_position=args.relative_position,
                                    change_qkv=args.change_qkv, abs_pos=not args.no_abs_pos)

    choices = {'num_heads': cfg.SEARCH_SPACE.NUM_HEADS, 'mlp_ratio': cfg.SEARCH_SPACE.MLP_RATIO,
               'embed_dim': cfg.SEARCH_SPACE.EMBED_DIM , 'depth': cfg.SEARCH_SPACE.DEPTH}

    model.to(device)
    if args.teacher_model:
        teacher_model = create_model(
            args.teacher_model,
            pretrained=True,
            num_classes=args.nb_classes,
        )
        teacher_model.to(device)
        teacher_loss = LabelSmoothingCrossEntropy(smoothing=args.smoothing)
    else:
        teacher_model = None
        teacher_loss = None

    model_ema = None

    model_without_ddp = model
    if args.distributed:

        model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu], find_unused_parameters=True)
        model_without_ddp = model.module

    n_parameters = sum(p.numel() for p in model.parameters() if p.requires_grad)
    print('number of params:', n_parameters)

    linear_scaled_lr = args.lr * args.batch_size * utils.get_world_size() / 512.0
    args.lr = linear_scaled_lr
    optimizer = create_optimizer(args, model_without_ddp)
    loss_scaler = NativeScaler()
    lr_scheduler, _ = create_scheduler(args, optimizer)

    if args.mixup > 0.:
        # smoothing is handled with mixup label transform
        criterion = SoftTargetCrossEntropy()
    elif args.smoothing:
        criterion = LabelSmoothingCrossEntropy(smoothing=args.smoothing)
    else:
        criterion = torch.nn.CrossEntropyLoss()

    output_dir = Path(args.output_dir)

    if not output_dir.exists():
        output_dir.mkdir(parents=True)
    # save config for later experiments
    with open(file=output_dir / "config.yaml", mode='w') as f:
        f.write(args_text)
    if args.resume:
        if args.resume.startswith('https'):
            checkpoint = torch.hub.load_state_dict_from_url(
                args.resume, map_location='cpu', check_hash=True)
        else:
            checkpoint = torch.load(args.resume, map_location='cpu')
        model_without_ddp.load_state_dict(checkpoint['model'])
        if not args.eval and 'optimizer' in checkpoint and 'lr_scheduler' in checkpoint and 'epoch' in checkpoint:
            optimizer.load_state_dict(checkpoint['optimizer'])
            lr_scheduler.load_state_dict(checkpoint['lr_scheduler'])
            args.start_epoch = checkpoint['epoch'] + 1
            if 'scaler' in checkpoint:
                loss_scaler.load_state_dict(checkpoint['scaler'])
            if args.model_ema:
                utils._load_checkpoint_for_ema(model_ema, checkpoint['model_ema'])

    retrain_config = None
    if args.mode == 'retrain' and "RETRAIN" in cfg:
        retrain_config = {'layer_num': cfg.RETRAIN.DEPTH, 'embed_dim': [cfg.RETRAIN.EMBED_DIM]*cfg.RETRAIN.DEPTH,
                          'num_heads': cfg.RETRAIN.NUM_HEADS,'mlp_ratio': cfg.RETRAIN.MLP_RATIO}

    trainer = AFSupernetTrainer(
        model, criterion, data_loader_train, data_loader_val,
        optimizer, device, args.epochs, loss_scaler,
        args.clip_grad, model_ema, mixup_fn,
        args.amp, teacher_model, teacher_loss,choices, args.mode, retrain_config, 0., output_dir, lr_scheduler,
    )
    if args.eval:
        trainer._validate_one_epoch(-1)
        return
    trainer.fit()
Ejemplo n.º 16
0
def main(args):

    utils.init_distributed_mode(args)
    update_config_from_file(args.cfg)

    print(args)
    args_text = yaml.safe_dump(args.__dict__, default_flow_style=False)

    device = torch.device(args.device)

    # fix the seed for reproducibility
    seed = args.seed + utils.get_rank()
    torch.manual_seed(seed)
    np.random.seed(seed)
    # random.seed(seed)
    cudnn.benchmark = True

    dataset_train, args.nb_classes = build_dataset(is_train=True, args=args)
    dataset_val, _ = build_dataset(is_train=False, args=args)

    if args.distributed:
        num_tasks = utils.get_world_size()
        global_rank = utils.get_rank()
        if args.repeated_aug:
            sampler_train = RASampler(dataset_train,
                                      num_replicas=num_tasks,
                                      rank=global_rank,
                                      shuffle=True)
        else:
            sampler_train = torch.utils.data.DistributedSampler(
                dataset_train,
                num_replicas=num_tasks,
                rank=global_rank,
                shuffle=True)
        if args.dist_eval:
            if len(dataset_val) % num_tasks != 0:
                print(
                    'Warning: Enabling distributed evaluation with an eval dataset not divisible by process number. '
                    'This will slightly alter validation results as extra duplicate entries are added to achieve '
                    'equal num of samples per-process.')
            sampler_val = torch.utils.data.DistributedSampler(
                dataset_val,
                num_replicas=num_tasks,
                rank=global_rank,
                shuffle=False)
        else:
            sampler_val = torch.utils.data.SequentialSampler(dataset_val)
    else:
        sampler_val = torch.utils.data.SequentialSampler(dataset_val)
        sampler_train = torch.utils.data.RandomSampler(dataset_train)

    data_loader_train = torch.utils.data.DataLoader(
        dataset_train,
        sampler=sampler_train,
        batch_size=args.batch_size,
        num_workers=args.num_workers,
        pin_memory=args.pin_mem,
        drop_last=True,
    )

    data_loader_val = torch.utils.data.DataLoader(dataset_val,
                                                  batch_size=int(
                                                      2 * args.batch_size),
                                                  sampler=sampler_val,
                                                  num_workers=args.num_workers,
                                                  pin_memory=args.pin_mem,
                                                  drop_last=False)

    mixup_fn = None
    mixup_active = args.mixup > 0 or args.cutmix > 0. or args.cutmix_minmax is not None
    if mixup_active:
        mixup_fn = Mixup(mixup_alpha=args.mixup,
                         cutmix_alpha=args.cutmix,
                         cutmix_minmax=args.cutmix_minmax,
                         prob=args.mixup_prob,
                         switch_prob=args.mixup_switch_prob,
                         mode=args.mixup_mode,
                         label_smoothing=args.smoothing,
                         num_classes=args.nb_classes)

    print(f"Creating SuperVisionTransformer")
    print(cfg)
    model = Vision_TransformerSuper(
        img_size=args.input_size,
        patch_size=args.patch_size,
        embed_dim=cfg.SUPERNET.EMBED_DIM,
        depth=cfg.SUPERNET.DEPTH,
        num_heads=cfg.SUPERNET.NUM_HEADS,
        mlp_ratio=cfg.SUPERNET.MLP_RATIO,
        qkv_bias=True,
        drop_rate=args.drop,
        drop_path_rate=args.drop_path,
        gp=args.gp,
        num_classes=args.nb_classes,
        max_relative_position=args.max_relative_position,
        relative_position=args.relative_position,
        change_qkv=args.change_qkv,
        abs_pos=not args.no_abs_pos)

    choices = {
        'num_heads': cfg.SEARCH_SPACE.NUM_HEADS,
        'mlp_ratio': cfg.SEARCH_SPACE.MLP_RATIO,
        'embed_dim': cfg.SEARCH_SPACE.EMBED_DIM,
        'depth': cfg.SEARCH_SPACE.DEPTH
    }

    model.to(device)
    if args.teacher_model:
        teacher_model = create_model(
            args.teacher_model,
            pretrained=True,
            num_classes=args.nb_classes,
        )
        teacher_model.to(device)
        teacher_loss = LabelSmoothingCrossEntropy(smoothing=args.smoothing)
    else:
        teacher_model = None
        teacher_loss = None

    model_ema = None

    model_without_ddp = model
    if args.distributed:

        model = torch.nn.parallel.DistributedDataParallel(
            model, device_ids=[args.gpu], find_unused_parameters=True)
        model_without_ddp = model.module

    n_parameters = sum(p.numel() for p in model.parameters()
                       if p.requires_grad)
    print('number of params:', n_parameters)

    linear_scaled_lr = args.lr * args.batch_size * utils.get_world_size(
    ) / 512.0
    args.lr = linear_scaled_lr
    optimizer = create_optimizer(args, model_without_ddp)
    loss_scaler = NativeScaler()
    lr_scheduler, _ = create_scheduler(args, optimizer)

