Ejemplo n.º 1
0
 def configure_optimizers(self):
     optimizer = RMSpropTF(self.parameters(), lr=self.hparams.learning_rate,
                           weight_decay=self.hparams.weight_decay,
                           momentum=0.9, alpha=0.9, eps=1.0)
     return {
         'optimizer': optimizer,
         'scheduler': CosineAnnealingLR(optimizer, self.hparams.max_epochs)
     }
def create_optimizer(args, model, filter_bias_and_bn=True):
    weight_decay = args.weight_decay
    if weight_decay and filter_bias_and_bn:
        parameters = add_weight_decay(model, weight_decay)
        weight_decay = 0.
    else:
        parameters = model.parameters()

    if args.opt.lower() == 'sgd':
        optimizer = optim.SGD(parameters,
                              lr=args.lr,
                              momentum=args.momentum,
                              weight_decay=weight_decay,
                              nesterov=True)
    elif args.opt.lower() == 'adam':
        optimizer = optim.Adam(parameters,
                               lr=args.lr,
                               weight_decay=weight_decay,
                               eps=args.opt_eps)
    elif args.opt.lower() == 'nadam':
        optimizer = Nadam(parameters,
                          lr=args.lr,
                          weight_decay=weight_decay,
                          eps=args.opt_eps)
    elif args.opt.lower() == 'adadelta':
        optimizer = optim.Adadelta(parameters,
                                   lr=args.lr,
                                   weight_decay=weight_decay,
                                   eps=args.opt_eps)
    elif args.opt.lower() == 'rmsprop':
        optimizer = optim.RMSprop(parameters,
                                  lr=args.lr,
                                  alpha=0.9,
                                  eps=args.opt_eps,
                                  momentum=args.momentum,
                                  weight_decay=weight_decay)
    elif args.opt.lower() == 'rmsproptf':
        optimizer = RMSpropTF(parameters,
                              lr=args.lr,
                              alpha=0.9,
                              eps=args.opt_eps,
                              momentum=args.momentum,
                              weight_decay=weight_decay)
    else:
        assert False and "Invalid optimizer"
        raise ValueError
    return optimizer
Ejemplo n.º 3
0
def create_optimizer(args,
                     model,
                     filter_bias_and_bn=True,
                     classification_layer_name=None):
    opt_lower = args.opt.lower()
    weight_decay = args.weight_decay
    if 'adamw' in opt_lower or 'radam' in opt_lower:
        # Compensate for the way current AdamW and RAdam optimizers apply LR to the weight-decay
        # I don't believe they follow the paper or original Torch7 impl which schedules weight
        # decay based on the ratio of current_lr/initial_lr
        weight_decay /= args.lr

    if weight_decay and filter_bias_and_bn:  # batch norm and bias params
        if classification_layer_name is not None:
            parameters = set_lr_per_params(args, model,
                                           classification_layer_name,
                                           weight_decay)
        else:
            parameters = add_weight_decay(model, weight_decay)
        weight_decay = 0.  # reset to 0
    else:
        if classification_layer_name is not None:
            parameters = set_lr_per_params(args,
                                           model,
                                           classification_layer_name,
                                           weight_decay=0)
        else:
            parameters = model.parameters()

    if 'fused' in opt_lower:
        assert has_apex and torch.cuda.is_available(
        ), 'APEX and CUDA required for fused optimizers'

