Ejemplo n.º 1
0
    def test(self, sess, t_x, t_y, idx2tag, idx2char, outpath=None, ensemble=None, batch_size=200, tag_num=1):

        t_y = toolbox.unpad_zeros(t_y)
        gold = toolbox.decode_tags(t_y, idx2tag, self.tag_scheme)
        chars = toolbox.decode_chars(t_x[0], idx2char)
        gold_out = toolbox.generate_output(chars, gold, self.tag_scheme)

        pt_holder = None
        if self.graphic:
            pt_holder = self.input_p[0]

        prediction = self.predict(data=t_x, sess=sess, model=self.input_v[0] + self.output[0], index=0, pt_h=pt_holder,
                                  pt=self.pixels, ensemble=ensemble, batch_size=batch_size)
        prediction = toolbox.decode_tags(prediction, idx2tag, self.tag_scheme)
        prediction_out = toolbox.generate_output(chars, prediction, self.tag_scheme)

        scores = toolbox.evaluator(prediction_out, gold_out, metric='All', verbose=True, tag_num=tag_num)

        print 'Best scores: '

        print 'Segmentation F1-score: %f' % scores[2]
        print 'Segmentation Precision: %f' % scores[0]
        print 'Segmentation Recall: %f' % scores[1]
        print 'Segmentation True Negative Rate: %f' % scores[6]
        print 'Segmentation Boundary-F1-score: %f\n' % scores[10]

        print 'Joint POS tagging F-score: %f' % scores[5]
        print 'Joint POS tagging Precision: %f' % scores[3]
        print 'Joint POS tagging Recall: %f' % scores[4]
        print 'Joint POS True Negative Rate: %f' % scores[7]
        print 'Joint POS tagging Boundary-F1-score: %f\n' % scores[13]

        if outpath is not None:
            final_out = prediction_out[0]
            toolbox.printer(final_out, outpath)
Ejemplo n.º 2
0
    def test(self,
             sess,
             t_x,
             t_y,
             idx2tag,
             idx2char,
             outpath=None,
             ensemble=None,
             batch_size=200):

        t_y = toolbox.unpad_zeros(t_y)
        gold = toolbox.decode_tags(t_y, idx2tag, self.tag_scheme)
        chars = toolbox.decode_chars(t_x[0], idx2char)
        gold_out = toolbox.generate_output(chars, gold, self.tag_scheme)

        pt_holder = None
        if self.graphic:
            pt_holder = self.input_p[0]

        prediction = self.predict(data=t_x,
                                  sess=sess,
                                  model=self.input_v[0] + self.output[0],
                                  index=0,
                                  pt_h=pt_holder,
                                  pt=self.pixels,
                                  ensemble=ensemble,
                                  batch_size=batch_size)
        prediction = toolbox.decode_tags(prediction, idx2tag, self.tag_scheme)
        prediction_out = toolbox.generate_output(chars, prediction,
                                                 self.tag_scheme)

        scores = toolbox.evaluator(prediction_out,
                                   gold_out,
                                   tag_scheme=self.tag_scheme,
                                   verbose=True)

        scores = np.asarray(scores)
        scores_f = scores[:, 1]
        best_idx = int(np.argmax(scores_f))

        c_score = scores[0]

        print 'Best scores: '
        print 'Segmentation F-score: %f' % c_score[0]
        print 'Segmentation Precision: %f' % c_score[2]
        print 'Segmentation Recall: %f\n' % c_score[3]

        print 'Joint POS tagging F-score: %f' % c_score[1]
        print 'Joint POS tagging Precision: %f' % c_score[4]
        print 'Joint POS tagging Recall: %f' % c_score[5]

        if outpath is not None:
            if self.tag_scheme == 'parallel':
                final_out = prediction_out[best_idx + 1]
            elif self.tag_scheme == 'mul':
                final_out = prediction_out[best_idx]
            else:
                final_out = prediction_out[0]
            toolbox.printer(final_out, outpath)
Ejemplo n.º 3
0
    def train(self, t_x, t_y, v_x, v_y, idx2tag, idx2char, sess, epochs, trained_model, lr=0.05, decay=0.05, decay_step=1):
        lr_r = lr
        best_epoch = 0
        best_score = 0