    # criterion = LabelSmoothingCrossEntropy()

    if args.mixup > 0.:
        # smoothing is handled with mixup label transform
        criterion = SoftTargetCrossEntropy()
    elif args.smoothing:
        criterion = LabelSmoothingCrossEntropy(smoothing=args.smoothing)
    else:
        criterion = torch.nn.CrossEntropyLoss()

    output_dir = Path(args.output_dir)

    if not output_dir.exists():
        output_dir.mkdir(parents=True)
    # save config for later experiments
    with open(output_dir / "config.yaml", 'w') as f:
        f.write(args_text)
    if args.resume:
        if args.resume.startswith('https'):
            checkpoint = torch.hub.load_state_dict_from_url(args.resume,
                                                            map_location='cpu',
                                                            check_hash=True)
        else:
            checkpoint = torch.load(args.resume, map_location='cpu')
        model_without_ddp.load_state_dict(checkpoint['model'])
        if not args.eval and 'optimizer' in checkpoint and 'lr_scheduler' in checkpoint and 'epoch' in checkpoint:
            optimizer.load_state_dict(checkpoint['optimizer'])
            lr_scheduler.load_state_dict(checkpoint['lr_scheduler'])
            args.start_epoch = checkpoint['epoch'] + 1
            if 'scaler' in checkpoint:
                loss_scaler.load_state_dict(checkpoint['scaler'])
            if args.model_ema:
                utils._load_checkpoint_for_ema(model_ema,
                                               checkpoint['model_ema'])

    retrain_config = None
    if args.mode == 'retrain' and "RETRAIN" in cfg:
        retrain_config = {
            'layer_num': cfg.RETRAIN.DEPTH,
            'embed_dim': [cfg.RETRAIN.EMBED_DIM] * cfg.RETRAIN.DEPTH,
            'num_heads': cfg.RETRAIN.NUM_HEADS,
            'mlp_ratio': cfg.RETRAIN.MLP_RATIO
        }
    if args.eval:
        print(retrain_config)
        test_stats = evaluate(data_loader_val,
                              model,
                              device,
                              mode=args.mode,
                              retrain_config=retrain_config)
        print(
            f"Accuracy of the network on the {len(dataset_val)} test images: {test_stats['acc1']:.1f}%"
        )
        return

    print("Start training")
    start_time = time.time()
    max_accuracy = 0.0

    for epoch in range(args.start_epoch, args.epochs):
        if args.distributed:
            data_loader_train.sampler.set_epoch(epoch)

        train_stats = train_one_epoch(
            model,
            criterion,
            data_loader_train,
            optimizer,
            device,
            epoch,
            loss_scaler,
            args.clip_grad,
            model_ema,
            mixup_fn,
            amp=args.amp,
            teacher_model=teacher_model,
            teach_loss=teacher_loss,
            choices=choices,
            mode=args.mode,
            retrain_config=retrain_config,
        )

        lr_scheduler.step(epoch)
        if args.output_dir:
            checkpoint_paths = [output_dir / 'checkpoint.pth']
            for checkpoint_path in checkpoint_paths:
                utils.save_on_master(
                    {
                        'model': model_without_ddp.state_dict(),
                        'optimizer': optimizer.state_dict(),
                        'lr_scheduler': lr_scheduler.state_dict(),
                        'epoch': epoch,
                        # 'model_ema': get_state_dict(model_ema),
                        'scaler': loss_scaler.state_dict(),
                        'args': args,
                    },
                    checkpoint_path)

        test_stats = evaluate(data_loader_val,
                              model,
                              device,
                              amp=args.amp,
                              choices=choices,
                              mode=args.mode,
                              retrain_config=retrain_config)
        print(
            f"Accuracy of the network on the {len(dataset_val)} test images: {test_stats['acc1']:.1f}%"
        )
        max_accuracy = max(max_accuracy, test_stats["acc1"])
        print(f'Max accuracy: {max_accuracy:.2f}%')

        log_stats = {
            **{f'train_{k}': v
               for k, v in train_stats.items()},
            **{f'test_{k}': v
               for k, v in test_stats.items()}, 'epoch': epoch,
            'n_parameters': n_parameters
        }

        if args.output_dir and utils.is_main_process():
            with (output_dir / "log.txt").open("a") as f:
                f.write(json.dumps(log_stats) + "\n")

    total_time = time.time() - start_time
    total_time_str = str(datetime.timedelta(seconds=int(total_time)))
    print('Training time {}'.format(total_time_str))
Ejemplo n.º 17
0
def main():
    setup_default_logging()
    args, args_text = _parse_args()

    if args.log_wandb:
        if has_wandb:
            wandb.init(project=args.experiment, config=args)
        else:
            _logger.warning(
                "You've requested to log metrics to wandb but package not found. "
                "Metrics not being logged to wandb, try `pip install wandb`")

    args.prefetcher = not args.no_prefetcher
    args.distributed = False
    if 'WORLD_SIZE' in os.environ:
        args.distributed = int(os.environ['WORLD_SIZE']) > 1
    args.device = 'cuda:0'
    args.world_size = 1
    args.rank = 0  # global rank
    if args.distributed:
        args.device = 'cuda:%d' % args.local_rank
        torch.cuda.set_device(args.local_rank)
        torch.distributed.init_process_group(backend='nccl',
                                             init_method='env://')
        args.world_size = torch.distributed.get_world_size()
        args.rank = torch.distributed.get_rank()
        _logger.info(
            'Training in distributed mode with multiple processes, 1 GPU per process. Process %d, total %d.'
            % (args.rank, args.world_size))
    else:
        _logger.info('Training with a single process on 1 GPUs.')
    assert args.rank >= 0

    # resolve AMP arguments based on PyTorch / Apex availability
    use_amp = None
    if args.amp:
        # `--amp` chooses native amp before apex (APEX ver not actively maintained)
        if has_native_amp:
            args.native_amp = True
        elif has_apex:
            args.apex_amp = True
    if args.apex_amp and has_apex:
        use_amp = 'apex'
    elif args.native_amp and has_native_amp:
        use_amp = 'native'
    elif args.apex_amp or args.native_amp:
        _logger.warning(
            "Neither APEX or native Torch AMP is available, using float32. "
            "Install NVIDA apex or upgrade to PyTorch 1.6")

    random_seed(args.seed, args.rank)

    model_KD = None
    if args.kd_model_path is not None:
        model_KD = build_kd_model(args)

    model = create_model(
        args.model,
        pretrained=args.pretrained,
        num_classes=args.num_classes,
        drop_rate=args.drop,
        drop_connect_rate=args.drop_connect,  # DEPRECATED, use drop_path
        drop_path_rate=args.drop_path,
        drop_block_rate=args.drop_block,
        global_pool=args.gp,
        bn_momentum=args.bn_momentum,
        bn_eps=args.bn_eps,
        scriptable=args.torchscript,
        checkpoint_path=args.initial_checkpoint)
    if args.num_classes is None:
        assert hasattr(
            model, 'num_classes'
        ), 'Model must have `num_classes` attr if not set on cmd line/config.'
        args.num_classes = model.num_classes  # FIXME handle model default vs config num_classes more elegantly

    if args.local_rank == 0:
        _logger.info(
            f'Model {safe_model_name(args.model)} created, param count:{sum([m.numel() for m in model.parameters()])}'
        )

    data_config = resolve_data_config(vars(args),
                                      model=model,
                                      verbose=args.local_rank == 0)