    opt_split = opt_lower.split('_')
    opt_lower = opt_split[-1]
    if opt_lower == 'sgd' or opt_lower == 'nesterov':
        optimizer = optim.SGD(parameters,
                              lr=args.lr,
                              momentum=args.momentum,
                              weight_decay=weight_decay,
                              nesterov=True)
    elif opt_lower == 'momentum':
        optimizer = optim.SGD(parameters,
                              lr=args.lr,
                              momentum=args.momentum,
                              weight_decay=weight_decay,
                              nesterov=False)
    elif opt_lower == 'adam':
        optimizer = optim.Adam(parameters,
                               lr=args.lr,
                               weight_decay=weight_decay,
                               eps=args.opt_eps)
    elif opt_lower == 'adamw':
        optimizer = AdamW(parameters,
                          lr=args.lr,
                          weight_decay=weight_decay,
                          eps=args.opt_eps)
    elif opt_lower == 'nadam':
        optimizer = Nadam(parameters,
                          lr=args.lr,
                          weight_decay=weight_decay,
                          eps=args.opt_eps)
    elif opt_lower == 'radam':
        optimizer = RAdam(parameters,
                          lr=args.lr,
                          weight_decay=weight_decay,
                          eps=args.opt_eps)
    elif opt_lower == 'adamp':
        optimizer = AdamP(parameters,
                          lr=args.lr,
                          weight_decay=weight_decay,
                          eps=args.opt_eps,
                          delta=0.1,
                          wd_ratio=0.01,
                          nesterov=True)
    elif opt_lower == 'sgdp':
        optimizer = SGDP(parameters,
                         lr=args.lr,
                         momentum=args.momentum,
                         weight_decay=weight_decay,
                         eps=args.opt_eps,
                         nesterov=True)
    elif opt_lower == 'adadelta':
        optimizer = optim.Adadelta(parameters,
                                   lr=args.lr,
                                   weight_decay=weight_decay,
                                   eps=args.opt_eps)
    elif opt_lower == 'rmsprop':
        optimizer = optim.RMSprop(parameters,
                                  lr=args.lr,
                                  alpha=0.9,
                                  eps=args.opt_eps,
                                  momentum=args.momentum,
                                  weight_decay=weight_decay)
    elif opt_lower == 'rmsproptf':
        optimizer = RMSpropTF(parameters,
                              lr=args.lr,
                              alpha=0.9,
                              eps=args.opt_eps,
                              momentum=args.momentum,
                              weight_decay=weight_decay)
    elif opt_lower == 'novograd':
        optimizer = NovoGrad(parameters,
                             lr=args.lr,
                             weight_decay=weight_decay,
                             eps=args.opt_eps)
    elif opt_lower == 'nvnovograd':
        optimizer = NvNovoGrad(parameters,
                               lr=args.lr,
                               weight_decay=weight_decay,
                               eps=args.opt_eps)
    elif opt_lower == 'fusedsgd':
        optimizer = FusedSGD(parameters,
                             lr=args.lr,
                             momentum=args.momentum,
                             weight_decay=weight_decay,
                             nesterov=True)
    elif opt_lower == 'fusedmomentum':
        optimizer = FusedSGD(parameters,
                             lr=args.lr,
                             momentum=args.momentum,
                             weight_decay=weight_decay,
                             nesterov=False)
    elif opt_lower == 'fusedadam':
        optimizer = FusedAdam(parameters,
                              lr=args.lr,
                              adam_w_mode=False,
                              weight_decay=weight_decay,
                              eps=args.opt_eps)
    elif opt_lower == 'fusedadamw':
        optimizer = FusedAdam(parameters,
                              lr=args.lr,
                              adam_w_mode=True,
                              weight_decay=weight_decay,
                              eps=args.opt_eps)
    elif opt_lower == 'fusedlamb':
        optimizer = FusedLAMB(parameters,
                              lr=args.lr,
                              weight_decay=weight_decay,
                              eps=args.opt_eps)
    elif opt_lower == 'fusednovograd':
        optimizer = FusedNovoGrad(parameters,
                                  lr=args.lr,
                                  betas=(0.95, 0.98),
                                  weight_decay=weight_decay,
                                  eps=args.opt_eps)
    else:
        assert False and "Invalid optimizer"
        raise ValueError

    if len(opt_split) > 1:
        if opt_split[0] == 'lookahead':
            optimizer = Lookahead(optimizer)

    return optimizer
Ejemplo n.º 4
0
def create_optimizer(args, model, filter_bias_and_bn=True):
    opt_lower = args.opt.lower()
    weight_decay = args.weight_decay
    if opt_lower == 'adamw' or opt_lower == 'radam':
        # compensate for the way current AdamW and RAdam optimizers
        # apply the weight-decay
        weight_decay /= args.lr
    if weight_decay and filter_bias_and_bn:
        parameters = add_weight_decay(model, weight_decay)
        weight_decay = 0.
    else:
        parameters = model.parameters()

