Ejemplo n.º 1
0
 def test_save_gyre(self):
     header1, data1 = gyre.load_gyre('data/mesa.gyre')
     gyre.save_gyre(tmpfile, header1, data1)
     header2, data2 = gyre.load_gyre(tmpfile)
     self.assertEqual(header1, header2)
     for row1, row2 in zip(data1, data2):
         self.assertEqual(row1, row2)
Ejemplo n.º 2
0
    def test_save_gyre(self):
        m1 = gyre.load_gyre('data/mesa.gyre')
        m1.to_file(tmpfile)
        m2 = gyre.load_gyre(tmpfile)

        np.testing.assert_equal(m1.header, m2.header)
        np.testing.assert_equal(m1.data, m2.data)

        np.testing.assert_allclose(m1.r, m2.x * m2.R)
        np.testing.assert_allclose(m1.cs2, m2.Gamma_1 * m2.P / m2.rho)
        np.testing.assert_allclose(m1.AA[1:], m2.N2[1:] * m2.r[1:] / m2.g[1:])
Ejemplo n.º 3
0
 def test_load_spb_mesa_versions(self):
     filenames = [
         'data/spb.mesa.78677cc', 'data/spb.mesa.813eed2',
         'data/spb.mesa.adc6989'
     ]
     for filename in filenames:
         header1, data1 = gyre.load_gyre(filename)
         gyre.save_gyre(tmpfile, header1, data1)
         header2, data2 = gyre.load_gyre(tmpfile)
         self.assertEqual(header1, header2)
         for row1, row2 in zip(data1, data2):
             self.assertEqual(row1, row2)
Ejemplo n.º 4
0
 def test_load_gyre(self):
     header, data = gyre.load_gyre('data/mesa.gyre')
     self.assertEqual(header['n'], 601)
     self.assertAlmostEqual(header['M'], 1.9882053999999999E+33)
     self.assertAlmostEqual(header['R'], 6.2045507132959908E+10)
     self.assertAlmostEqual(header['L'], 3.3408563666602257E+33)
     self.assertEqual(header['version'], 101)
Ejemplo n.º 5
0
    def test_load_spb_mesa_versions(self):
        filenames = [
            'data/spb.mesa.78677cc', 'data/spb.mesa.813eed2',
            'data/spb.mesa.adc6989'
        ]
        for filename in filenames:
            m1 = gyre.load_gyre('data/mesa.gyre')
            m1.to_file(tmpfile)
            m2 = gyre.load_gyre(tmpfile)

            np.testing.assert_equal(m1.header, m2.header)
            np.testing.assert_equal(m1.data, m2.data)

            np.testing.assert_allclose(m1.r, m2.x * m2.R)
            np.testing.assert_allclose(m1.cs2, m2.Gamma_1 * m2.P / m2.rho)
            np.testing.assert_allclose(m1.AA[1:],
                                       m2.N2[1:] * m2.r[1:] / m2.g[1:])
Ejemplo n.º 6
0
    def test_load_gyre(self):
        m = gyre.load_gyre('data/mesa.gyre')
        self.assertEqual(len(m.data), 601)
        self.assertAlmostEqual(m.M, 1.9882053999999999E+33)
        self.assertAlmostEqual(m.R, 6.2045507132959908E+10)
        self.assertAlmostEqual(m.L, 3.3408563666602257E+33)
        self.assertEqual(m.version, 101)

        np.testing.assert_allclose(m.Omega, 0)
        np.testing.assert_allclose(m.Gamma_1 / (m.Gamma_3 - 1),
                                   m.Gamma_2 / (m.Gamma_2 - 1),
                                   rtol=1e-14,
                                   atol=1e-14)

        s = '%r' % m

        r = gyre.load_gyre(remote_url + 'data/mesa.gyre')
        np.testing.assert_equal(m.header, r.header)
        np.testing.assert_equal(m.data, r.data)
Ejemplo n.º 7
0
def convert(args):
    """Convert function for `tomso` command-line script."""
    from_format = (guess_format(args.input_file)
                   if args.from_format == 'guess'
                   else args.from_format)
    to_format = (guess_format(args.output_file)
                 if args.to_format == 'guess'
                 else args.to_format)

