Ejemplo n.º 1
0
def register_all_cityscapes(root):
    for key, (image_dir, gt_dir) in _RAW_CITYSCAPES_SPLITS.items():
        meta = _get_builtin_metadata("cityscapes")
        image_dir = os.path.join(root, image_dir)
        gt_dir = os.path.join(root, gt_dir)

        inst_key = key.format(task="instance_seg")
        DatasetCatalog.register(
            inst_key,
            lambda x=image_dir, y=gt_dir: load_cityscapes_instances(
                x, y, from_json=True, to_polygons=True),
        )
        MetadataCatalog.get(inst_key).set(image_dir=image_dir,
                                          gt_dir=gt_dir,
                                          evaluator_type="cityscapes_instance",
                                          **meta)

        sem_key = key.format(task="sem_seg")
        DatasetCatalog.register(
            sem_key,
            lambda x=image_dir, y=gt_dir: load_cityscapes_semantic(x, y))
        MetadataCatalog.get(sem_key).set(image_dir=image_dir,
                                         gt_dir=gt_dir,
                                         evaluator_type="cityscapes_sem_seg",
                                         **meta)
Ejemplo n.º 2
0
def register_coco_panoptic_separated(
    name,
    metadata,
    image_root,
    panoptic_root,
    panoptic_json,
    sem_seg_root,
    instances_json
):
    panoptic_name = name + "_separated"
    DatasetCatalog.register(
        panoptic_name,
        lambda: merge_to_panoptic(
            load_coco_json(instances_json, image_root, panoptic_name),
            load_sem_seg(sem_seg_root, image_root),
        ),
    )
    MetadataCatalog.get(panoptic_name).set(
        panoptic_root=panoptic_root,
        image_root=image_root,
        panoptic_json=panoptic_json,
        sem_seg_root=sem_seg_root,
        json_file=instances_json,
        evaluator_type="coco_panoptic_seg",
        **metadata
    )

    semantic_name = name + "_stuffonly"
    DatasetCatalog.register(semantic_name, lambda: load_sem_seg(sem_seg_root, image_root))
    MetadataCatalog.get(semantic_name).set(
        sem_seg_root=sem_seg_root,
        image_root=image_root,
        evaluator_type="sem_seg",
        **metadata
    )
Ejemplo n.º 3
0
def register_lvis_instances(name, metadata, json_file, image_root):
    DatasetCatalog.register(name, lambda: load_lvis_json(json_file, image_root, name))
    MetadataCatalog.get(name).set(
        json_file=json_file,
        image_root=image_root,
        evaluator_type="lvis",
        **metadata
    )
Ejemplo n.º 4
0
def load_lvis_json(json_file, image_root, dataset_name=None):
    from lvis import LVIS

    json_file = PathManager.get_local_path(json_file)

    timer = Timer()
    lvis_api = LVIS(json_file)
    if timer.seconds() > 1:
        logger.info("Loading {} takes {:.2f} seconds.".format(json_file, timer.seconds()))

    if dataset_name is not None:
        meta = get_lvis_instances_meta(dataset_name)
        MetadataCatalog.get(dataset_name).set(**meta)

    img_ids = sorted(lvis_api.imgs.keys())
    imgs = lvis_api.load_imgs(img_ids)
    anns = [lvis_api.img_ann_map[img_id] for img_id in img_ids]

    ann_ids = [ann["id"] for anns_per_image in anns for ann in anns_per_image]
    assert len(set(ann_ids)) == len(ann_ids), \
        f"Annotation ids in '{json_file}' are not unique"

    imgs_anns = list(zip(imgs, anns))

    logger.info(f"Loaded {len(imgs_anns)} images in the LVIS format from {json_file}")

    dataset_dicts = []

    for (img_dict, anno_dict_list) in imgs_anns:
        record = {}
        file_name = img_dict["file_name"]
        if img_dict["file_name"].startswith("COCO"):
            file_name = file_name[-16:]
        record["file_name"] = os.path.join(image_root, file_name)
        record["height"] = img_dict["height"]
        record["width"] = img_dict["width"]
        record["not_exhaustive_category_ids"] = img_dict.get("not_exhaustive_category_ids", [])
        record["neg_category_ids"] = img_dict.get("neg_category_ids", [])
        image_id = record["image_id"] = img_dict["id"]

