Ejemplo n.º 1
0
    cfg.width = cfg.size
    cfg.height = cfg.size
    cfg.w = cfg.size
    cfg.h = cfg.size
    print(cfg)
    os.environ["CUDA_VISIBLE_DEVICES"] = cfg.gpu
    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
    logging.info(f'Using device {device}')

    if cfg.use_darknet_cfg:
        model = Darknet(cfg.cfgfile)
    else:
        model = Yolov4(cfg.pretrained, n_classes=cfg.classes)

    if cfg.load is not None:
        model.load_model(cfg.load, device)

    if cfg.pretrained is not None:
        model.load_model(cfg.pretrained, device, pretrained=True)
        #model.load_weights(cfg.pretrained)

    if torch.cuda.device_count() > 1:
        model = torch.nn.DataParallel(model)
    model.to(device=device)

    try:
        train(model=model,
              config=cfg,
              epochs=cfg.TRAIN_EPOCHS,
              device=device,
              log_step=20)
Ejemplo n.º 2
0
    if dataset == 'patch':
        from cfg_patch import Cfg
        checkpoint = 'checkpoints/Yolov4_modanet_128_epoch46.pth'
    elif dataset == 'modanet_whole':
        pass
    cfg = Cfg
    cfg.gpu = '0'
    os.environ["CUDA_VISIBLE_DEVICES"] = cfg.gpu
    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
    json_gt = os.path.expanduser('~/data/datasets/modanet/Annots/modanet_instances_val_new.json')

    if cfg.use_darknet_cfg:
        model = Darknet(cfg.cfgfile)
    else:
        model = Yolov4(cfg.pretrained, n_classes=cfg.classes)

    model.load_model(checkpoint, device)
    if torch.cuda.device_count() > 1:
        model = torch.nn.DataParallel(model)
    model.to(device=device)
    #model.load_state_dict(torch.load(checkpoint), strict=True)

    val_dataset = YoloModanetHumanDataset(cfg.anno_path, cfg, train=False)

    n_val = len(val_dataset)

    val_loader = DataLoader(val_dataset, batch_size=1, shuffle=True, num_workers=0,
                            pin_memory=True, drop_last=False, collate_fn=val_collate)

    evaluate_nms(model, val_loader, cfg, device, human_patch=True, json_gt=None)
    #evaluate_nms(model, val_loader, cfg, device, human_patch=True, json_gt=json_gt)
Ejemplo n.º 3
0
    cfg.width = cfg.size
    cfg.height = cfg.size
    cfg.w = cfg.size
    cfg.h = cfg.size
    print(cfg)
    os.environ["CUDA_VISIBLE_DEVICES"] = cfg.gpu
    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
    logging.info(f'Using device {device}')

    if cfg.use_darknet_cfg:
        model = Darknet(cfg.cfgfile)
    else:
        model = Yolov4(cfg.pretrained, n_classes=cfg.classes)

    if cfg.load is not None:
        model.load_model(cfg.load, device)

    if torch.cuda.device_count() > 1:
        model = torch.nn.DataParallel(model)
    model.to(device=device)

    try:
        train(model=model,
              config=cfg,
              epochs=cfg.TRAIN_EPOCHS,
              device=device, )
    except KeyboardInterrupt:
        torch.save(model.state_dict(), 'INTERRUPTED.pth')
        logging.info('Saved interrupt')
        try:
            sys.exit(0)