        best_seg = 0
        best_pos = 0

        v_y = toolbox.merge_bucket(v_y)
        v_y = toolbox.unpad_zeros(v_y)

        gold = toolbox.decode_tags(v_y, idx2tag, self.tag_scheme)

        input_chars = toolbox.merge_bucket([v_x[0]])

        chars = toolbox.decode_chars(input_chars[0], idx2char)

        gold_out = toolbox.generate_output(chars, gold, self.tag_scheme)

        for epoch in range(epochs):
            print 'epoch: %d' % (epoch + 1)
            t = time()
            if epoch % decay_step == 0 and decay > 0:
                lr_r = lr/(1 + decay*(epoch/decay_step))

            data_list = t_x + t_y

            samples = zip(*data_list)

            random.shuffle(samples)

            for sample in samples:
                c_len = len(sample[0][0])
                idx = self.bucket_dit[c_len]
                real_batch_size = self.real_batches[idx]
                model = self.input_v[idx] + self.output_[idx]
                pt_holder = None
                if self.graphic:
                    pt_holder = self.input_p[idx]
                Batch.train(sess=sess[0], model=model, batch_size=real_batch_size, config=self.train_step[idx], lr=self.l_rate, lrv=lr_r, dr=self.drop_out, drv=self.drop_out_v, data=list(sample), pt_h=pt_holder, pixels=self.pixels, verbose=False)

            predictions = []

            for v_b_x in zip(*v_x):
                c_len = len(v_b_x[0][0])
                idx = self.bucket_dit[c_len]
                pt_holder = None
                if self.graphic:
                    pt_holder = self.input_p[idx]
                b_prediction = self.predict(data=v_b_x, sess=sess, model=self.input_v[idx] + self.output[idx], index=idx, pt_h=pt_holder, pt=self.pixels, batch_size=100)
                b_prediction = toolbox.decode_tags(b_prediction, idx2tag, self.tag_scheme)
                predictions.append(b_prediction)

            predictions = zip(*predictions)
            predictions = toolbox.merge_bucket(predictions)

            prediction_out = toolbox.generate_output(chars, predictions, self.tag_scheme)

            scores = toolbox.evaluator(prediction_out, gold_out, tag_scheme=self.tag_scheme)
            scores = np.asarray(scores)

            c_score = np.max(scores[:,1])*np.max(scores[:,0])
            if c_score > best_score and epoch > 4:
                best_epoch = epoch + 1
                best_score = c_score
                best_seg = np.max(scores[:,0])
                best_pos = np.max(scores[:,1])
                self.saver.save(sess[0], trained_model, write_meta_graph=False)
            print 'Time consumed: %d seconds' % int(time() - t)
        print 'Training is finished!'
        print 'Best segmentation score: %f' % best_seg
        print 'Best POS tag score: %f' % best_pos
        print 'Best epoch: %d' % best_epoch
Ejemplo n.º 4
0
    def train(self, t_x, t_y, v_x, v_y, idx2tag, idx2char, sess, epochs, trained_model, lr=0.05, decay=0.05,
              decay_step=1, tag_num=1):
        lr_r = lr

        best_epoch, best_score, best_seg, best_pos, c_tag, c_seg, c_score = {}, {}, {}, {}, {}, {}, {}

        pindex = 0

        metric = self.metric

        for m in self.all_metrics:
            best_epoch[m] = 0
            best_score[m] = 0

            best_seg[m] = 0
            best_pos[m] = 0

            c_tag[m] = 0
            c_seg[m] = 0
            c_score[m] = 0

        v_y = toolbox.merge_bucket(v_y)
        v_y = toolbox.unpad_zeros(v_y)

        gold = toolbox.decode_tags(v_y, idx2tag, self.tag_scheme)
        input_chars = toolbox.merge_bucket([v_x[0]])

        chars = toolbox.decode_chars(input_chars[0], idx2char)

        gold_out = toolbox.generate_output(chars, gold, self.tag_scheme)

        for epoch in range(epochs):
            print 'epoch: %d' % (epoch + 1)
            t = time()
            if epoch % decay_step == 0 and decay > 0:
                lr_r = lr/(1 + decay*(epoch/decay_step))