    # setup augmentation batch splits for contrastive loss or split bn
    num_aug_splits = 0
    if args.aug_splits > 0:
        assert args.aug_splits > 1, 'A split of 1 makes no sense'
        num_aug_splits = args.aug_splits

    # enable split bn (separate bn stats per batch-portion)
    if args.split_bn:
        assert num_aug_splits > 1 or args.resplit
        model = convert_splitbn_model(model, max(num_aug_splits, 2))

    # move model to GPU, enable channels last layout if set
    model.cuda()
    if args.channels_last:
        model = model.to(memory_format=torch.channels_last)

    # setup synchronized BatchNorm for distributed training
    if args.distributed and args.sync_bn:
        assert not args.split_bn
        if has_apex and use_amp == 'apex':
            # Apex SyncBN preferred unless native amp is activated
            model = convert_syncbn_model(model)
        else:
            model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model)
        if args.local_rank == 0:
            _logger.info(
                'Converted model to use Synchronized BatchNorm. WARNING: You may have issues if using '
                'zero initialized BN layers (enabled by default for ResNets) while sync-bn enabled.'
            )

    if args.torchscript:
        assert not use_amp == 'apex', 'Cannot use APEX AMP with torchscripted model'
        assert not args.sync_bn, 'Cannot use SyncBatchNorm with torchscripted model'
        model = torch.jit.script(model)

    optimizer = create_optimizer_v2(model, **optimizer_kwargs(cfg=args))

    # setup automatic mixed-precision (AMP) loss scaling and op casting
    amp_autocast = suppress  # do nothing
    loss_scaler = None
    if use_amp == 'apex':
        model, optimizer = amp.initialize(model, optimizer, opt_level='O1')
        loss_scaler = ApexScaler()
        if args.local_rank == 0:
            _logger.info('Using NVIDIA APEX AMP. Training in mixed precision.')
    elif use_amp == 'native':
        amp_autocast = torch.cuda.amp.autocast
        loss_scaler = NativeScaler()
        if args.local_rank == 0:
            _logger.info(
                'Using native Torch AMP. Training in mixed precision.')
    else:
        if args.local_rank == 0:
            _logger.info('AMP not enabled. Training in float32.')

    # optionally resume from a checkpoint
    resume_epoch = None
    if args.resume:
        resume_epoch = resume_checkpoint(
            model,
            args.resume,
            optimizer=None if args.no_resume_opt else optimizer,
            loss_scaler=None if args.no_resume_opt else loss_scaler,
            log_info=args.local_rank == 0)

    # setup exponential moving average of model weights, SWA could be used here too
    model_ema = None
    if args.model_ema:
        # Important to create EMA model after cuda(), DP wrapper, and AMP but before SyncBN and DDP wrapper
        model_ema = ModelEmaV2(
            model,
            decay=args.model_ema_decay,
            device='cpu' if args.model_ema_force_cpu else None)
        if args.resume:
            load_checkpoint(model_ema.module, args.resume, use_ema=True)

    # setup distributed training
    if args.distributed:
        if has_apex and use_amp == 'apex':
            # Apex DDP preferred unless native amp is activated
            if args.local_rank == 0:
                _logger.info("Using NVIDIA APEX DistributedDataParallel.")
            model = ApexDDP(model, delay_allreduce=True)
        else:
            if args.local_rank == 0:
                _logger.info("Using native Torch DistributedDataParallel.")
            model = NativeDDP(model,
                              device_ids=[args.local_rank],
                              broadcast_buffers=not args.no_ddp_bb)
        # NOTE: EMA model does not need to be wrapped by DDP

    # setup learning rate schedule and starting epoch
    lr_scheduler, num_epochs = create_scheduler(args, optimizer)
    start_epoch = 0
    if args.start_epoch is not None:
        # a specified start_epoch will always override the resume epoch
        start_epoch = args.start_epoch
    elif resume_epoch is not None:
        start_epoch = resume_epoch
    if lr_scheduler is not None and start_epoch > 0:
        lr_scheduler.step(start_epoch)

    if args.local_rank == 0:
        _logger.info('Scheduled epochs: {}'.format(num_epochs))

    # create the train and eval datasets
    dataset_train = create_dataset(args.dataset,
                                   root=args.data_dir,
                                   split=args.train_split,
                                   is_training=True,
                                   class_map=args.class_map,
                                   download=args.dataset_download,
                                   batch_size=args.batch_size,
                                   repeats=args.epoch_repeats)
    dataset_eval = create_dataset(args.dataset,
                                  root=args.data_dir,
                                  split=args.val_split,
                                  is_training=False,
                                  class_map=args.class_map,
                                  download=args.dataset_download,
                                  batch_size=args.batch_size)

    # setup mixup / cutmix
    collate_fn = None
    mixup_fn = None
    mixup_active = args.mixup > 0 or args.cutmix > 0. or args.cutmix_minmax is not None
    if mixup_active:
        mixup_args = dict(mixup_alpha=args.mixup,
                          cutmix_alpha=args.cutmix,
                          cutmix_minmax=args.cutmix_minmax,
                          prob=args.mixup_prob,
                          switch_prob=args.mixup_switch_prob,
                          mode=args.mixup_mode,
                          label_smoothing=args.smoothing,
                          num_classes=args.num_classes)
        if args.prefetcher:
            assert not num_aug_splits  # collate conflict (need to support deinterleaving in collate mixup)
            collate_fn = FastCollateMixup(**mixup_args)
        else:
            mixup_fn = Mixup(**mixup_args)

    # wrap dataset in AugMix helper
    if num_aug_splits > 1:
        dataset_train = AugMixDataset(dataset_train, num_splits=num_aug_splits)

    # create data loaders w/ augmentation pipeiine
    train_interpolation = args.train_interpolation
    if args.no_aug or not train_interpolation:
        train_interpolation = data_config['interpolation']
    loader_train = create_loader(
        dataset_train,
        input_size=data_config['input_size'],
        batch_size=args.batch_size,
        is_training=True,
        use_prefetcher=args.prefetcher,
        no_aug=args.no_aug,
        re_prob=args.reprob,
        re_mode=args.remode,
        re_count=args.recount,
        re_split=args.resplit,
        scale=args.scale,
        ratio=args.ratio,
        hflip=args.hflip,
        vflip=args.vflip,
        color_jitter=args.color_jitter,
        auto_augment=args.aa,
        num_aug_repeats=args.aug_repeats,
        num_aug_splits=num_aug_splits,
        interpolation=train_interpolation,
        mean=data_config['mean'],
        std=data_config['std'],
        num_workers=args.workers,
        distributed=args.distributed,
        collate_fn=collate_fn,
        pin_memory=args.pin_mem,
        use_multi_epochs_loader=args.use_multi_epochs_loader,
        worker_seeding=args.worker_seeding,
    )

    loader_eval = create_loader(
        dataset_eval,
        input_size=data_config['input_size'],
        batch_size=args.validation_batch_size or args.batch_size,
        is_training=False,
        use_prefetcher=args.prefetcher,
        interpolation=data_config['interpolation'],
        mean=data_config['mean'],
        std=data_config['std'],
        num_workers=args.workers,
        distributed=args.distributed,
        crop_pct=data_config['crop_pct'],
        pin_memory=args.pin_mem,
    )