        objs = []
        for anno in anno_dict_list:
            assert anno["image_id"] == image_id

            obj = {"bbox": anno["bbox"], "bbox_mode": BoxMode.XYWH_ABS}
            obj["category_id"] = anno["category_id"] - 1
            segm = anno["segmentation"]
            valid_segm = [poly for poly in segm if len(poly) % 2 == 0 and len(poly) >= 6]
            assert len(segm) == len(valid_segm), \
                "Annotation contains an invalid polygon with < 3 points"
            assert len(segm) > 0

            obj["segmentation"] = segm
            objs.append(obj)
        record["annotations"] = objs
        dataset_dicts.append(record)

    return dataset_dicts
Ejemplo n.º 5
0
    def __init__(self,
                 dataset_name,
                 distributed,
                 num_classes,
                 ignore_label=255,
                 output_dir=None):
        self._dataset_name = dataset_name
        self._distributed = distributed
        self._output_dir = output_dir
        self._num_classes = num_classes
        self._ignore_label = ignore_label
        self._N = num_classes + 1

        self._cpu_device = torch.device("cpu")
        self._logger = logging.getLogger(__name__)

        self.input_file_to_gt_file = {
            dataset_record["file_name"]: dataset_record["sem_seg_file_name"]
            for dataset_record in DatasetCatalog.get(dataset_name)
        }

        meta = MetadataCatalog.get(dataset_name)
        try:
            c2d = meta.stuff_dataset_id_to_contiguous_id
            self._contiguous_id_to_dataset_id = {v: k for k, v in c2d.items()}
        except AttributeError:
            self._contiguous_id_to_dataset_id = None
        self._class_names = meta.stuff_classes
Ejemplo n.º 6
0
def register_all_coco(root):
    for dataset_name, splits_per_dataset in _PREDEFINED_SPLITS_COCO.items():
        for key, (image_root, json_file) in splits_per_dataset.items():
            register_coco_instances(
                key,
                _get_builtin_metadata(dataset_name),
                os.path.join(root, json_file)
                if "://" not in json_file else json_file,
                os.path.join(root, image_root),
            )

    for (
            prefix,
        (panoptic_root, panoptic_json, semantic_root),
    ) in _PREDEFINED_SPLITS_COCO_PANOPTIC.items():
        prefix_instances = prefix[:-len("_panoptic")]
        instances_meta = MetadataCatalog.get(prefix_instances)
        image_root, instances_json = instances_meta.image_root, instances_meta.json_file
        register_coco_panoptic_separated(
            prefix,
            _get_builtin_metadata("coco_panoptic_separated"),
            image_root,
            os.path.join(root, panoptic_root),
            os.path.join(root, panoptic_json),
            os.path.join(root, semantic_root),
            instances_json,
        )
Ejemplo n.º 7
0
    def __init__(self, dataset_name, cfg, distributed, output_dir=None):
        self._tasks = self._tasks_from_config(cfg)
        self._distributed = distributed
        self._output_dir = output_dir

        self._cpu_device = torch.device("cpu")
        self._logger = logging.getLogger(__name__)

        self._metadata = MetadataCatalog.get(dataset_name)
        if not hasattr(self._metadata, "json_file"):
            self._logger.warning(
                f"json_file was not found in MetaDataCatalog for '{dataset_name}'."
                " Trying to convert it to COCO format ..."
            )

            cache_path = os.path.join(output_dir, f"{dataset_name}_coco_format.json")
            self._metadata.json_file = cache_path
            convert_to_coco_json(dataset_name, cache_path)

        json_file = PathManager.get_local_path(self._metadata.json_file)
        with contextlib.redirect_stdout(io.StringIO()):
            self._coco_api = COCO(json_file)

        self._kpt_oks_sigmas = cfg.TEST.KEYPOINT_OKS_SIGMAS
        self._do_evaluation = "annotations" in self._coco_api.dataset
Ejemplo n.º 8
0
def register_all_visdrone(root):
    SPLITS = [
        ("vis_2018_train", "VisDrone2018", "train"),
        ("vis_2018_val", "VisDrone2018", "val"),
    ]
    for name, dirname, split in SPLITS:
        register_visdrone(name, os.path.join(root, dirname), split)
        MetadataCatalog.get(name).evaluator_type = "coco"
Ejemplo n.º 9
0
    def __init__(self, dataset_name, output_dir):
        self._metadata = MetadataCatalog.get(dataset_name)
        self._thing_contiguous_id_to_dataset_id = {
            v: k for k, v in self._metadata.thing_dataset_id_to_contiguous_id.items()
        }
        self._stuff_contiguous_id_to_dataset_id = {
            v: k for k, v in self._metadata.stuff_dataset_id_to_contiguous_id.items()
        }