            data_list = t_x + t_y

            samples = zip(*data_list)

            random.shuffle(samples)

            for sample in samples:
                c_len = len(sample[0][0])
                idx = self.bucket_dit[c_len]
                real_batch_size = self.real_batches[idx]
                model = self.input_v[idx] + self.output_[idx]
                pt_holder = None
                if self.graphic:
                    pt_holder = self.input_p[idx]
                Batch.train(sess=sess[0], model=model, batch_size=real_batch_size, config=self.train_step[idx],
                            lr=self.l_rate, lrv=lr_r, dr=self.drop_out, drv=self.drop_out_v, data=list(sample),
                            pt_h=pt_holder, pixels=self.pixels, verbose=False)

            predictions = []

            for v_b_x in zip(*v_x):
                c_len = len(v_b_x[0][0])
                idx = self.bucket_dit[c_len]
                pt_holder = None
                if self.graphic:
                    pt_holder = self.input_p[idx]
                b_prediction = self.predict(data=v_b_x, sess=sess, model=self.input_v[idx] + self.output[idx],
                                            index=idx, pt_h=pt_holder, pt=self.pixels, batch_size=200)
                b_prediction = toolbox.decode_tags(b_prediction, idx2tag, self.tag_scheme)
                predictions.append(b_prediction)

            predictions = zip(*predictions)
            predictions = toolbox.merge_bucket(predictions)

            prediction_out = toolbox.generate_output(chars, predictions, self.tag_scheme)

            scores = toolbox.evaluator(prediction_out, gold_out, metric=metric, verbose=True, tag_num=tag_num)
            scores = np.asarray(scores)

            #Score_seg * Score_seg&tag
            c_seg['Precision'] = scores[0]
            c_seg['Recall'] = scores[1]
            c_seg['F1-score'] = scores[2]
            c_seg['True-Negative-Rate'] = scores[6]
            c_seg['Boundary-F1-score'] = scores[10]
            if self.tag_scheme != 'seg':
                c_tag['Precision'] = scores[3]
                c_tag['Recall'] = scores[4]
                c_tag['F1-score'] = scores[5]
                c_tag['True-Negative-Rate'] = scores[7]
                c_tag['Boundary-F1-score'] = scores[13]
            else:
                c_tag['Precision'] = 1
                c_tag['Recall'] = 1
                c_tag['F1-score'] = 1
                c_tag['True-Negative-Rate'] = 1
                c_tag['Boundary-F1-score'] = 1

            if metric == 'All':
                for m in self.all_metrics:
                    print 'Segmentation ' + m + ': %f' % c_seg[m]
                    print 'POS Tagging ' + m + ': %f\n' % c_tag[m]
                pindex = trained_model.rindex('/') + 1
            else:
                print 'Segmentation ' + metric + ': %f' % c_seg[metric]
                if self.tag_scheme != 'seg':
                    print 'POS Tagging ' + metric + ': %f\n' % c_tag[metric]

            for m in self.all_metrics:
                c_score[m] = c_seg[m] * c_tag[m]

            if metric == 'All':
                for m in self.all_metrics:
                    if c_score[m] > best_score[m] and epoch > 4:
                        best_epoch[m] = epoch + 1
                        best_score[m] = c_score[m]
                        best_seg[m] = c_seg[m]
                        best_pos[m] = c_tag[m]
                        self.saver.save(sess[0],  trained_model[:pindex] + m + '_' + trained_model[pindex:],
                                        write_meta_graph=False)

            elif c_score[metric] > best_score[metric] and epoch > 4:
                best_epoch[metric] = epoch + 1
                best_score[metric] = c_score[metric]
                best_seg[metric] = c_seg[metric]
                best_pos[metric] = c_tag[metric]
                self.saver.save(sess[0], trained_model, write_meta_graph=False)
            print 'Time consumed: %d seconds' % int(time() - t)
        print 'Training is finished!'

