Ejemplo n.º 1
0
def start_process():

    cats = Scheme.get_fund_categorization()

    for key in cats:
        for row in cats[key]:
            print(row['Text'], "xxx", row['Value'])
            today = datetime.date.today()
            download_data(row["Value"], today.month, today.year)
Ejemplo n.º 2
0
def process_ter_history():
    cats = Scheme.get_fund_categorization()

    for month in range(0, 24):
        today = datetime.date.today() - datetime.timedelta(days=month * 30)
        print(today)
        for key in cats:
            for row in cats[key]:
                print(row['Text'], "xxx", row['Value'])
                download_data(row["Value"], today.month, today.year)
Ejemplo n.º 3
0
def process_aum_history():
    cats = Scheme.get_fund_categorization()
    Scheme_Name_Mismatch.objects.all().delete()

    for month in range(0, 24):
        today = datetime.date.today() - datetime.timedelta(days=month * 30)
        print(today)
        for key in cats:
            for row in cats[key]:
                print(row['Text'], "xxx", row['Value'])
                download_data(row["Value"], today, key, row["Text"])
Ejemplo n.º 4
0
def get_fund_categories(request):
    cats = Scheme.get_fund_categorization()

    types = []
    subtypes = []
    for key in cats:
        types.append(key)
        for row in cats[key]:
            subtypes.append(row["Text"])
    # ret = Scheme.objects.get_category_types()
    # return Response(ret)

    return Response(types)
Ejemplo n.º 5
0
def get_fund_subcategories(request, stype):
    # ret = Scheme.objects.get_sub_category_types(type)
    # return Response(ret)

    cats = Scheme.get_fund_categorization()

    subtypes = []
    for key in cats:
        if key == stype:
            for row in cats[key]:
                subtypes.append(row["Text"])

    return Response(subtypes)
Ejemplo n.º 6
0
def start_process():

    # fund = Scheme.find_fund_with_name("Tata India Pharma & Healthcare Fund")
    # print(fund)
    # return
    cats = Scheme.get_fund_categorization()
    Scheme_Name_Mismatch.objects.all().delete()

    for key in cats:
        for row in cats[key]:
            #print(row['Text'], "xxx", row['Value'])
            today = datetime.date.today() - datetime.timedelta(days=1)
            #print(row["Value"], today, key, row["Text"])
            download_data(row["Value"], today, key, row["Text"])
Ejemplo n.º 7
0
def get_funds_without_category_or_sub_category(request):

    cats = Scheme.get_fund_categorization()

    types = []
    subtypes = []
    for key in cats:
        types.append(key)
        for row in cats[key]:
            subtypes.append(row["Text"])
            # print(row['Text'], "xxx", row['Value'])

    ret = Scheme.objects.exclude(
        Q(scheme_type__in=types) or Q(scheme_sub_type__in=subtypes))
    ser = SchemeSerializer(ret, many=True)
    return Response(ser.data)
Ejemplo n.º 8
0
def download_data(cat_desc, month, year):

    response = requests.post("https://www.amfiindia.com/modules/LoadTERData",
                             data={
                                 "MonthTER": str(month) + "-" + str(year),
                                 "MF_ID": "-1",
                                 "NAV_ID": "1",
                                 "SchemeCat_Desc": cat_desc
                             })

    soup = BeautifulSoup(response.text, 'html.parser')

    data = soup.find("table")

    ter_data = []

    for row in data.findAll('tr'):
        col = row.findAll('td')
        if len(col) > 1:
            # there is an issue here, the current data which we get back
            # has data for multiple date of same month. which is not needed.
            # we just need to one data point for a month which is the latest
            scheme_name = col[0].string
            date = col[1].string
            ter = col[-1].string
            date = datetime.datetime.strptime(date, "%d-%b-%Y")
            # print(scheme_name, "xxx", date, "xxx", ter)

            ter_data.append([scheme_name, date, ter])

    df = pd.DataFrame(ter_data, columns=['Scheme', 'Date', "Ter"])

    df = df.drop_duplicates(subset="Scheme", keep="last")

    print(df)

    for row in df.itertuples():
        scheme_name = row.Scheme
        date = row.Date
        ter = row.Ter

        scheme = scheme = Scheme.find_fund_with_name(scheme_name)
        if scheme:
            print("scheme found ", scheme_name)
            ters = Scheme_TER.objects.filter(scheme=scheme,
                                             date__year=date.year,
                                             date__month=date.month)
            ters.delete()

            tr_db = Scheme_TER(scheme=scheme, date=date, ter=ter)
            tr_db.save()

        else:
            print(Fore.RED + "scheme not found with name ", scheme_name)
            # break

    # switch to amfi website as it has all amc's in a single location
    # below code is all old not used any more.
    # no point in parsing xml files when amfi has data already
    return
    # process_zip_file()
    # process_file()