    # setup loss function
    if args.jsd_loss:
        assert num_aug_splits > 1  # JSD only valid with aug splits set
        train_loss_fn = JsdCrossEntropy(num_splits=num_aug_splits,
                                        smoothing=args.smoothing)
    elif mixup_active:
        # smoothing is handled with mixup target transform which outputs sparse, soft targets
        if args.bce_loss:
            train_loss_fn = BinaryCrossEntropy(
                target_threshold=args.bce_target_thresh)
        else:
            train_loss_fn = SoftTargetCrossEntropy()
    elif args.smoothing:
        if args.bce_loss:
            train_loss_fn = BinaryCrossEntropy(
                smoothing=args.smoothing,
                target_threshold=args.bce_target_thresh)
        else:
            train_loss_fn = LabelSmoothingCrossEntropy(
                smoothing=args.smoothing)
    else:
        train_loss_fn = nn.CrossEntropyLoss()
    train_loss_fn = train_loss_fn.cuda()
    validate_loss_fn = nn.CrossEntropyLoss().cuda()

    # setup checkpoint saver and eval metric tracking
    eval_metric = args.eval_metric
    best_metric = None
    best_epoch = None
    saver = None
    output_dir = None
    if args.rank == 0:
        if args.experiment:
            exp_name = args.experiment
        else:
            exp_name = '-'.join([
                datetime.now().strftime("%Y%m%d-%H%M%S"),
                safe_model_name(args.model),
                str(data_config['input_size'][-1])
            ])
        output_dir = get_outdir(
            args.output if args.output else './output/train', exp_name)
        decreasing = True if eval_metric == 'loss' else False
        saver = CheckpointSaver(model=model,
                                optimizer=optimizer,
                                args=args,
                                model_ema=model_ema,
                                amp_scaler=loss_scaler,
                                checkpoint_dir=output_dir,
                                recovery_dir=output_dir,
                                decreasing=decreasing,
                                max_history=args.checkpoint_hist)
        with open(os.path.join(output_dir, 'args.yaml'), 'w') as f:
            f.write(args_text)

    try:
        for epoch in range(start_epoch, num_epochs):
            if args.distributed and hasattr(loader_train.sampler, 'set_epoch'):
                loader_train.sampler.set_epoch(epoch)

            train_metrics = train_one_epoch(epoch,
                                            model,
                                            loader_train,
                                            optimizer,
                                            train_loss_fn,
                                            args,
                                            lr_scheduler=lr_scheduler,
                                            saver=saver,
                                            output_dir=output_dir,
                                            amp_autocast=amp_autocast,
                                            loss_scaler=loss_scaler,
                                            model_ema=model_ema,
                                            mixup_fn=mixup_fn,
                                            model_KD=model_KD)

            if args.distributed and args.dist_bn in ('broadcast', 'reduce'):
                if args.local_rank == 0:
                    _logger.info(
                        "Distributing BatchNorm running means and vars")
                distribute_bn(model, args.world_size, args.dist_bn == 'reduce')

            eval_metrics = validate(model,
                                    loader_eval,
                                    validate_loss_fn,
                                    args,
                                    amp_autocast=amp_autocast)

            if model_ema is not None and not args.model_ema_force_cpu:
                if args.distributed and args.dist_bn in ('broadcast',
                                                         'reduce'):
                    distribute_bn(model_ema, args.world_size,
                                  args.dist_bn == 'reduce')
                ema_eval_metrics = validate(model_ema.module,
                                            loader_eval,
                                            validate_loss_fn,
                                            args,
                                            amp_autocast=amp_autocast,
                                            log_suffix=' (EMA)')
                eval_metrics = ema_eval_metrics

            if lr_scheduler is not None:
                # step LR for next epoch
                lr_scheduler.step(epoch + 1, eval_metrics[eval_metric])

            if output_dir is not None:
                update_summary(epoch,
                               train_metrics,
                               eval_metrics,
                               os.path.join(output_dir, 'summary.csv'),
                               write_header=best_metric is None,
                               log_wandb=args.log_wandb and has_wandb)

            if saver is not None:
                # save proper checkpoint with eval metric
                save_metric = eval_metrics[eval_metric]
                best_metric, best_epoch = saver.save_checkpoint(
                    epoch, metric=save_metric)

    except KeyboardInterrupt:
        pass
    if best_metric is not None:
        _logger.info('*** Best metric: {0} (epoch {1})'.format(
            best_metric, best_epoch))
Ejemplo n.º 18
0
def main():
    setup_default_logging()
    args, args_text = _parse_args()

    args.prefetcher = not args.no_prefetcher
    args.distributed = False
    if 'WORLD_SIZE' in os.environ:
        args.distributed = int(os.environ['WORLD_SIZE']) > 1
    args.device = 'cuda:0'
    args.world_size = 1
    args.rank = 0  # global rank
    if args.distributed:
        args.device = 'cuda:%d' % args.local_rank
        torch.cuda.set_device(args.local_rank)
        torch.distributed.init_process_group(backend='nccl', init_method='env://')
        args.world_size = torch.distributed.get_world_size()
        args.rank = torch.distributed.get_rank()
        _logger.info('Training in distributed mode with multiple processes, 1 GPU per process. Process %d, total %d.'
                     % (args.rank, args.world_size))
    else:
        _logger.info('Training with a single process on 1 GPUs.')
    assert args.rank >= 0

    if args.control_amp == 'amp':
        args.amp = True
    elif args.control_amp == 'apex':
        args.apex_amp = True
    elif args.control_amp == 'native':
        args.native_amp = True

    # resolve AMP arguments based on PyTorch / Apex availability
    use_amp = None
    if args.amp:
        # for backwards compat, `--amp` arg tries apex before native amp
        if has_apex:
            args.apex_amp = True
        elif has_native_amp:
            args.native_amp = True
    if args.apex_amp and has_apex:
        use_amp = 'apex'
    elif args.native_amp and has_native_amp:
        use_amp = 'native'
    elif args.apex_amp or args.native_amp:
        _logger.warning("Neither APEX or native Torch AMP is available, using float32. "
                        "Install NVIDA apex or upgrade to PyTorch 1.6")

    _logger.info(
        '====================\n\n'
        'Actfun: {}\n'
        'LR: {}\n'
        'Epochs: {}\n'
        'p: {}\n'
        'k: {}\n'
        'g: {}\n'
        'Extra channel multiplier: {}\n'
        'AMP: {}\n'
        'Weight Init: {}\n'
        '\n===================='.format(args.actfun, args.lr, args.epochs, args.p, args.k, args.g,
                                        args.extra_channel_mult, use_amp, args.weight_init))

    torch.manual_seed(args.seed + args.rank)

    model = create_model(
        args.model,
        pretrained=args.pretrained,
        actfun=args.actfun,
        num_classes=args.num_classes,
        drop_rate=args.drop,
        drop_connect_rate=args.drop_connect,  # DEPRECATED, use drop_path
        drop_path_rate=args.drop_path,
        drop_block_rate=args.drop_block,
        global_pool=args.gp,
        bn_tf=args.bn_tf,
        bn_momentum=args.bn_momentum,
        bn_eps=args.bn_eps,
        scriptable=args.torchscript,
        checkpoint_path=args.initial_checkpoint,
        p=args.p,
        k=args.k,
        g=args.g,
        extra_channel_mult=args.extra_channel_mult,
        weight_init_name=args.weight_init,
        partial_ho_actfun=args.partial_ho_actfun
    )

    if args.tl:
        if args.data == 'caltech101' and not os.path.exists('caltech101'):
            dir_root = r'101_ObjectCategories'
            dir_new = r'caltech101'
            dir_new_train = os.path.join(dir_new, 'train')
            dir_new_val = os.path.join(dir_new, 'val')
            dir_new_test = os.path.join(dir_new, 'test')
            if not os.path.exists(dir_new):
                os.mkdir(dir_new)
                os.mkdir(dir_new_train)
                os.mkdir(dir_new_val)
                os.mkdir(dir_new_test)

            for dir2 in os.listdir(dir_root):
                if dir2 != 'BACKGROUND_Google':
                    curr_path = os.path.join(dir_root, dir2)
                    new_path_train = os.path.join(dir_new_train, dir2)
                    new_path_val = os.path.join(dir_new_val, dir2)
                    new_path_test = os.path.join(dir_new_test, dir2)
                    if not os.path.exists(new_path_train):
                        os.mkdir(new_path_train)
                    if not os.path.exists(new_path_val):
                        os.mkdir(new_path_val)
                    if not os.path.exists(new_path_test):
                        os.mkdir(new_path_test)