        self._predictions_json = os.path.join(output_dir, "predictions.json")
Ejemplo n.º 10
0
    def __init__(self, dataset_name):
        self._dataset_name = dataset_name
        meta = MetadataCatalog.get(dataset_name)
        self._anno_file_template = os.path.join(meta.dirname, "Annotations",
                                                "{}.xml")
        self._image_set_path = os.path.join(meta.dirname, "ImageSets", "Main",
                                            meta.split + ".txt")
        self._class_names = meta.thing_classes
        assert meta.year in [2007, 2012], meta.year

        self._is_2007 = meta.year == 2007
        self._cpu_device = torch.device("cpu")
        self._logger = logging.getLogger(__name__)
Ejemplo n.º 11
0
    def __init__(self, img_rgb, metadata=None, scale=1.0, instance_mode=ColorMode.IMAGE):
        self.img = np.asarray(img_rgb).clip(0, 255).astype(np.uint8)
        if metadata is None:
            metadata = MetadataCatalog.get("__nonexist__")
        self.metadata = metadata
        self.output = VisImage(self.img, scale=scale)
        self.cpu_device = torch.device("cpu")

        self._default_font_size = max(
            np.sqrt(self.output.height * self.output.width) // 90,
            10 // scale
        )
        self._instance_mode = instance_mode
Ejemplo n.º 12
0
def register_all_pascal_voc(root):
    SPLITS = [
        ("voc_2007_trainval", "VOC2007", "trainval"),
        ("voc_2007_train", "VOC2007", "train"),
        ("voc_2007_val", "VOC2007", "val"),
        ("voc_2007_test", "VOC2007", "test"),
        ("voc_2012_trainval", "VOC2012", "trainval"),
        ("voc_2012_train", "VOC2012", "train"),
        ("voc_2012_val", "VOC2012", "val"),
    ]
    for name, dirname, split in SPLITS:
        year = 2007 if "2007" in name else 2012
        register_pascal_voc(name, os.path.join(root, dirname), split, year)
        MetadataCatalog.get(name).evaluator_type = "pascal_voc"
Ejemplo n.º 13
0
    def __init__(self, dataset_name, cfg, distributed, output_dir=None):
        from lvis import LVIS

        self._tasks = self._tasks_from_config(cfg)
        self._distributed = distributed
        self._output_dir = output_dir

        self._cpu_device = torch.device("cpu")
        self._logger = logging.getLogger(__name__)

        self._metadata = MetadataCatalog.get(dataset_name)
        json_file = PathManager.get_local_path(self._metadata.json_file)
        self._lvis_api = LVIS(json_file)
        self._do_evaluation = len(self._lvis_api.get_ann_ids()) > 0
Ejemplo n.º 14
0
    def __init__(self, cfg):
        self.cfg = cfg.clone()
        self.model = build_model(self.cfg)
        self.model.eval()
        self.metadata = MetadataCatalog.get(cfg.DATASETS.TEST[0])

        checkpointer = DetectionCheckpointer(self.model)
        checkpointer.load(cfg.MODEL.WEIGHTS)

        self.transform_gen = T.ResizeShortestEdge(
            [cfg.INPUT.MIN_SIZE_TEST, cfg.INPUT.MIN_SIZE_TEST],
            cfg.INPUT.MAX_SIZE_TEST)

        self.input_format = cfg.INPUT.FORMAT
        assert self.input_format in ["RGB", "BGR"], self.input_format
Ejemplo n.º 15
0
 def build_evaluator(cls, cfg, dataset_name, output_folder=None):
     if output_folder is None:
         output_folder = os.path.join(cfg.OUTPUT_DIR, "inference")
     evaluator_list = []
     evaluator_type = MetadataCatalog.get(dataset_name).evaluator_type
     if evaluator_type == "lvis":
         return LVISEvaluator(dataset_name, cfg, True, output_folder)
     if evaluator_type == "coco":
         return COCOEvaluator(dataset_name, cfg, True, output_folder)
     if evaluator_type == "cityscapes":
         assert torch.cuda.device_count() >= comm.get_rank(), \
             "CityscapesEvaluator currently do not work with multiple machines."
         return CityscapesInstanceEvaluator(dataset_name)
     if len(evaluator_list) == 0:
         raise NotImplementedError(
             f"no Evaluator for the dataset {dataset_name} with the type {evaluator_type}"
         )
     if len(evaluator_list) == 1:
         return evaluator_list[0]
     return DatasetEvaluators(evaluator_list)
Ejemplo n.º 16
0
    def build_evaluator(cls, cfg, dataset_name, output_folder=None):
        if output_folder is None:
            output_folder = os.path.join(cfg.OUTPUT_DIR, "inference")
        evaluator_list = []
        evaluator_type = MetadataCatalog.get(dataset_name).evaluator_type
        if evaluator_type in ["sem_seg", "coco_panoptic_seg"]:
            evaluator_list.append(
                SemSegEvaluator(
                    dataset_name,
                    distributed=True,
                    num_classes=cfg.MODEL.SEM_SEG_HEAD.NUM_CLASSES,
                    ignore_label=cfg.MODEL.SEM_SEG_HEAD.IGNORE_VALUE,
                    output_dir=output_folder,
                )
            )
        if evaluator_type in ["coco", "coco_panoptic_seg"]:
            evaluator_list.append(COCOEvaluator(dataset_name, cfg, True, output_folder))
        if evaluator_type == "coco_panoptic_seg":
            evaluator_list.append(COCOPanopticEvaluator(dataset_name, output_folder))
        if evaluator_type == "cityscapes_instance":
            assert torch.cuda.device_count() >= comm.get_rank(), \
                "CityscapesEvaluator currently do not work with multiple machines."

            return CityscapesInstanceEvaluator(dataset_name)
        if evaluator_type == "cityscapes_sem_seg":
            assert torch.cuda.device_count() >= comm.get_rank(), \
                "CityscapesEvaluator currently do not work with multiple machines."

            return CityscapesSemSegEvaluator(dataset_name)
        elif evaluator_type == "pascal_voc":
            return PascalVOCDetectionEvaluator(dataset_name)
        elif evaluator_type == "lvis":
            return LVISEvaluator(dataset_name, cfg, True, output_folder)
        if len(evaluator_list) == 0:
            raise NotImplementedError(
                f"no Evaluator for the dataset {dataset_name} with the type {evaluator_type}"
            )
        elif len(evaluator_list) == 1:
            return evaluator_list[0]
        return DatasetEvaluators(evaluator_list)
Ejemplo n.º 17
0
                        default=0.5,
                        type=float,
                        help="confidence threshold")
    args = parser.parse_args()

    logger = setup_logger()

    with PathManager.open(args.input, "r") as f:
        predictions = json.load(f)

    pred_by_image = defaultdict(list)
    for p in predictions:
        pred_by_image[p["image_id"]].append(p)

    dicts = list(DatasetCatalog.get(args.dataset))
    metadata = MetadataCatalog.get(args.dataset)
    if hasattr(metadata, "thing_dataset_id_to_contiguous_id"):

        def dataset_id_map(ds_id):
            return metadata.thing_dataset_id_to_contiguous_id[ds_id]

    elif "lvis" in args.dataset:

        def dataset_id_map(ds_id):
            return ds_id - 1

    else:
        raise ValueError("Unsupported dataset: {}".format(args.dataset))

    os.makedirs(args.output, exist_ok=True)
Ejemplo n.º 18
0
 def __init__(self, dataset_name):
     self._metadata = MetadataCatalog.get(dataset_name)
     self._cpu_device = torch.device("cpu")
     self._logger = logging.getLogger(__name__)
Ejemplo n.º 19
0
def register_all_fruits_nuts(root):
    register_fruits_nuts_instances(
        "fruits_nuts", {}, os.path.join(root, "fruits_nuts/trainval.json"),
        os.path.join(root, "fruits_nuts/images"))
    MetadataCatalog.get("fruits_nuts").evaluator_type = "coco"
Ejemplo n.º 20
0
        help="Modify config options using the command-line",
        default=None,
        nargs=argparse.REMAINDER,
    )
    return parser.parse_args(in_args)


if __name__ == "__main__":
    args = parse_args()
    logger = setup_logger()
    logger.info("Arguments: " + str(args))
    cfg = setup(args)

    dirname = args.output_dir
    os.makedirs(dirname, exist_ok=True)
    metadata = MetadataCatalog.get(cfg.DATASETS.TRAIN[0])

    def output(vis, fname):
        if args.show:
            print(fname)
            cv2.imshow("window", vis.get_image()[:, :, ::-1])
            cv2.waitKey()
        else:
            filepath = os.path.join(dirname, fname)
            print("Saving to {} ...".format(filepath))
            vis.save(filepath)

    scale = 1.0
    if args.source == "dataloader":
        train_data_loader = build_detection_train_loader(cfg)
        for batch in train_data_loader:
Ejemplo n.º 21
0
def convert_to_coco_dict(dataset_name):
    dataset_dicts = DatasetCatalog.get(dataset_name)
    metadata = MetadataCatalog.get(dataset_name)

    if hasattr(metadata, "thing_dataset_id_to_contiguous_id"):
        reverse_id_mapping = {v: k for k, v in metadata.thing_dataset_id_to_contiguous_id.items()}
        reverse_id_mapper = lambda contiguous_id: reverse_id_mapping[contiguous_id]
    else:
        reverse_id_mapper = lambda contiguous_id: contiguous_id

    categories = [
        {"id": reverse_id_mapper(id), "name": name}
        for id, name in enumerate(metadata.thing_classes)
    ]

    logger.info("Converting dataset dicts into COCO format")
    coco_images = []
    coco_annotations = []

    for image_id, image_dict in enumerate(dataset_dicts):
        coco_image = {
            "id": image_dict.get("image_id", image_id),
            "width": image_dict["width"],
            "height": image_dict["height"],
            "file_name": image_dict["file_name"],
        }
        coco_images.append(coco_image)

        anns_per_image = image_dict["annotations"]
        for annotation in anns_per_image:
            coco_annotation = {}

            bbox = annotation["bbox"]
            bbox_mode = annotation["bbox_mode"]
            bbox = BoxMode.convert(bbox, bbox_mode, BoxMode.XYWH_ABS)

            if "segmentation" in annotation:
                segmentation = annotation["segmentation"]
                if isinstance(segmentation, list):
                    polygons = PolygonMasks([segmentation])
                    area = polygons.area()[0].item()
                elif isinstance(segmentation, dict):
                    area = mask_util.area(segmentation).item()
                else:
                    raise TypeError(f"Unknown segmentation type {type(segmentation)}!")
            else:
                bbox_xy = BoxMode.convert(bbox, BoxMode.XYWH_ABS, BoxMode.XYXY_ABS)
                area = Boxes([bbox_xy]).area()[0].item()

            if "keypoints" in annotation:
                keypoints = annotation["keypoints"]
                for idx, v in enumerate(keypoints):
                    if idx % 3 != 2:
                        keypoints[idx] = v - 0.5
                if "num_keypoints" in annotation:
                    num_keypoints = annotation["num_keypoints"]
                else:
                    num_keypoints = sum(kp > 0 for kp in keypoints[2::3])

            coco_annotation["id"] = len(coco_annotations) + 1
            coco_annotation["image_id"] = coco_image["id"]
            coco_annotation["bbox"] = [round(float(x), 3) for x in bbox]
            coco_annotation["area"] = float(area)
            coco_annotation["iscrowd"] = annotation.get("iscrowd", 0)
            coco_annotation["category_id"] = reverse_id_mapper(annotation["category_id"])

            if "keypoints" in annotation:
                coco_annotation["keypoints"] = keypoints
                coco_annotation["num_keypoints"] = num_keypoints

            if "segmentation" in annotation:
                seg = coco_annotation["segmentation"] = annotation["segmentation"]
                if isinstance(seg, dict):
                    counts = seg["counts"]
                    if not isinstance(counts, str):
                        seg["counts"] = counts.decode("ascii")

            coco_annotations.append(coco_annotation)

    logger.info(
        "Conversion finished, "
        f"#images: {len(coco_images)}, #annotations: {len(coco_annotations)}"
    )

    info = {
        "date_created": str(datetime.datetime.now()),
        "description": "Automatically generated COCO json file for tkdetection.",
    }
    coco_dict = {
        "info": info,
        "images": coco_images,
        "annotations": coco_annotations,
        "categories": categories,
        "licenses": None,
    }
    return coco_dict
Ejemplo n.º 22
0
def load_coco_json(json_file, image_root, dataset_name=None, extra_annotation_keys=None):
    from pycocotools.coco import COCO

    timer = Timer()
    json_file = PathManager.get_local_path(json_file)
    with contextlib.redirect_stdout(io.StringIO()):
        coco_api = COCO(json_file)
    if timer.seconds() > 1:
        logger.info(f"Loading {json_file} takes {timer.seconds():.2f} seconds.")

    id_map = None
    if dataset_name is not None:
        meta = MetadataCatalog.get(dataset_name)
        cat_ids = sorted(coco_api.getCatIds())
        cats = coco_api.loadCats(cat_ids)
        thing_classes = [c["name"] for c in sorted(cats, key=lambda x: x["id"])]
        meta.thing_classes = thing_classes

        if not (min(cat_ids) == 1 and max(cat_ids) == len(cat_ids)):
            if "coco" not in dataset_name:
                logger.warning(
                    """
Category ids in annotations are not in [1, #categories]! We'll apply a mapping for you.
"""
                )
        id_map = {v: i for i, v in enumerate(cat_ids)}
        meta.thing_dataset_id_to_contiguous_id = id_map

    img_ids = sorted(coco_api.imgs.keys())
    imgs = coco_api.loadImgs(img_ids)
    anns = [coco_api.imgToAnns[img_id] for img_id in img_ids]

    if "minival" not in json_file:
        ann_ids = [ann["id"] for anns_per_image in anns for ann in anns_per_image]
        assert len(set(ann_ids)) == len(ann_ids), \
            f"Annotation ids in '{json_file}' are not unique!"

    imgs_anns = list(zip(imgs, anns))

    logger.info(f"Loaded {len(imgs_anns)} images in COCO format from {json_file}")

    dataset_dicts = []

    ann_keys = ["iscrowd", "bbox", "keypoints", "category_id"] + (extra_annotation_keys or [])

    num_instances_without_valid_segmentation = 0

    for (img_dict, anno_dict_list) in imgs_anns:
        record = {}
        record["file_name"] = os.path.join(image_root, img_dict["file_name"])
        record["height"] = img_dict["height"]
        record["width"] = img_dict["width"]
        image_id = record["image_id"] = img_dict["id"]

        objs = []
        for anno in anno_dict_list:
            assert anno["image_id"] == image_id
            assert anno.get("ignore", 0) == 0, '"ignore" in COCO json file is not supported.'

            obj = {key: anno[key] for key in ann_keys if key in anno}

            segm = anno.get("segmentation", None)
            if segm:
                if not isinstance(segm, dict):
                    segm = [poly for poly in segm if len(poly) % 2 == 0 and len(poly) >= 6]
                    if len(segm) == 0:
                        num_instances_without_valid_segmentation += 1
                        continue
                obj["segmentation"] = segm

            keypts = anno.get("keypoints", None)
            if keypts:
                for idx, v in enumerate(keypts):
                    if idx % 3 != 2:
                        keypts[idx] = v + 0.5
                obj["keypoints"] = keypts

            obj["bbox_mode"] = BoxMode.XYWH_ABS
            if id_map:
                obj["category_id"] = id_map[obj["category_id"]]
            objs.append(obj)
        record["annotations"] = objs
        dataset_dicts.append(record)

    if num_instances_without_valid_segmentation > 0:
        logger.warning(
            "Filtered out {} instances without valid segmentation. ".format(
                num_instances_without_valid_segmentation
            )
            + "There might be issues in your dataset generation process. "
            "A valid polygon should be a list[float] with even length >= 6."
        )
    return dataset_dicts
Ejemplo n.º 23
0
def register_visdrone(name, dirname, split):
    DatasetCatalog.register(name, lambda: load_vis_instances(dirname, split))
    MetadataCatalog.get(name).set(thing_classes=CLASS_NAMES,
                                  dirname=dirname,
                                  split=split)