tra_set, val_set = load_dataset()

observations = args.observations
input_size = (args.input_x, args.input_y, observations)
framebatch = args.framebatch
output_size = (args.input_x, args.input_y)
downscale = args.downscale

tra_kwag = {'inputs': tra_set, 'framebatch': framebatch}

val_kwag = {'inputs': val_set, 'framebatch': framebatch}

if args.downscale == 'mix':
    tra_provider = DataProvider.SpecialSuperResolutionProvider(
        stride=(1, 1),
        input_size=input_size,
        output_size=output_size,
        batchsize=args.batchsize,
        shuffle=True)
    val_provider = DataProvider.SpecialSuperResolutionProvider(
        stride=(1, 1),
        input_size=input_size,
        output_size=output_size,
        batchsize=-1,
        shuffle=False)
else:
    tra_provider = DataProvider.SuperResolutionProvider(
        stride=(1, 1),
        input_size=input_size,
        output_size=output_size,
        batchsize=args.batchsize,
        shuffle=True)
    'std': args.std,
    'norm_tar': True
}

test_kwag = {
    'inputs': test_set,
    'framebatch': framebatch,
    'mean': args.mean,
    'std': args.std,
    'norm_tar': True
}

tra_provider = DataProvider.Provider(stride=stride,
                                     input_size=input_size,
                                     output_size=output_size,
                                     prediction_gap=prediction_gap,
                                     batchsize=batchsize,
                                     pad=pad,
                                     pad_value=pad_value,
                                     shuffle=True)

val_provider = DataProvider.Provider(stride=(4, 4),
                                     input_size=input_size,
                                     output_size=output_size,
                                     prediction_gap=prediction_gap,
                                     batchsize=-1,
                                     pad=pad,
                                     pad_value=pad_value,
                                     shuffle=False)

test_provider = DataProvider.Provider(stride=stride,
                                      input_size=input_size,
Ejemplo n.º 3
0
                        default=80,
                        help="spatial length of input of y axis")
    return parser.parse_args()

args = get_arguments()


test_set = (np.load(args.datadir + 'milan_tra.npy') - args.mean) / args.std
print('test set:', test_set.shape)

observations = args.observations
input_size = (args.input_x, args.input_y, observations)
output_size = (args.input_x, args.input_y)
downscale = args.downscale

test_provider = DataProvider.MoverProvider(length=observations)


test_val = {
    'inputs':test_set_y,
    'targets':test_set_y,
    'special': True if downscale == 'mix' else False,
    'keepdims':True}

if args.downscale == 2:
    from up2 import zipper
if args.downscale == 4 or 'mix':
    from up4 import zipper
if args.downscale == 10:
    from up10 import zipper