                    train_upper = int(0.8 * len(os.listdir(curr_path)))
                    val_upper = int(0.9 * len(os.listdir(curr_path)))
                    curr_files_all = os.listdir(curr_path)
                    curr_files_train = curr_files_all[:train_upper]
                    curr_files_val = curr_files_all[train_upper:val_upper]
                    curr_files_test = curr_files_all[val_upper:]

                    for file in curr_files_train:
                        copyfile(os.path.join(curr_path, file),
                                 os.path.join(new_path_train, file))
                    for file in curr_files_val:
                        copyfile(os.path.join(curr_path, file),
                                 os.path.join(new_path_val, file))
                    for file in curr_files_test:
                        copyfile(os.path.join(curr_path, file),
                                 os.path.join(new_path_test, file))
        time.sleep(5)

    if args.tl:
        pre_model = create_model(
            args.model,
            pretrained=True,
            actfun='swish',
            num_classes=args.num_classes,
            drop_rate=args.drop,
            drop_connect_rate=args.drop_connect,  # DEPRECATED, use drop_path
            drop_path_rate=args.drop_path,
            drop_block_rate=args.drop_block,
            global_pool=args.gp,
            bn_tf=args.bn_tf,
            bn_momentum=args.bn_momentum,
            bn_eps=args.bn_eps,
            scriptable=args.torchscript,
            checkpoint_path=args.initial_checkpoint,
            p=args.p,
            k=args.k,
            g=args.g,
            extra_channel_mult=args.extra_channel_mult,
            weight_init_name=args.weight_init,
            partial_ho_actfun=args.partial_ho_actfun
        )
        model = MLP.MLP(actfun=args.actfun,
                        input_dim=1280,
                        output_dim=args.num_classes,
                        k=args.k,
                        p=args.p,
                        g=args.g,
                        num_params=400_000,
                        permute_type='shuffle')
        pre_model_layers = list(pre_model.children())
        pre_model = torch.nn.Sequential(*pre_model_layers[:-1])
    else:
        pre_model = None

    if args.local_rank == 0:
        _logger.info('Model %s created, param count: %d' %
                     (args.model, sum([m.numel() for m in model.parameters()])))

    data_config = resolve_data_config(vars(args), model=model, verbose=args.local_rank == 0)

    # setup augmentation batch splits for contrastive loss or split bn
    num_aug_splits = 0
    if args.aug_splits > 0:
        assert args.aug_splits > 1, 'A split of 1 makes no sense'
        num_aug_splits = args.aug_splits

    # enable split bn (separate bn stats per batch-portion)
    if args.split_bn:
        assert num_aug_splits > 1 or args.resplit
        model = convert_splitbn_model(model, max(num_aug_splits, 2))

    # move model to GPU, enable channels last layout if set
    model.cuda()
    if args.tl:
        pre_model.cuda()
    if args.channels_last:
        model = model.to(memory_format=torch.channels_last)

    # setup synchronized BatchNorm for distributed training
    if args.distributed and args.sync_bn:
        assert not args.split_bn
        if has_apex and use_amp != 'native':
            # Apex SyncBN preferred unless native amp is activated
            model = convert_syncbn_model(model)
        else:
            model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model)
        if args.local_rank == 0:
            _logger.info(
                'Converted model to use Synchronized BatchNorm. WARNING: You may have issues if using '
                'zero initialized BN layers (enabled by default for ResNets) while sync-bn enabled.')

    if args.torchscript:
        assert not use_amp == 'apex', 'Cannot use APEX AMP with torchscripted model'
        assert not args.sync_bn, 'Cannot use SyncBatchNorm with torchscripted model'
        model = torch.jit.script(model)

    if args.tl:
        optimizer = torch.optim.Adam(model.parameters(), weight_decay=1e-5)
    else:
        optimizer = create_optimizer(args, model)

    # setup automatic mixed-precision (AMP) loss scaling and op casting
    amp_autocast = suppress  # do nothing
    loss_scaler = None
    if use_amp == 'apex':
        model, optimizer = amp.initialize(model, optimizer, opt_level='O1')
        loss_scaler = ApexScaler()
        if args.local_rank == 0:
            _logger.info('Using NVIDIA APEX AMP. Training in mixed precision.')
    elif use_amp == 'native':
        amp_autocast = torch.cuda.amp.autocast
        loss_scaler = NativeScaler()
        if args.local_rank == 0:
            _logger.info('Using native Torch AMP. Training in mixed precision.')
    else:
        if args.local_rank == 0:
            _logger.info('AMP not enabled. Training in float32.')

    if args.local_rank == 0:
        _logger.info('\n--------------------\nModel:\n' + repr(model) + '--------------------')

    # optionally resume from a checkpoint
    resume_epoch = None
    resume_path = os.path.join(args.resume, 'recover.pth.tar')
    if args.resume and os.path.exists(resume_path):
        resume_epoch = resume_checkpoint(
            model, resume_path,
            optimizer=None if args.no_resume_opt else optimizer,
            loss_scaler=None if args.no_resume_opt else loss_scaler,
            log_info=args.local_rank == 0)

    cp_loaded = None
    resume_epoch = None
    checkname = 'recover'
    if args.actfun != 'swish':
        checkname = '{}_'.format(args.actfun) + checkname
    check_path = os.path.join(args.check_path, checkname) + '.pth'
    loader = None
    if os.path.isfile(check_path):
        loader = check_path
    elif args.load_path != '' and os.path.isfile(args.load_path):
        loader = args.load_path
    if loader is not None:
        cp_loaded = torch.load(loader)
        model.load_state_dict(cp_loaded['model'])
        optimizer.load_state_dict(cp_loaded['optimizer'])
        resume_epoch = cp_loaded['epoch']
        model.cuda()
        loss_scaler.load_state_dict(cp_loaded['amp'])
        if args.channels_last:
            model = model.to(memory_format=torch.channels_last)
        _logger.info('============ LOADED CHECKPOINT: Epoch {}'.format(resume_epoch))

    model_raw = model

    # setup exponential moving average of model weights, SWA could be used here too
    model_ema = None
    if args.model_ema:
        # Important to create EMA model after cuda(), DP wrapper, and AMP but before SyncBN and DDP wrapper
        model_ema = ModelEmaV2(
            model, decay=args.model_ema_decay, device='cpu' if args.model_ema_force_cpu else None)
        if args.resume and os.path.exists(resume_path):
            load_checkpoint(model_ema.module, args.resume, use_ema=True)
        if cp_loaded is not None:
            model_ema.load_state_dict(cp_loaded['model_ema'])

    # setup distributed training
    if args.distributed:
        if has_apex and use_amp != 'native':
            # Apex DDP preferred unless native amp is activated
            if args.local_rank == 0:
                _logger.info("Using NVIDIA APEX DistributedDataParallel.")
            model = ApexDDP(model, delay_allreduce=True)
        else:
            if args.local_rank == 0:
                _logger.info("Using native Torch DistributedDataParallel.")
            model = NativeDDP(model, device_ids=[args.local_rank])  # can use device str in Torch >= 1.1
        # NOTE: EMA model does not need to be wrapped by DDP

    # setup mixup / cutmix
    collate_fn = None
    mixup_fn = None
    mixup_active = args.mixup > 0 or args.cutmix > 0. or args.cutmix_minmax is not None
    if mixup_active:
        mixup_args = dict(
            mixup_alpha=args.mixup, cutmix_alpha=args.cutmix, cutmix_minmax=args.cutmix_minmax,
            prob=args.mixup_prob, switch_prob=args.mixup_switch_prob, mode=args.mixup_mode,
            label_smoothing=args.smoothing, num_classes=args.num_classes)
        if args.prefetcher:
            assert not num_aug_splits  # collate conflict (need to support deinterleaving in collate mixup)
            collate_fn = FastCollateMixup(**mixup_args)
        else:
            mixup_fn = Mixup(**mixup_args)