        if metric == 'All':
            for m in self.all_metrics:
                print 'Best segmentation ' + m + ': %f' % best_seg[m]
                print 'Best POS Tagging ' + m + ': %f' % best_pos[m]
                print 'Best epoch: %d\n' % best_epoch[m]
        else:
            print 'Best segmentation ' + metric + ': %f' % best_seg[metric]
            print 'Best POS Tagging ' + metric + ': %f' % best_pos[metric]
            print 'Best epoch: %d\n' % best_epoch[metric]
Ejemplo n.º 5
0
    def train(self, t_x, t_y, v_x, v_y, idx2tag, idx2char, sess,
              epochs, trained_model, lr=0.05, decay=0.05, decay_step=1, tag_num=1):
        """

        :param t_x: b_train_x
        :param t_y: b_train_y
        :param v_x: b_dev_x
        :param v_y: b_dev_y
        :param idx2tag:
        :param idx2char:
        :param sess:
        :param epochs: 训练轮数
        :param trained_model: 训练好的模型参数
        :param lr: 学习率
        :param decay: 学习率衰减率
        :param decay_step:
        :param tag_num: 标签种类个数
        """
        log_dir = "./train_log"
        shutil.rmtree(log_dir)
        train_writer = tf.summary.FileWriter(log_dir, sess[0].graph)

        lr_r = lr

        best_epoch, best_score, best_seg, best_pos, c_tag, c_seg, c_score = {}, {}, {}, {}, {}, {}, {}

        pindex = 0

        metric = self.metric

        # 每种衡量标准下都有对应的最佳结果
        for m in self.all_metrics:
            best_epoch[m] = 0
            best_score[m] = 0

            best_seg[m] = 0
            best_pos[m] = 0

            c_tag[m] = 0
            c_seg[m] = 0
            c_score[m] = 0

        v_y = toolbox.merge_bucket(v_y)
        v_y = toolbox.unpad_zeros(v_y)

        gold = toolbox.decode_tags(v_y, idx2tag, self.tag_scheme)
        # 0 是字符本身,1 是偏旁部首,2、3 分别是 2gram 和 3gram
        input_chars = toolbox.merge_bucket([v_x[0]])

        chars = toolbox.decode_chars(input_chars[0], idx2char)
        # 正确答案,实际上直接读取 dev.txt 即可得到,不知为何还要这么麻烦通过各种 ID 转换获取
        gold_out = toolbox.generate_output(chars, gold, self.tag_scheme)

        for epoch in range(epochs):
            print 'epoch: %d' % (epoch + 1)
            t = time()
            # 在 decay_step 轮之后,衰减学习率
            if epoch % decay_step == 0 and decay > 0:
                lr_r = lr / (1 + decay * (epoch / decay_step))
            # data_list: shape=(5,bucket 数量,bucket 中句子个数,句子长度)
            data_list = t_x + t_y
            # samples: shape=(bucket 数量,5, bucket 中句子个数,句子长度),相当于置换了 data_list 中的 shape[0] 和 shape[1]
            samples = zip(*data_list)

            random.shuffle(samples)

            # 遍历每一个 bucket
            for sample in samples:
                # sample: shape=(5, bucket 中句子个数,句子长度)
                # 当前 bucket 中的句子长度
                c_len = len(sample[0][0])
                # 当前 bucket 的序号
                idx = self.bucket_dit[c_len]
                real_batch_size = self.real_batches[idx]
                # 当前 bucket 的模型的输入和输出(注意每个 bucket 都有一个单独的模型)
                model_placeholders = self.input_v[idx] + self.output_[idx] + self.lm_groundtruthes[idx]
                pt_holder = None
                if self.graphic:
                    pt_holder = self.input_p[idx]
                # sess[0] 是 main_sess, sess[1] 是 decode_sess(如果使用 CRF 的话)
                # 训练当前的 bucket,这个函数里面才真正地为模型填充了数据并运行(以 real_batch_size 为单位,将 bucket 中的句子依次喂给模型)
                # 被 sess.run 的是 config=self.train_step[idx],train_step[idx] 就会触发 BP 更新参数了
                Batch.train(sess=sess[0], placeholders=model_placeholders, batch_size=real_batch_size,
                            train_step=self.train_steps[idx],loss=self.losses[idx],
                            lr=self.l_rate, lrv=lr_r, dr=self.drop_out, drv=self.drop_out_v, data=list(sample),
                            # debug_variable=[self.lm_output[idx], self.lm_output_[idx], self.output[idx], self.output_[idx]],
                            pt_h=pt_holder, pixels=self.pixels, verbose=False,
                            merged_summary=self.merged_summary, log_writer=train_writer,
                            single_summary=self.summaries[idx], epoch_index=epoch)