    opt_split = opt_lower.split('_')
    opt_lower = opt_split[-1]
    if opt_lower == 'sgd':
        optimizer = optim.SGD(parameters,
                              lr=args.lr,
                              momentum=args.momentum,
                              weight_decay=weight_decay,
                              nesterov=True)
    elif opt_lower == 'adam':
        optimizer = optim.Adam(parameters,
                               lr=args.lr,
                               weight_decay=weight_decay,
                               eps=args.opt_eps)
    elif opt_lower == 'adamw':
        optimizer = AdamW(parameters,
                          lr=args.lr,
                          weight_decay=weight_decay,
                          eps=args.opt_eps)
    elif opt_lower == 'nadam':
        optimizer = Nadam(parameters,
                          lr=args.lr,
                          weight_decay=weight_decay,
                          eps=args.opt_eps)
    elif opt_lower == 'radam':
        optimizer = RAdam(parameters,
                          lr=args.lr,
                          weight_decay=weight_decay,
                          eps=args.opt_eps)
    elif opt_lower == 'adadelta':
        optimizer = optim.Adadelta(parameters,
                                   lr=args.lr,
                                   weight_decay=weight_decay,
                                   eps=args.opt_eps)
    elif opt_lower == 'rmsprop':
        optimizer = optim.RMSprop(parameters,
                                  lr=args.lr,
                                  alpha=0.9,
                                  eps=args.opt_eps,
                                  momentum=args.momentum,
                                  weight_decay=weight_decay)
    elif opt_lower == 'rmsproptf':
        optimizer = RMSpropTF(parameters,
                              lr=args.lr,
                              alpha=0.9,
                              eps=args.opt_eps,
                              momentum=args.momentum,
                              weight_decay=weight_decay)
    elif opt_lower == 'novograd':
        optimizer = NovoGrad(parameters,
                             lr=args.lr,
                             weight_decay=weight_decay,
                             eps=args.opt_eps)
    else:
        assert False and "Invalid optimizer"
        raise ValueError

    if len(opt_split) > 1:
        if opt_split[0] == 'lookahead':
            optimizer = Lookahead(optimizer)

    return optimizer
Ejemplo n.º 5
0
def create_optimizer(args, model, filter_bias_and_bn=True):
    opt_lower = args.opt.lower()
    weight_decay = args.weight_decay
    if 'adamw' in opt_lower or 'radam' in opt_lower:
        # Compensate for the way current AdamW and RAdam optimizers apply LR to the weight-decay
        # I don't believe they follow the paper or original Torch7 impl which schedules weight
        # decay based on the ratio of current_lr/initial_lr
        weight_decay /= args.lr
    if weight_decay and filter_bias_and_bn:
        print("has weight decay and filter bias")
        parameters = add_weight_decay(model, weight_decay)
        weight_decay = 0.
    else:
        print("Comes here to unfrozen params inside optim")

        parameters = unfrozen_params(model)

    if 'fused' in opt_lower:
        assert has_apex and torch.cuda.is_available(
        ), 'APEX and CUDA required for fused optimizers'