    # move_files_from_folder_to_parent()

    # Scheme_TER_Process
    pass
Ejemplo n.º 9
0
def new_download_data(cat_desc, date, scheme_category, scheme_sub_category):
    #print(date.strftime("%d-%b-%Y"))
    date_det = date.strftime("%d-%b-%Y")
    url = "https://www.valueresearchonline.com/amfi/fund-performance-data/?end-type=1&primary-category=" + str(
        scheme_category) + "&category=" + str(
            cat_desc) + "&amc=ALL&nav-date=" + str(date_det) + ""
    response = requests.get(url=url)
    soup = BeautifulSoup(response.text, 'html.parser')

    data = soup.find("table")

    fund_data = []

    for row in data.findAll('tr'):
        col = row.findAll('td')
        if len(col) > 8:
            amc_name = "NA"
            scheme_name = col[0].text
            benchmark = col[1].string
            inception_date = datetime.date.today() - datetime.timedelta(days=1)
            aum_direct = col[22].string
            if "regular" in scheme_name.lower():
                continue

            fund_data.append([
                amc_name, scheme_name, benchmark, inception_date, aum_direct,
                date
            ])

    df = pd.DataFrame(
        fund_data,
        columns=['AMC', 'Scheme', "Benchmark", "Inception", "AUM", "Date"])

    #print(df)
    for row in df.itertuples():
        scheme_name = row.Scheme
        date = row.Date
        aum = row.AUM
        amc = row.AMC
        benchmark = row.Benchmark
        inception = row.Inception
        scheme = Scheme.find_fund_with_name(scheme_name)
        if aum != "NA":
            if scheme:
                Scheme.objects.filter(pk=scheme.id).update(
                    scheme_type=scheme_category,
                    scheme_sub_type=scheme_sub_category)

                #print("scheme found ", scheme_name)
                ters = Scheme_AUM.objects.filter(scheme=scheme,
                                                 date__year=date.year,
                                                 date__month=date.month)
                ters.delete()
                tr_db = Scheme_AUM(scheme=scheme, date=date, aum=aum)
                #print("saving scheme",scheme)
                tr_db.save()

                info = Scheme_Info.objects.filter(scheme=scheme)
                info.delete()

                info = Scheme_Info(scheme=scheme,
                                   benchmark=benchmark,
                                   inception=inception)
                info.save()
                info = Scheme_Name_Mismatch.objects.filter(name=scheme_name)
                info.delete()

            else:
                print(Fore.RED + "scheme not found with name ", scheme_name)

                info = Scheme_Name_Mismatch.objects.filter(name=scheme_name)
                info.delete()

                info = Scheme_Name_Mismatch(amc=amc,
                                            name=scheme_name,
                                            category=scheme_category,
                                            subcategory=scheme_sub_category,
                                            inception=inception,
                                            aum=aum)
                info.save()
        else:
            print(Fore.RED + "Aum not found with name ", scheme_name)
Ejemplo n.º 10
0
def download_data(cat_desc, date, scheme_category, scheme_sub_category):

    #print(date.strftime("%d-%b-%Y"))
    print({
        "SchemeMonth": date.strftime("%d-%b-%Y"),
        "MF_ID": "-1",
        "NAV_ID": "1",
        "SchemeCat_Desc": cat_desc
    })
    response = requests.post(
        "https://www.amfiindia.com/modules/LoadMFPerformaceData",
        data={
            "SchemeMonth": date.strftime("%d-%b-%Y"),
            "MF_ID": "-1",
            "NAV_ID": "1",
            "SchemeCat_Desc": cat_desc
        })
    #print(response.url)

    soup = BeautifulSoup(response.text, 'html.parser')

    data = soup.find("table")

    fund_data = []

    for row in data.findAll('tr'):
        col = row.findAll('td')
        if len(col) > 8:
            # there is an issue here, the current data which we get back
            # has data for multiple date of same month. which is not needed.
            # we just need to one data point for a month which is the latest
            amc_name = col[0].string
            scheme_name = col[1].string
            benchmark = col[2].string
            inception_date = col[4].string
            aum_direct = col[8].string

            if "regular" in scheme_name.lower():
                continue

            if inception_date == "NA":
                # this means plan doesn't existing for Direct investores
                # maybe use this info later
                continue

            fund_data.append([
                amc_name, scheme_name, benchmark, inception_date, aum_direct,
                date
            ])

    df = pd.DataFrame(
        fund_data,
        columns=['AMC', 'Scheme', "Benchmark", "Inception", "AUM", "Date"])

    #print(df)

    for row in df.itertuples():
        scheme_name = row.Scheme
        date = row.Date
        aum = row.AUM
        amc = row.AMC
        benchmark = row.Benchmark
        inception = row.Inception
        scheme = Scheme.find_fund_with_name(scheme_name)
        if scheme:

            Scheme.objects.filter(pk=scheme.id).update(
                scheme_type=scheme_category,
                scheme_sub_type=scheme_sub_category)

            #print("scheme found ", scheme_name)
            ters = Scheme_AUM.objects.filter(scheme=scheme,
                                             date__year=date.year,
                                             date__month=date.month)
            ters.delete()
            #print("scheme data",scheme,date,aum)
            tr_db = Scheme_AUM(scheme=scheme, date=date, aum=aum)
            print("saving scheme", scheme)
            tr_db.save()

            info = Scheme_Info.objects.filter(scheme=scheme)
            info.delete()

            info = Scheme_Info(scheme=scheme,
                               benchmark=benchmark,
                               inception=datetime.datetime.strptime(
                                   inception, "%d-%b-%Y"))
            info.save()

        else:
            print(Fore.RED + "scheme not found with name ", scheme_name)

            info = Scheme_Name_Mismatch.objects.filter(name=scheme_name)
            info.delete()

            info = Scheme_Name_Mismatch(amc=amc,
                                        name=scheme_name,
                                        category=scheme_category,
                                        subcategory=scheme_sub_category,
                                        inception=inception,
                                        aum=aum)
            info.save()