    # create the train and eval datasets
    train_dir = os.path.join(args.data, 'train')
    if not os.path.exists(train_dir):
        _logger.error('Training folder does not exist at: {}'.format(train_dir))
        exit(1)
    dataset_train = Dataset(train_dir)

    eval_dir = os.path.join(args.data, 'val')
    if not os.path.isdir(eval_dir):
        eval_dir = os.path.join(args.data, 'validation')
        if not os.path.isdir(eval_dir):
            _logger.error('Validation folder does not exist at: {}'.format(eval_dir))
            exit(1)
    dataset_eval = Dataset(eval_dir)

    # wrap dataset in AugMix helper
    if num_aug_splits > 1:
        dataset_train = AugMixDataset(dataset_train, num_splits=num_aug_splits)

    # create data loaders w/ augmentation pipeline
    train_interpolation = args.train_interpolation
    if args.no_aug or not train_interpolation:
        train_interpolation = data_config['interpolation']
    loader_train = create_loader(
        dataset_train,
        input_size=data_config['input_size'],
        batch_size=args.batch_size,
        is_training=True,
        use_prefetcher=args.prefetcher,
        no_aug=args.no_aug,
        re_prob=args.reprob,
        re_mode=args.remode,
        re_count=args.recount,
        re_split=args.resplit,
        scale=args.scale,
        ratio=args.ratio,
        hflip=args.hflip,
        vflip=args.vflip,
        color_jitter=args.color_jitter,
        auto_augment=args.aa,
        num_aug_splits=num_aug_splits,
        interpolation=train_interpolation,
        mean=data_config['mean'],
        std=data_config['std'],
        num_workers=args.workers,
        distributed=args.distributed,
        collate_fn=collate_fn,
        pin_memory=args.pin_mem,
        use_multi_epochs_loader=args.use_multi_epochs_loader
    )

    loader_eval = create_loader(
        dataset_eval,
        input_size=data_config['input_size'],
        batch_size=args.validation_batch_size_multiplier * args.batch_size,
        is_training=False,
        use_prefetcher=args.prefetcher,
        interpolation=data_config['interpolation'],
        mean=data_config['mean'],
        std=data_config['std'],
        num_workers=args.workers,
        distributed=args.distributed,
        crop_pct=data_config['crop_pct'],
        pin_memory=args.pin_mem,
    )

    # setup learning rate schedule and starting epoch
    lr_scheduler, num_epochs = create_scheduler(args, optimizer, dataset_train)
    start_epoch = 0
    if args.start_epoch is not None:
        # a specified start_epoch will always override the resume epoch
        start_epoch = args.start_epoch
    elif resume_epoch is not None:
        start_epoch = resume_epoch
    if lr_scheduler is not None and start_epoch > 0:
        lr_scheduler.step(start_epoch)
    if cp_loaded is not None:
        lr_scheduler.load_state_dict(cp_loaded['scheduler'])

    if args.local_rank == 0:
        _logger.info('Scheduled epochs: {}'.format(num_epochs))

    # setup loss function
    if args.jsd:
        assert num_aug_splits > 1  # JSD only valid with aug splits set
        train_loss_fn = JsdCrossEntropy(num_splits=num_aug_splits, smoothing=args.smoothing).cuda()
    elif mixup_active:
        # smoothing is handled with mixup target transform
        train_loss_fn = SoftTargetCrossEntropy().cuda()
    elif args.smoothing:
        train_loss_fn = LabelSmoothingCrossEntropy(smoothing=args.smoothing).cuda()
    else:
        train_loss_fn = nn.CrossEntropyLoss().cuda()
    validate_loss_fn = nn.CrossEntropyLoss().cuda()

    # setup checkpoint saver and eval metric tracking
    eval_metric = args.eval_metric
    best_metric = None
    best_epoch = None
    saver = None
    output_dir = ''
    if args.local_rank == 0:
        output_base = args.output if args.output else './output'
        exp_name = '-'.join([
            datetime.now().strftime("%Y%m%d-%H%M%S"),
            args.model,
            str(data_config['input_size'][-1])
        ])
        output_dir = get_outdir(output_base, 'train', exp_name)
        decreasing = True if eval_metric == 'loss' else False
        saver = CheckpointSaver(
            model=model, optimizer=optimizer, args=args, model_ema=model_ema, amp_scaler=loss_scaler,
            checkpoint_dir=output_dir, recovery_dir=args.resume, decreasing=decreasing)
        with open(os.path.join(output_dir, 'args.yaml'), 'w') as f:
            f.write(args_text)

    fieldnames = ['seed', 'weight_init', 'actfun', 'epoch', 'max_lr', 'lr', 'train_loss', 'eval_loss', 'eval_acc1', 'eval_acc5', 'ema']
    filename = 'output'
    if args.actfun != 'swish':
        filename = '{}_'.format(args.actfun) + filename
    outfile_path = os.path.join(args.output, filename) + '.csv'
    if not os.path.exists(outfile_path):
        with open(outfile_path, mode='w') as out_file:
            writer = csv.DictWriter(out_file, fieldnames=fieldnames, lineterminator='\n')
            writer.writeheader()

    try:
        for epoch in range(start_epoch, num_epochs):

            if os.path.exists(args.check_path):
                amp_loss = None
                if use_amp == 'native':
                    amp_loss = loss_scaler.state_dict()
                elif use_amp == 'apex':
                    amp_loss = amp.state_dict()
                if model_ema is not None:
                    ema_save = model_ema.state_dict()
                else:
                    ema_save = None

                torch.save({'model': model_raw.state_dict(),
                            'model_ema': ema_save,
                            'optimizer': optimizer.state_dict(),
                            'scheduler': lr_scheduler.state_dict(),
                            'epoch': epoch,
                            'amp': amp_loss
                            }, check_path)
                _logger.info('============ SAVED CHECKPOINT: Epoch {}'.format(epoch))

            if args.distributed:
                loader_train.sampler.set_epoch(epoch)

            train_metrics = train_epoch(
                epoch, model, loader_train, optimizer, train_loss_fn, args,
                lr_scheduler=lr_scheduler, saver=saver, output_dir=output_dir,
                amp_autocast=amp_autocast, loss_scaler=loss_scaler, model_ema=model_ema, mixup_fn=mixup_fn,
                pre_model=pre_model)

            if args.distributed and args.dist_bn in ('broadcast', 'reduce'):
                if args.local_rank == 0:
                    _logger.info("Distributing BatchNorm running means and vars")
                distribute_bn(model, args.world_size, args.dist_bn == 'reduce')

            eval_metrics = validate(model, loader_eval, validate_loss_fn, args, amp_autocast=amp_autocast,
                                    pre_model=pre_model)

            with open(outfile_path, mode='a') as out_file:
                writer = csv.DictWriter(out_file, fieldnames=fieldnames, lineterminator='\n')
                writer.writerow({'seed': args.seed,
                                 'actfun': args.actfun,
                                 'epoch': epoch,
                                 'lr': train_metrics['lr'],
                                 'train_loss': train_metrics['loss'],
                                 'eval_loss': eval_metrics['loss'],
                                 'eval_acc1': eval_metrics['top1'],
                                 'eval_acc5': eval_metrics['top5'],
                                 'ema': False
                                 })

            if model_ema is not None and not args.model_ema_force_cpu:
                if args.distributed and args.dist_bn in ('broadcast', 'reduce'):
                    distribute_bn(model_ema, args.world_size, args.dist_bn == 'reduce')
                ema_eval_metrics = validate(
                    model_ema.module, loader_eval, validate_loss_fn, args, amp_autocast=amp_autocast, log_suffix=' (EMA)',
                    pre_model=pre_model)
                eval_metrics = ema_eval_metrics