    opt_split = opt_lower.split('_')
    opt_lower = opt_split[-1]
    if opt_lower == 'sgd' or opt_lower == 'nesterov':
        optimizer = optim.SGD(parameters,
                              lr=args.lr,
                              momentum=args.momentum,
                              weight_decay=weight_decay,
                              nesterov=True)
    elif opt_lower == 'momentum':
        optimizer = optim.SGD(parameters,
                              lr=args.lr,
                              momentum=args.momentum,
                              weight_decay=weight_decay,
                              nesterov=False)
    elif opt_lower == 'adam':
        optimizer = optim.Adam(parameters,
                               lr=args.lr,
                               weight_decay=weight_decay,
                               eps=args.opt_eps)
    elif opt_lower == 'adamw':
        optimizer = AdamW(parameters,
                          lr=args.lr,
                          weight_decay=weight_decay,
                          eps=args.opt_eps)
    elif opt_lower == 'nadam':
        optimizer = Nadam(parameters,
                          lr=args.lr,
                          weight_decay=weight_decay,
                          eps=args.opt_eps)
    elif opt_lower == 'radam':
        optimizer = RAdam(parameters,
                          lr=args.lr,
                          weight_decay=weight_decay,
                          eps=args.opt_eps)
    elif opt_lower == 'adadelta':
        optimizer = optim.Adadelta(parameters,
                                   lr=args.lr,
                                   weight_decay=weight_decay,
                                   eps=args.opt_eps)
    elif opt_lower == 'rmsprop':
        optimizer = optim.RMSprop(parameters,
                                  lr=args.lr,
                                  alpha=0.9,
                                  eps=args.opt_eps,
                                  momentum=args.momentum,
                                  weight_decay=weight_decay)
    elif opt_lower == 'rmsproptf':
        optimizer = RMSpropTF(parameters,
                              lr=args.lr,
                              alpha=0.9,
                              eps=args.opt_eps,
                              momentum=args.momentum,
                              weight_decay=weight_decay)
    elif opt_lower == 'novograd':
        optimizer = NovoGrad(parameters,
                             lr=args.lr,
                             weight_decay=weight_decay,
                             eps=args.opt_eps)
    elif opt_lower == 'nvnovograd':
        optimizer = NvNovoGrad(parameters,
                               lr=args.lr,
                               weight_decay=weight_decay,
                               eps=args.opt_eps)
    elif opt_lower == 'fusedsgd':
        optimizer = FusedSGD(parameters,
                             lr=args.lr,
                             momentum=args.momentum,
                             weight_decay=weight_decay,
                             nesterov=True)
    elif opt_lower == 'fusedmomentum':
        print("my optimizer")
        optimizer = FusedSGD(parameters,
                             lr=args.lr,
                             momentum=args.momentum,
                             weight_decay=weight_decay,
                             nesterov=False)
    elif opt_lower == 'fusedadam':
        optimizer = FusedAdam(parameters,
                              lr=args.lr,
                              adam_w_mode=False,
                              weight_decay=weight_decay,
                              eps=args.opt_eps)
    elif opt_lower == 'fusedadamw':
        optimizer = FusedAdam(parameters,
                              lr=args.lr,
                              adam_w_mode=True,
                              weight_decay=weight_decay,
                              eps=args.opt_eps)
    elif opt_lower == 'fusedlamb':
        optimizer = FusedLAMB(parameters,
                              lr=args.lr,
                              weight_decay=weight_decay,
                              eps=args.opt_eps)
    elif opt_lower == 'fusednovograd':
        optimizer = FusedNovoGrad(parameters,
                                  lr=args.lr,
                                  betas=(0.95, 0.98),
                                  weight_decay=weight_decay,
                                  eps=args.opt_eps)
    else:
        assert False and "Invalid optimizer"
        raise ValueError

    if len(opt_split) > 1:
        if opt_split[0] == 'lookahead':
            optimizer = Lookahead(optimizer)

    return optimizer
Ejemplo n.º 6
0
    def __init__(self,
                 baseline_model,
                 pretrained=True,
                 num_classes=None,
                 lr=6.25e-5,
                 dropout=0.2,
                 drop_connect=0.2,
                 cuda=True,
                 warmup_ratio=0.1,
                 num_training_steps=1000,
                 gamma=0.97,
                 device_idxs=(),
                 mixed_precision=False):
        super().__init__(cuda=cuda,
                         warmup_ratio=warmup_ratio,
                         num_training_steps=num_training_steps,
                         device_idxs=device_idxs,
                         mixed_precision=mixed_precision)

        self.baseline_model = timm.create_model(baseline_model,
                                                pretrained=pretrained,
                                                num_classes=num_classes,
                                                drop_rate=dropout,
                                                drop_connect_rate=drop_connect,
                                                drop_path_rate=drop_connect)

        self.cross_entropy = nn.CrossEntropyLoss()

        self.reset()

        if self.cuda and len(self.devices) > 1:
            self.baseline_model = nn.DataParallel(
                self.baseline_model,
                device_ids=self.devices,
                output_device=self.model_device)

        if self.mixed_precision:
            self.baseline_model.forward = insert_autocast(
                self.baseline_model.forward)

        if True:
            self.optimizer = RMSpropTF(self.parameters(),
                                       alpha=0.9,
                                       momentum=0.9,
                                       weight_decay=1e-5,
                                       eps=1e-3,
                                       lr=lr)
            self.scheduler = StepLRScheduler(
                self.optimizer,
                decay_t=self.num_training_steps * 2.4 / 450,
                decay_rate=gamma,
                warmup_lr_init=1e-6,
                warmup_t=self.num_training_steps * 3 / 450,
                noise_range_t=None,
                noise_pct=0.67,
                noise_std=1,
                noise_seed=42)
        else:
            self.optimizer = AdamW(self.parameters(), lr=lr)
            self.scheduler = StepLR(self.optimizer,
                                    step_size=int(num_training_steps * 2.4 /
                                                  450),
                                    gamma=gamma)

        self.main_losses = {'im'}