    if from_format == to_format:
        raise ValueError("input format and output format are both %s\n"
                         "did you mean to copy the file?" % from_format)

    kwargs = {}
    if args.G is not None:
        kwargs['G'] = args.G

    if from_format == 'fgong':
        from tomso.fgong import load_fgong
        m = load_fgong(args.input_file, **kwargs)
    elif from_format == 'amdl':
        from tomso.adipls import load_amdl
        m = load_amdl(args.input_file, **kwargs)
    elif from_format == 'gyre':
        from tomso.gyre import load_gyre
        m = load_gyre(args.input_file, **kwargs)
    else:
        raise ValueError("%s is not a valid input format" % from_format)

    if to_format == 'fgong':
        m.to_fgong(ivers=args.ivers).to_file(args.output_file)
    elif to_format == 'amdl':
        m.to_amdl().to_file(args.output_file)
    elif to_format == 'gyre':
        m.to_gyre().to_file(args.output_file)
    else:
        raise ValueError("%s is not a valid output format" % to_format)
Ejemplo n.º 8
0
 def test_gyre_to_gyre(self):
     g = load_gyre('data/mesa.gyre')
     self.compare_models(g, g.to_fgong().to_gyre(), thermo=True)
Ejemplo n.º 9
0
    'ELat': '[degrees] ecliptic latitude',
    'tred': '',
    'region': '',
    'max_T': '',
    'Pdet_fixedBeta': 'detection probability',
    'SNR_fixedBeta': 'signal-to-noise ratio',
    'Pdet_varyBeta': 'detection probability',
    'SNR_varyBeta': 'signal-to-noise ratio',
    'P_mix': 'average detection probability',
    'Rank_Pmix': 'rank of average detection probability'
}

history_header, history_data = mesa.load_history(folder +
                                                 '/LOGS/history.data.gz')
profile_header, profile_data = mesa.load_profile(folder + '/final.profile.gz')
gyre_header, gyre_profile = gyre.load_gyre(folder + '/final.profile.GYRE.rot')

nml = AADG3.load_namelist(basename + '.in')

L = 10.**history_data['log_L'][-1]
R = 10.**history_data[-1]['log_R']
M = history_data[-1]['star_mass']
Teff = 10.**history_data[-1]['log_Teff']
numax = numax_sun * (M / R**2 / (Teff / Teff_sun)**0.5)
Dnu = Dnu_sun * np.sqrt(M / R**3)

Tred = Tred_sun * L**-0.093
beta = 1.0 - np.exp((Teff - Tred) / dT)
Amax = Amax_sun * beta * L / M * (Teff / Teff_sun)**-2
Henv = Amax**2 / Dnu
wenv = 0.66 * numax**0.88
Ejemplo n.º 10
0
                    '--output',
                    type=str,
                    default=None,
                    help="Filename for output GYRE model "
                    "(default=append .rot to source model filename)")
parser.add_argument(
    '--no-core-noise',
    action='store_true',
    help="don't randomly sample uncertainty in core rotation rate")
parser.add_argument(
    '--no-env-noise',
    action='store_true',
    help="don't randomly sample uncertainty in envelope rotation rate")
args = parser.parse_args()

gyre_header, profile = gyre.load_gyre(args.model)
mesa_header, history = mesa.load_history(args.history)

# P = P_mamabrand(10.**history['log_Teff'][-1], history['star_age'][-1]/1e6,
#                 noisy=not args.no_env_noise)*86400.0
P = P_angus(10.**history['log_Teff'][-1],
            10.0,
            history['star_age'][-1] / 1e6,
            noisy=not args.no_env_noise) * 86400.0
Omega_env = 2. * np.pi / P
profile['Omega'] = Omega_env

if history['center_h1'][
        -1] < 1e-4:  # and np.log10(history['gravity'][-1]) < 3.8:
    # decrease rotation rate by a factor (R/R_TAMS)^2
    R = 10.**history['log_R'][-1]