                with open(outfile_path, mode='a') as out_file:
                    writer = csv.DictWriter(out_file, fieldnames=fieldnames, lineterminator='\n')
                    writer.writerow({'seed': args.seed,
                                     'weight_init': args.weight_init,
                                     'actfun': args.actfun,
                                     'epoch': epoch,
                                     'max_lr': args.lr,
                                     'lr': train_metrics['lr'],
                                     'train_loss': train_metrics['loss'],
                                     'eval_loss': eval_metrics['loss'],
                                     'eval_acc1': eval_metrics['top1'],
                                     'eval_acc5': eval_metrics['top5'],
                                     'ema': True
                                     })

            if lr_scheduler is not None and args.sched != 'onecycle':
                # step LR for next epoch
                lr_scheduler.step(epoch + 1, eval_metrics[eval_metric])

            update_summary(
                args.seed, epoch, args.lr, args.epochs, args.batch_size, args.actfun,
                train_metrics, eval_metrics, os.path.join(output_dir, 'summary.csv'),
                write_header=best_metric is None)

            if saver is not None:
                # save proper checkpoint with eval metric
                save_metric = eval_metrics[eval_metric]
                best_metric, best_epoch = saver.save_checkpoint(epoch, metric=save_metric)

    except KeyboardInterrupt:
        pass
    if best_metric is not None:
        _logger.info('*** Best metric: {0} (epoch {1})'.format(best_metric, best_epoch))
Ejemplo n.º 19
0
def main():
    setup_default_logging()
    args, args_text = _parse_args()

    args.prefetcher = not args.no_prefetcher
    args.distributed = False
    if 'WORLD_SIZE' in os.environ:
        args.distributed = int(os.environ['WORLD_SIZE']) > 1
        if args.distributed and args.num_gpu > 1:
            _logger.warning(
                'Using more than one GPU per process in distributed mode is not allowed.Setting num_gpu to 1.')
            args.num_gpu = 1

    args.device = 'cuda:0'
    args.world_size = 1
    args.rank = 0  # global rank
    if args.distributed:
        args.num_gpu = 1
        args.device = 'cuda:%d' % args.local_rank
        torch.cuda.set_device(args.local_rank)
        torch.distributed.init_process_group(backend='nccl', init_method='env://')
        args.world_size = torch.distributed.get_world_size()
        args.rank = torch.distributed.get_rank()
    assert args.rank >= 0

    if args.distributed:
        _logger.info('Training in distributed mode with multiple processes, 1 GPU per process. Process %d, total %d.'
                     % (args.rank, args.world_size))
    else:
        _logger.info('Training with a single process on %d GPUs.' % args.num_gpu)

    torch.manual_seed(args.seed + args.rank)

    model = create_model(
        args.model,
        pretrained=args.pretrained,
        num_classes=args.num_classes,
        drop_rate=args.drop,
        drop_connect_rate=args.drop_connect,  # DEPRECATED, use drop_path
        drop_path_rate=args.drop_path,
        drop_block_rate=args.drop_block,
        global_pool=args.gp,
        bn_tf=args.bn_tf,
        bn_momentum=args.bn_momentum,
        bn_eps=args.bn_eps,
        checkpoint_path=args.initial_checkpoint)

    if args.local_rank == 0:
        _logger.info('Model %s created, param count: %d' %
                     (args.model, sum([m.numel() for m in model.parameters()])))

    data_config = resolve_data_config(vars(args), model=model, verbose=args.local_rank == 0)

    num_aug_splits = 0
    if args.aug_splits > 0:
        assert args.aug_splits > 1, 'A split of 1 makes no sense'
        num_aug_splits = args.aug_splits

    if args.split_bn:
        assert num_aug_splits > 1 or args.resplit
        model = convert_splitbn_model(model, max(num_aug_splits, 2))

    use_amp = None
    if args.amp:
        # for backwards compat, `--amp` arg tries apex before native amp
        if has_apex:
            args.apex_amp = True
        elif has_native_amp:
            args.native_amp = True
    if args.apex_amp and has_apex:
        use_amp = 'apex'
    elif args.native_amp and has_native_amp:
        use_amp = 'native'
    elif args.apex_amp or args.native_amp:
        _logger.warning("Neither APEX or native Torch AMP is available, using float32. "
                        "Install NVIDA apex or upgrade to PyTorch 1.6")

    if args.num_gpu > 1:
        if use_amp == 'apex':
            _logger.warning(
                'Apex AMP does not work well with nn.DataParallel, disabling. Use DDP or Torch AMP.')
            use_amp = None
        model = nn.DataParallel(model, device_ids=list(range(args.num_gpu))).cuda()
        assert not args.channels_last, "Channels last not supported with DP, use DDP."
    else:
        model.cuda()
        if args.channels_last:
            model = model.to(memory_format=torch.channels_last)

    optimizer = create_optimizer(args, model)

    amp_autocast = suppress  # do nothing
    loss_scaler = None
    if use_amp == 'apex':
        model, optimizer = amp.initialize(model, optimizer, opt_level='O1')
        loss_scaler = ApexScaler()
        if args.local_rank == 0:
            _logger.info('Using NVIDIA APEX AMP. Training in mixed precision.')
    elif use_amp == 'native':
        amp_autocast = torch.cuda.amp.autocast
        loss_scaler = NativeScaler()
        if args.local_rank == 0:
            _logger.info('Using native Torch AMP. Training in mixed precision.')
    else:
        if args.local_rank == 0:
            _logger.info('AMP not enabled. Training in float32.')

    # optionally resume from a checkpoint
    resume_epoch = None
    if args.resume:
        resume_epoch = resume_checkpoint(
            model, args.resume,
            optimizer=None if args.no_resume_opt else optimizer,
            loss_scaler=None if args.no_resume_opt else loss_scaler,
            log_info=args.local_rank == 0)

    model_ema = None
    if args.model_ema:
        # Important to create EMA model after cuda(), DP wrapper, and AMP but before SyncBN and DDP wrapper
        model_ema = ModelEma(
            model,
            decay=args.model_ema_decay,
            device='cpu' if args.model_ema_force_cpu else '',
            resume=args.resume)

    if args.distributed:
        if args.sync_bn:
            assert not args.split_bn
            try:
                if has_apex and use_amp != 'native':
                    # Apex SyncBN preferred unless native amp is activated
                    model = convert_syncbn_model(model)
                else:
                    model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model)
                if args.local_rank == 0:
                    _logger.info(
                        'Converted model to use Synchronized BatchNorm. WARNING: You may have issues if using '
                        'zero initialized BN layers (enabled by default for ResNets) while sync-bn enabled.')
            except Exception as e:
                _logger.error('Failed to enable Synchronized BatchNorm. Install Apex or Torch >= 1.1')
        if has_apex and use_amp != 'native':
            # Apex DDP preferred unless native amp is activated
            if args.local_rank == 0:
                _logger.info("Using NVIDIA APEX DistributedDataParallel.")
            model = ApexDDP(model, delay_allreduce=True)
        else:
            if args.local_rank == 0:
                _logger.info("Using native Torch DistributedDataParallel.")
            model = NativeDDP(model, device_ids=[args.local_rank])  # can use device str in Torch >= 1.1
        # NOTE: EMA model does not need to be wrapped by DDP

    lr_scheduler, num_epochs = create_scheduler(args, optimizer)
    start_epoch = 0
    if args.start_epoch is not None:
        # a specified start_epoch will always override the resume epoch
        start_epoch = args.start_epoch
    elif resume_epoch is not None:
        start_epoch = resume_epoch
    if lr_scheduler is not None and start_epoch > 0:
        lr_scheduler.step(start_epoch)

    if args.local_rank == 0:
        _logger.info('Scheduled epochs: {}'.format(num_epochs))

    train_dir = os.path.join(args.data, 'train')
    if not os.path.exists(train_dir):
        _logger.error('Training folder does not exist at: {}'.format(train_dir))
        exit(1)
    dataset_train = Dataset(train_dir)