            predictions = []
            # 遍历每个 bucket, 用开发集测试准确率
            for v_b_x in zip(*v_x):
                # v_b_x: shape=(4,bucket 中句子个数,句子长度)
                c_len = len(v_b_x[0][0])
                idx = self.bucket_dit[c_len]
                pt_holder = None
                if self.graphic:
                    pt_holder = self.input_p[idx]
                b_prediction = self.predict(data=v_b_x, sess=sess, model=self.input_v[idx] + self.output[idx],
                                            index=idx, pt_h=pt_holder, pt=self.pixels, batch_size=100)
                b_prediction = toolbox.decode_tags(b_prediction, idx2tag, self.tag_scheme)
                predictions.append(b_prediction)

            predictions = zip(*predictions)
            predictions = toolbox.merge_bucket(predictions)

            prediction_out = toolbox.generate_output(chars, predictions, self.tag_scheme)

            scores = toolbox.evaluator(prediction_out, gold_out, metric=metric, verbose=True, tag_num=tag_num)
            scores = np.asarray(scores)

            # Score_seg * Score_seg&tag
            c_seg['Precision'] = scores[0]
            c_seg['Recall'] = scores[1]
            c_seg['F1-score'] = scores[2]
            c_seg['True-Negative-Rate'] = scores[6]
            c_seg['Boundary-F1-score'] = scores[10]
            if self.tag_scheme != 'seg':
                c_tag['Precision'] = scores[3]
                c_tag['Recall'] = scores[4]
                c_tag['F1-score'] = scores[5]
                c_tag['True-Negative-Rate'] = scores[7]
                c_tag['Boundary-F1-score'] = scores[13]
            else:
                c_tag['Precision'] = 1
                c_tag['Recall'] = 1
                c_tag['F1-score'] = 1
                c_tag['True-Negative-Rate'] = 1
                c_tag['Boundary-F1-score'] = 1

            if metric == 'All':
                for m in self.all_metrics:
                    print 'Segmentation ' + m + ': %f' % c_seg[m]
                    print 'POS Tagging ' + m + ': %f\n' % c_tag[m]
                pindex = trained_model.rindex('/') + 1
            else:
                print 'Segmentation ' + metric + ': %f' % c_seg[metric]
                if self.tag_scheme != 'seg':
                    print 'POS Tagging ' + metric + ': %f\n' % c_tag[metric]

            for m in self.all_metrics:
                c_score[m] = c_seg[m] * c_tag[m]

            if metric == 'All':
                for m in self.all_metrics:
                    if c_score[m] > best_score[m] and epoch > 4:
                        best_epoch[m] = epoch + 1
                        best_score[m] = c_score[m]
                        best_seg[m] = c_seg[m]
                        best_pos[m] = c_tag[m]
                        self.saver.save(sess[0], trained_model[:pindex] + m + '_' + trained_model[pindex:],
                                        write_meta_graph=False)

            elif c_score[metric] > best_score[metric] and epoch > 4:
                best_epoch[metric] = epoch + 1
                best_score[metric] = c_score[metric]
                best_seg[metric] = c_seg[metric]
                best_pos[metric] = c_tag[metric]
                self.saver.save(sess[0], trained_model, write_meta_graph=False)
            print 'Time consumed: %d seconds' % int(time() - t)
        print 'Training is finished!'

        if metric == 'All':
            for m in self.all_metrics:
                print 'Best segmentation ' + m + ': %f' % best_seg[m]
                print 'Best POS Tagging ' + m + ': %f' % best_pos[m]
                print 'Best epoch: %d\n' % best_epoch[m]
        else:
            print 'Best segmentation ' + metric + ': %f' % best_seg[metric]
            print 'Best POS Tagging ' + metric + ': %f' % best_pos[metric]
            print 'Best epoch: %d\n' % best_epoch[metric]