    collate_fn = None
    mixup_fn = None
    mixup_active = args.mixup > 0 or args.cutmix > 0. or args.cutmix_minmax is not None
    if mixup_active:
        mixup_args = dict(
            mixup_alpha=args.mixup, cutmix_alpha=args.cutmix, cutmix_minmax=args.cutmix_minmax,
            prob=args.mixup_prob, switch_prob=args.mixup_switch_prob, mode=args.mixup_mode,
            label_smoothing=args.smoothing, num_classes=args.num_classes)
        if args.prefetcher:
            assert not num_aug_splits  # collate conflict (need to support deinterleaving in collate mixup)
            collate_fn = FastCollateMixup(**mixup_args)
        else:
            mixup_fn = Mixup(**mixup_args)

    if num_aug_splits > 1:
        dataset_train = AugMixDataset(dataset_train, num_splits=num_aug_splits)

    train_interpolation = args.train_interpolation
    if args.no_aug or not train_interpolation:
        train_interpolation = data_config['interpolation']
    loader_train = create_loader(
        dataset_train,
        input_size=data_config['input_size'],
        batch_size=args.batch_size,
        is_training=True,
        use_prefetcher=args.prefetcher,
        no_aug=args.no_aug,
        re_prob=args.reprob,
        re_mode=args.remode,
        re_count=args.recount,
        re_split=args.resplit,
        scale=args.scale,
        ratio=args.ratio,
        hflip=args.hflip,
        vflip=args.vflip,
        color_jitter=args.color_jitter,
        auto_augment=args.aa,
        num_aug_splits=num_aug_splits,
        interpolation=train_interpolation,
        mean=data_config['mean'],
        std=data_config['std'],
        num_workers=args.workers,
        distributed=args.distributed,
        collate_fn=collate_fn,
        pin_memory=args.pin_mem,
        use_multi_epochs_loader=args.use_multi_epochs_loader
    )

    eval_dir = os.path.join(args.data, 'val')
    if not os.path.isdir(eval_dir):
        eval_dir = os.path.join(args.data, 'validation')
        if not os.path.isdir(eval_dir):
            _logger.error('Validation folder does not exist at: {}'.format(eval_dir))
            exit(1)
    dataset_eval = Dataset(eval_dir)

    loader_eval = create_loader(
        dataset_eval,
        input_size=data_config['input_size'],
        batch_size=args.validation_batch_size_multiplier * args.batch_size,
        is_training=False,
        use_prefetcher=args.prefetcher,
        interpolation=data_config['interpolation'],
        mean=data_config['mean'],
        std=data_config['std'],
        num_workers=args.workers,
        distributed=args.distributed,
        crop_pct=data_config['crop_pct'],
        pin_memory=args.pin_mem,
    )

    if args.jsd:
        assert num_aug_splits > 1  # JSD only valid with aug splits set
        train_loss_fn = JsdCrossEntropy(num_splits=num_aug_splits, smoothing=args.smoothing).cuda()
    elif mixup_active:
        # smoothing is handled with mixup target transform
        train_loss_fn = SoftTargetCrossEntropy().cuda()
    elif args.smoothing:
        train_loss_fn = LabelSmoothingCrossEntropy(smoothing=args.smoothing).cuda()
    else:
        train_loss_fn = nn.CrossEntropyLoss().cuda()
    validate_loss_fn = nn.CrossEntropyLoss().cuda()

    eval_metric = args.eval_metric
    best_metric = None
    best_epoch = None
    saver = None
    output_dir = ''
    if args.local_rank == 0:
        output_base = args.output if args.output else './output'
        exp_name = '-'.join([
            datetime.now().strftime("%Y%m%d-%H%M%S"),
            args.model,
            str(data_config['input_size'][-1])
        ])
        output_dir = get_outdir(output_base, 'train', exp_name)
        decreasing = True if eval_metric == 'loss' else False
        saver = CheckpointSaver(
            model=model, optimizer=optimizer, args=args, model_ema=model_ema, amp_scaler=loss_scaler,
            checkpoint_dir=output_dir, recovery_dir=output_dir, decreasing=decreasing)
        with open(os.path.join(output_dir, 'args.yaml'), 'w') as f:
            f.write(args_text)

    try:
        for epoch in range(start_epoch, num_epochs):
            if args.distributed:
                loader_train.sampler.set_epoch(epoch)

            train_metrics = train_epoch(
                epoch, model, loader_train, optimizer, train_loss_fn, args,
                lr_scheduler=lr_scheduler, saver=saver, output_dir=output_dir,
                amp_autocast=amp_autocast, loss_scaler=loss_scaler, model_ema=model_ema, mixup_fn=mixup_fn)

            if args.distributed and args.dist_bn in ('broadcast', 'reduce'):
                if args.local_rank == 0:
                    _logger.info("Distributing BatchNorm running means and vars")
                distribute_bn(model, args.world_size, args.dist_bn == 'reduce')

            eval_metrics = validate(model, loader_eval, validate_loss_fn, args, amp_autocast=amp_autocast)

            if model_ema is not None and not args.model_ema_force_cpu:
                if args.distributed and args.dist_bn in ('broadcast', 'reduce'):
                    distribute_bn(model_ema, args.world_size, args.dist_bn == 'reduce')
                ema_eval_metrics = validate(
                    model_ema.ema, loader_eval, validate_loss_fn, args, amp_autocast=amp_autocast, log_suffix=' (EMA)')
                eval_metrics = ema_eval_metrics

            if lr_scheduler is not None:
                # step LR for next epoch
                lr_scheduler.step(epoch + 1, eval_metrics[eval_metric])

            update_summary(
                epoch, train_metrics, eval_metrics, os.path.join(output_dir, 'summary.csv'),
                write_header=best_metric is None)

            if saver is not None:
                # save proper checkpoint with eval metric
                save_metric = eval_metrics[eval_metric]
                best_metric, best_epoch = saver.save_checkpoint(epoch, metric=save_metric)

                # if saver.cmp(best_metric, save_metric):
                #     _logger.info(f"Metric is no longer improving [BEST: {best_metric}, CURRENT: {save_metric}]"
                #                  f"\nFinishing training process")
                #     if epoch > 15:
                #         break

    except KeyboardInterrupt:
        pass
    if best_metric is not None:
        message = '*** Best metric: <{0:.2f}>, epoch: <{1}>, path: <{2}> ***'\
            .format(best_metric, best_epoch, output_dir)
        _logger.info(message)
        print(message)
Ejemplo n.º 20
0
if cfg.OUTPUT_DIR:
    mkdir(cfg.OUTPUT_DIR)
    # save full config to a file in output_dir for future reference
    with open(os.path.join(cfg.OUTPUT_DIR, 'config.yaml'), 'w') as f:
        f.write(str(cfg))

cfg.freeze()

# mix-up
aug = cfg.AUG
mixup_fn = Mixup(
    mixup_alpha=aug.MIXUP,
    cutmix_alpha=aug.MIXCUT,
    cutmix_minmax=aug.MIXCUT_MINMAX if aug.MIXCUT_MINMAX else None,
    prob=aug.MIXUP_PROB,
    switch_prob=aug.MIXUP_SWITCH_PROB,
    mode=aug.MIXUP_MODE,
    label_smoothing=cfg.LOSS.LABEL_SMOOTHING,
    num_classes=cfg.DATA.NUM_CLASSES) if aug.MIXUP_PROB > 0.0 else None

##################### Model ############################
net = build_model(cfg)
net = net.to(device)

if not cfg.EVALUATE and cfg.AMP.ENABLED and cfg.AMP.MEMORY_FORMAT == 'nhwc':
    logging.info('=> convert memory format to nhwc')
    net.to(memory_format=torch.channels_last)

# multi-gpu training (should be after apex fp16 initialization)
if args.n_gpu > 1: