Ejemplo n.º 1
0
    def download_dump_request_queue(self, channel, method, properties, body):
        """
       RPC function that returns a base64 encoded dump of the latest experiment.
       body['format']: specifies file extension of dump

       result["status"]: contains a status of a response, "ok" or "error"
       result["body"]: contains a base64 encoded dump
       result["file_name"]: contains a file name
       """
        body = json.loads(body)
        result = {"status": None, "body": None, "file_name": None}
        dump_name = os.environ.get('EXP_DUMP_NAME')
        try:
            if dump_name == 'undefined':
                result["status"] = "missing experiment file"
                API().send("log", "error", message=result["body"])
            else:
                filename = f"{dump_name}.{body['format']}"
                with open(filename, "rb") as file:
                    result["status"] = "ok"
                    result["body"] = str(base64.b64encode(file.read()),
                                         "utf-8")
                    result["file_name"] = f"{dump_name}.{body['format']}"
        except Exception as error:
            result[
                "status"] = 'Download dump file of the experiment: %s' % error
            API().send("log", "error", message=result["status"])
        self.channel.basic_publish(
            exchange='',
            routing_key=properties.reply_to,
            properties=pika.BasicProperties(
                correlation_id=properties.correlation_id),
            body=json.dumps(result))
        self.channel.basic_ack(delivery_tag=method.delivery_tag)
Ejemplo n.º 2
0
 def test_14_singleton_front_api(self):
     # Test #14. Try to create 2 instances of the API class
     # Expected result: only a single instance exists (due to the singleton)
     API._instance = None
     api1 = API()
     api2 = API()
     assert api1 is api2
Ejemplo n.º 3
0
 def test_15_singleton_front_api_different_objects(self):
     # Test #15. Try to create 2 instances of the API class, initialized with different api objects
     # Expected result: only a single instance exists (due to the singleton)
     API._instance = None
     api1 = API()
     api2 = API(api_object=RabbitApi("event-service", 49153))
     assert api1 is api2
Ejemplo n.º 4
0
def validate_experiment_description(experiment_description: dict,
                                    schema_file_path: str = './Resources/schema/experiment.schema.json'):
    """
    Performs validation and raises error if provided Experiment Description does not pass the validation
        according to the schema
    :param experiment_description: Dict. Experiment Description.
    :param schema_file_path:
    :return:
    """
    logger = logging.getLogger(__name__)
    validity_check = is_json_file_valid(validated_data=experiment_description, schema_path=schema_file_path)
    uniqueness_check = get_duplicated_sc_names(experiment_description)
    presence_check = get_missing_sc_entities(experiment_description)
    if not validity_check:
        msg = f"Provided Experiment Description has not passed the validation using schema in file {schema_file_path}."
        logger.error(msg)
        API().send('log', 'error', message=msg)
    if uniqueness_check:
        msg = f"Some Stop Condition instances are duplicated: {uniqueness_check}."
        logger.error(msg)
        API().send('log', 'error', message=msg)
    if presence_check:
        msg = f"Some Stop Conditions defined in Stop Condition Trigger Logic expression are missing: {presence_check}."
        logger.error(msg)
        API().send('log', 'error', message=msg)

    if validity_check and not uniqueness_check and not presence_check:
        logger.info("Provided Experiment Description is valid.")
    else:
        msg = "Some errors caused during validation. Please, check the Experiment Description."
        raise ValueError(msg)
    def __init__(self, description: dict):
        """
        Initialization of Experiment class
        Following fields are declared:
        self.measured_configurations - list of configuration instances
                                  shape - list, e.g. ``[config_instance_1, config_instance_2, ... ]``
        """
        self.logger = logging.getLogger(__name__)
        self.api = API()

        # TODO: merge lists into a single one (https://github.com/dpukhkaiev/BRISEv2/pull/112#discussion_r371761149)
        self.evaluated_configurations: List[Configuration] = []  # repeater already evaluates these configurations
        self.measured_configurations: List[Configuration] = [] # the results for these configurations are already gotten
        self._default_configuration: Configuration = None
        self._description: dict = description
        self.end_time = self.start_time = datetime.datetime.now()
        # A unique ID that is used to differentiate Experiments by descriptions.
        self.id = hashlib.sha1(json.dumps(self.description, sort_keys=True).encode("utf-8")).hexdigest()
        self.name: str = f"exp_{self.description['TaskConfiguration']['TaskName']}_{self.id}"
        # TODO MultiOpt: Currently we store only one solution configuration here,
        #  but it was made as a possible Hook for multidimensional optimization.
        self.current_best_configurations: List[Configuration] = []
        self.bad_configurations_number = 0
        self.model_is_valid = False

        self.measured_conf_lock = Lock()
        self.evaluated_conf_lock = Lock()
Ejemplo n.º 6
0
    def __init__(self, description: dict):
        """
        Initialization of Experiment class
        Following fields are declared:

        self.all_configurations - list of configuration instances
                                  shape - list, e.g. ``[config_instance_1, config_instance_2, ... ]``
        self.description - description of the current experiment, it is taken from .json file
                           shape - dict with subdicts
        """
        self.logger = logging.getLogger(__name__)
        self.api = API()

        self.default_configuration = []
        self.all_configurations = []
        self._description = description
        self.search_space = []
        self.end_time = self.start_time = datetime.datetime.now()
        # A unique ID that is used to differentiate an Experiments by descriptions.
        self.id = hashlib.sha1(json.dumps(self.description, sort_keys=True).encode("utf-8")).hexdigest()
        self.name = "exp_{task_name}_{experiment_hash}".format(
            task_name=self.description["TaskConfiguration"]["TaskName"],
            experiment_hash=self.id)
        self.current_best_configurations = []

        self.__generate_search_space()
Ejemplo n.º 7
0
    def __init__(self, log_file_name, experiment):
        """
        Initialization of regression model
        :param log_file_name: - string, location of file, which will store results of model creation
        :param experiment: instance of Experiment class
        """
        self.logger = logging.getLogger(__name__)
        # Send updates to subscribers
        self.sub = API()

        # Model configuration - related fields.
        self.minimal_test_size = experiment.description["ModelConfiguration"][
            "minimalTestingSize"]
        self.maximal_test_size = experiment.description["ModelConfiguration"][
            "maximalTestingSize"]
        self.log_file_name = log_file_name

        # Built model - related fields.
        self.model = None
        self.minimum_model_accuracy = experiment.description[
            "ModelConfiguration"]["MinimumAccuracy"]
        self.built_model_accuracy = 0
        self.built_model_test_size = 0.0

        # Data holding fields.
        self.experiment = experiment
        self.all_configurations = []
Ejemplo n.º 8
0
    def __setstate__(self, space):
        self.__dict__ = space
        self.logger = logging.getLogger(__name__)
        self.api = API()

        # for thread-safe adding value to relevant array; protection against duplicates configurations
        self.measured_conf_lock = Lock()
        self.evaluated_conf_lock = Lock()
Ejemplo n.º 9
0
    def __init__(self,
                 experiment,
                 min_points_in_model=None,
                 top_n_percent=30,
                 num_samples=96,
                 random_fraction=1 / 3,
                 bandwidth_factor=3,
                 min_bandwidth=1e-3,
                 **kwargs):

        self.model = None
        self.top_n_percent = top_n_percent

        self.experiment = experiment
        self.isMinimizationExperiment = experiment.is_minimization()

        self.bw_factor = bandwidth_factor
        self.min_bandwidth = min_bandwidth

        if "logger" not in dir(self):
            self.logger = logging.getLogger(__name__)
        self.sub = API()

        if min_points_in_model is None:
            self.min_points_in_model = len(
                self.experiment.description["DomainDescription"]
                ["AllConfigurations"]) + 1
        elif min_points_in_model < len(self.experiment.description[
                "DomainDescription"]["AllConfigurations"]) + 1:
            self.logger.warning(
                'Invalid min_points_in_model value. Setting it to %i' %
                (len(self.experiment.description["DomainDescription"]
                     ["AllConfigurations"]) + 1))
            self.min_points_in_model = len(
                self.experiment.description["DomainDescription"]
                ["AllConfigurations"]) + 1

        self.num_samples = num_samples
        self.random_fraction = random_fraction

        hps = self.experiment.description["DomainDescription"][
            "AllConfigurations"]

        self.kde_vartypes = ""
        self.vartypes = []

        for h in hps:
            self.kde_vartypes += 'u'
            self.vartypes += [len(h)]

        self.vartypes = np.array(self.vartypes, dtype=int)

        # store precomputed probs for the categorical parameters
        self.cat_probs = []

        # Data holding fields.
        self.all_configurations = []
        self.good_config_rankings = dict()
Ejemplo n.º 10
0
 def disable_configuration(self):
     """
     Disable configuration. This configuration won't be used in experiment.
     """
     if self.is_enabled:
         self.is_enabled = False
         temp_msg = f"Configuration {self} was disabled. It will not be added to the Experiment."
         self.logger.warning(temp_msg)
         API().send('log', 'warning', message=temp_msg)
Ejemplo n.º 11
0
    def test_20_correct_api_object(self):
        # Test #20. Try to create an instance of the API class, with expected api object
        # Expected result: an instance is created
        class GoodAPI:
            def emit(self, message_type: str, message_subtype: str,
                     message: str):
                pass

        API._instance = None
        test_api = API(GoodAPI())
        assert isinstance(test_api, API)
Ejemplo n.º 12
0
    def test_16_api_without_emit(self):
        # Test #16. Try to create an instance of the API class, with api object without emit() method
        # Expected result: AttributeError is thrown, informing about the requirements to the api object
        class BadAPI:
            def no_emit(self):
                pass

        expected_result = "Provided API object doesn't contain 'emit()' method"
        # cleanup
        API._instance = None
        with pytest.raises(AttributeError) as excinfo:
            API(BadAPI())
        assert expected_result in str(excinfo.value)
Ejemplo n.º 13
0
    def test_19_api_with_missing_emit_parameters(self):
        # Test #19. Try to create an instance of the API class, with missing api object emit() parameters
        # Expected result: AttributeError is thrown, informing about the requirements to the api object
        class BadAPI:
            def emit(self, message_type: str, message_subtype: str):
                pass

        expected_result = (
            "Provided API object has unsupported 'emit()' method."
            "Its parameters do not correspond to the required!"
            "Expected parameters are: 'message_type: str', 'message_subtype: str', 'message: str'"
        )
        # cleanup
        API._instance = None
        with pytest.raises(AttributeError) as excinfo:
            API(BadAPI())
        assert expected_result in str(excinfo.value)
Ejemplo n.º 14
0
def validate_experiment_data(experiment_data: dict,
                             schema_file_path: str = './Resources/schema/experiment_data.schema.json'):
    """
    Performs validation and raises error if provided Experiment Data does not pass the validation
        according to the schema
    :param experiment_data: Dict. Experiment Data.
    :param schema_file_path:
    :return:
    """
    logger = logging.getLogger(__name__)

    if is_json_file_valid(validated_data=experiment_data, schema_path=schema_file_path):
        logger.info("Provided Experiment Data is valid.")
    else:
        msg = "Provided Experiment Data has not passed the validation using schema in file %s. " \
              "Experiment data: \n%s" % (schema_file_path, experiment_data)
        logger.error(msg)
        API().send('log', 'error', message=msg)
        raise ValueError(msg)
Ejemplo n.º 15
0
def create_folder_if_not_exists(folderPath):
    """
    Method create folder if it don't exist.
    :param folderPath: sting path to folder, could include filename.
    :return: true if create folder or it exist
    """
    logger = logging.getLogger(__name__)
    try:
        dir_path = path.dirname(folderPath)
        if dir_path:
            if not path.exists(path.dirname(folderPath)):
                makedirs(path.dirname(folderPath))
        return True
    except IOError as error:
        msg = "Unable to create folder %s. Error information: %s" % (
            folderPath, e)
        logger.error(msg, exc_info=True)
        API().send("log", "error", message=msg)
        raise error
Ejemplo n.º 16
0
    def test_18_api_with_unexpected_emit_parameter_names(self, caplog):
        # Test #18. Try to create an instance of the API class, with wrong api object emit() parameters' names
        # Expected result: object is created, but user is warned about the advisable parameters' names
        import logging
        caplog.set_level(logging.WARNING)

        class BadAPI:
            def emit(self, dummy: str, message_subtype: str, message: str):
                pass

        expected_result = (
            "Parameter names of the emit() method are untypical for your API object."
            "It is advisable to check emit() parameters."
            "Expected parameters are: 'message_type', 'message_subtype', 'message'"
        )
        # cleanup
        API._instance = None
        API(BadAPI())
        for record in caplog.records:
            assert record.levelname == "WARNING"
            assert expected_result in str(record)
Ejemplo n.º 17
0
    def __init__(self, description: dict, search_space: Hyperparameter):
        """
        Initialization of Experiment class
        Following fields are declared:
        self.measured_configurations - list of configuration instances
                                  shape - list, e.g. ``[config_instance_1, config_instance_2, ... ]``
        self.description - description of the current experiment, it is taken from .json file
                           shape - dict with subdicts
        """
        self.logger = logging.getLogger(__name__)
        self.api = API()

        self.evaluated_configurations: List[Configuration] = [
        ]  # repeater already evaluates these configurations
        self.measured_configurations: List[Configuration] = [
        ]  # the results for these configurations are already received
        self._default_configuration: Configuration = None
        self._description: Mapping = description
        self.search_space: Hyperparameter = search_space
        self.end_time = self.start_time = datetime.datetime.now()
        # An ID that is used to differentiate Experiments by descriptions.
        self.ed_id = hashlib.sha1(
            json.dumps(self.description,
                       sort_keys=True).encode("utf-8")).hexdigest()
        # A unique ID, different for every experiment (even with the same description)
        self.unique_id = str(uuid.uuid4())
        self.name: str = f"exp_{self.description['TaskConfiguration']['TaskName']}_{self.ed_id}"
        self.current_best_configurations: List[Configuration] = []
        self.bad_configurations_number = 0
        self.model_is_valid = False

        self.measured_conf_lock = Lock()
        self.evaluated_conf_lock = Lock()

        # initialize connection to the database
        self.database = MongoDB(os.getenv("BRISE_DATABASE_HOST"),
                                os.getenv("BRISE_DATABASE_PORT"),
                                os.getenv("BRISE_DATABASE_NAME"),
                                os.getenv("BRISE_DATABASE_USER"),
                                os.getenv("BRISE_DATABASE_PASS"))
Ejemplo n.º 18
0
def load_json_file(path_to_file):
    """
    Method reads .json file
    :param path_to_file: sting path to file.
    :return: object that represent .json file
    """
    logger = logging.getLogger(__name__)
    front_api = API()
    try:
        with open(path_to_file, 'r') as File:
            jsonFile = json.loads(File.read())
            return jsonFile
    except IOError as error:
        msg = "Unable to read a json file '%s'. Error information: %s" % (path_to_file, error)
        logger.error(msg, exc_info=True)
        front_api.send('log', 'error', message=msg)
        raise error
    except json.JSONDecodeError as error:
        msg = "Unable to decode a json file '%s'. Error information: %s" % (path_to_file, error)
        logger.error(msg, exc_info=True)
        front_api.send('log', 'error', message=msg)
        raise error
Ejemplo n.º 19
0
    def __init__(self, experiment_setup: [Experiment, Hyperparameter] = None):
        """
        The function for initializing main thread
        :param experiment_setup: fully initialized experiment, r.g from a POST request
        """
        super(MainThread, self).__init__()
        self._is_interrupted = False
        self.conf_lock = threading.Lock()
        self._state = self.State.IDLE
        self.experiment_setup = experiment_setup

        self.sub = API()  # front-end subscribers
        if __name__ == "__main__":
            self.logger = BRISELogConfigurator().get_logger(__name__)
        else:
            self.logger = logging.getLogger(__name__)

        self.experiment: Experiment = None
        self.connection: pika.BlockingConnection = None
        self.consume_channel = None
        self.predictor: Predictor = None
        self.wsc_client: WSClient = None
        self.repeater: RepeaterOrchestration = None
        self.database: MongoDB = None
Ejemplo n.º 20
0
    def measure_configurations(self, configurations: list,
                               experiment: Experiment):
        """
        Evaluates the Target System using specific Configuration while results of Evaluation will not be precise.
        :param configurations: list of Configurations that are needed to be measured.
        :param experiment: instance of 'experiment' is required for model-awareness.
        :return: list of Configurations that were evaluated
        """
        # Removing previous measurements
        current_measurement = {}
        # Creating holders for current measurements
        for configuration in configurations:
            # Evaluating each Configuration in configurations list
            needed_tasks_count = self.evaluation_by_type(
                configuration, experiment)
            current_measurement[str(configuration.get_parameters())] = {
                'parameters': configuration.get_parameters(),
                'needed_tasks_count': needed_tasks_count,
                'Finished': False
            }

            if needed_tasks_count == 0:
                current_measurement[str(
                    configuration.get_parameters())]['Finished'] = True
                current_measurement[str(configuration.get_parameters(
                ))]['Results'] = configuration.get_average_result()

        # Continue to feed with a new Tasks while not passing the evaluation.
        while True:

            # Selecting only that configurations that were not finished.
            tasks_to_send = []
            for point in current_measurement.keys():
                if not current_measurement[point]['Finished']:
                    for i in range(
                            current_measurement[point]['needed_tasks_count']):
                        tasks_to_send.append(
                            current_measurement[point]['parameters'])
                        self.performed_measurements += 1

            if not tasks_to_send:
                return configurations

            # Send this configurations to Worker service
            results = self.worker_service_client.work(tasks_to_send)

            # Sending data to API and adding Tasks to Configuration
            for parameters, result in zip(tasks_to_send, results):
                for config in configurations:
                    if config.get_parameters() == parameters:
                        config.add_tasks(parameters, result)

                API().send('new',
                           'task',
                           configurations=[parameters],
                           results=[result])

            # Evaluating each Configuration in configurations list
            for configuration in configurations:
                needed_tasks_count = self.evaluation_by_type(
                    configuration, experiment)
                current_measurement[str(configuration.get_parameters(
                ))]['needed_tasks_count'] = needed_tasks_count
                if needed_tasks_count == 0:
                    current_measurement[str(
                        configuration.get_parameters())]['Finished'] = True
                    current_measurement[str(configuration.get_parameters(
                    ))]['Results'] = configuration.get_average_result()
Ejemplo n.º 21
0
socketio_logger.setLevel(logging.WARNING)
engineio_logger.setLevel(logging.WARNING)

socketIO = socketio.Server(ping_timeout=300,
                           logger=socketio_logger,
                           engineio_logger=engineio_logger)
# instance of Flask app
app = Flask(__name__, static_url_path='', template_folder="static")
CORS(app)
app.wsgi_app = socketio.WSGIApp(socketIO, app.wsgi_app)

# WebSocket
app.config['SECRET_KEY'] = 'galamaga'

# Initialize the API singleton
API(api_object=socketIO)

MAIN_PROCESS = None
data_header = {'version': '1.0'}

# add clients in room
front_clients = []


# ---   START
@app.route('/main_start', methods=['GET', 'POST'])
def main_process_start():
    """
    Verifies that Main-node is not running.
    If free - creates new process with socketio instance and starts it.
    It ensures that for each run of main.py you will use only one socketio.
Ejemplo n.º 22
0
 def __setstate__(self, space):
     self.__dict__ = space
     self.logger = logging.getLogger(__name__)
     self.api = API()
Ejemplo n.º 23
0
    def measure_configurations(self, channel, method, properties, body):
        """
        Callback function for the result of measuring
        :param ch: pika.Channel
        :param method:  pika.spec.Basic.GetOk
        :param properties: pika.spec.BasicProperties
        :param body: result of a configurations in bytes format
        """
        if os.environ.get('TEST_MODE') == 'UNIT_TEST':
            result = json.loads(body)
        else:
            result = json.loads(body.decode())
        configuration = Configuration.from_json(result["configuration"])
        if configuration.status != Configuration.Status.NEW and os.environ.get(
                'TEST_MODE') != 'UNIT_TEST':
            tasks_to_send = result["tasks_to_send"]
            tasks_results = result["tasks_results"]
            for index, objective in enumerate(self._objectives):
                tasks_results = error_check(tasks_results, objective,
                                            self._expected_values_range[index],
                                            self._objectives_data_types[index])
            if self.experiment.description["OutliersDetection"]["isEnabled"]:
                tasks_results = self.outlier_detectors.find_outliers_for_taskset(
                    tasks_results, self._objectives, [configuration],
                    tasks_to_send)

            # Sending data to API and adding Tasks to Configuration
            for parameters, task in zip(tasks_to_send, tasks_results):
                if configuration.parameters == parameters:
                    if configuration.is_valid_task(task):
                        configuration.add_task(task)
                        if os.environ.get('TEST_MODE') != 'UNIT_TEST':
                            self.database.write_one_record(
                                "Tasks", configuration.get_task_record(task))
                    else:
                        configuration.increase_failed_tasks_number()

                API().send('new',
                           'task',
                           configurations=[parameters],
                           results=[task])

        # Evaluating configuration
        if configuration.number_of_failed_tasks <= self.repeater_parameters[
                'MaxFailedTasksPerConfiguration']:
            needed_tasks_count = self.evaluation_by_type(configuration)
        else:
            needed_tasks_count = 0
            configuration.status = Configuration.Status.BAD
            if len(configuration.get_tasks()) == 0:
                self.experiment.increment_bad_configuration_number()
                configuration.disable_configuration()
        current_measurement = {
            str(configuration.parameters): {
                'parameters': configuration.parameters,
                'needed_tasks_count': needed_tasks_count,
                'Finished': False
            }
        }

        if needed_tasks_count == 0:
            current_measurement[str(
                configuration.parameters)]['Finished'] = True
            current_measurement[str(
                configuration.parameters)]['Results'] = configuration.results

        tasks_to_send = []
        for point in current_measurement.keys():
            if not current_measurement[point]['Finished']:
                for i in range(
                        current_measurement[point]['needed_tasks_count']):
                    tasks_to_send.append(
                        current_measurement[point]['parameters'])
                    self.performed_measurements += 1
                    if os.environ.get('TEST_MODE') != 'UNIT_TEST':
                        self.database.write_one_record(
                            "Repeater_measurements",
                            self.get_repeater_measurements_record())

        if os.environ.get('TEST_MODE') == 'UNIT_TEST':
            return configuration, needed_tasks_count

        elif configuration.status == Configuration.Status.MEASURED or configuration.status == Configuration.Status.BAD:

            conn_params = pika.ConnectionParameters(host=self.event_host,
                                                    port=int(self.event_port))
            with pika.BlockingConnection(conn_params) as connection:
                with connection.channel() as channel:
                    try:
                        if configuration.type == Configuration.Type.DEFAULT:
                            self._type = self.get_repeater()
                            channel.basic_publish(
                                exchange='',
                                routing_key=
                                'default_configuration_results_queue',
                                body=configuration.to_json())
                        elif configuration.type == Configuration.Type.PREDICTED or \
                                configuration.type == Configuration.Type.FROM_SELECTOR:
                            channel.basic_publish(
                                exchange='',
                                routing_key='configurations_results_queue',
                                body=configuration.to_json())
                    except pika.exceptions.ChannelWrongStateError as err:
                        if not channel.is_open:
                            self.logger.warning(
                                "Attempt to send a message after closing the connection"
                            )
                        else:
                            raise err
        elif configuration.status == Configuration.Status.EVALUATED or \
                configuration.status == Configuration.Status.REPEATED_MEASURING:

            conn_params = pika.ConnectionParameters(host=self.event_host,
                                                    port=int(self.event_port))
            with pika.BlockingConnection(conn_params) as connection:
                with connection.channel() as channel:
                    body = json.dumps({
                        "configuration": configuration.to_json(),
                        "tasks": tasks_to_send
                    })
                    channel.basic_publish(exchange='',
                                          routing_key='process_tasks_queue',
                                          body=body)
Ejemplo n.º 24
0
class TestFrontApi:
    # this test set is aimed to cover the functionality of the 'front_API' tools and the 'singleton'

    api = API()

    def test_0_build_log_message(self):
        # Test #0. Build log message according to the API message format
        # Expected result: the message of type 'string' is built independently on its content
        expected_result = "This is log"
        msg = "This is log"
        actual_result = APIMessageBuilder.build('LOG', message=msg)
        assert actual_result == expected_result

    def test_1_build_log_message_of_multiple_parts(self):
        # Test #1. Build log message according to the API message format. Message consists of several parts
        # Expected result: the single message of type 'string' is built by concatenation
        expected_result = "This is log"
        msg1 = "This is "
        msg2 = "log"
        actual_result = APIMessageBuilder.build('LOG',
                                                message1=msg1,
                                                message2=msg2)
        assert actual_result == expected_result

    def test_2_build_empty_log_message(self):
        # Test #2. Build log message according to the API message format. Message is empty
        # Expected result: the single empty message of type 'string' is built
        expected_result = ""
        actual_result = APIMessageBuilder.build('LOG')
        assert actual_result == expected_result

    def test_3_build_new_task_message(self):
        # Test #3. Build task message according to the API message format. The 'result' is an empty list
        # Expected result: the task message of type 'list' is built. It contains the "configuration-result" pair as a dictionary.
        expected_result = [{'configurations': [2200.0, 8], 'results': None}]
        configurations = [[2200.0, 8]]
        actual_result = APIMessageBuilder.build('NEW',
                                                configurations=configurations,
                                                results=[None])
        assert actual_result == expected_result

    def test_4_build_task_message_with_result(self):
        # Test #4. Build task message according to the API message format. Use different supported message types
        # Expected result: the task message of type 'list' is built. It contains the "configuration-result" pair as a dictionary.
        expected_result = [{'configurations': [2200.0, 8], 'results': 123}]
        configurations = [[2200.0, 8]]
        results = [123]
        message_types = ['DEFAULT', 'PREDICTIONS', 'FINAL']
        for message_type in message_types:
            actual_result = APIMessageBuilder.build(
                message_type, configurations=configurations, results=results)
            assert actual_result == expected_result

    def test_5_build_invalid_task_message(self):
        # Test #5. Build task message with the invalid values according to the API message format
        # Expected result: error is raised, that invalid parameters are passed
        expected_result = (
            "Invalid parameters passed to send message via API: "
            "The configurations(key parameter) are not provided or have invalid format!"
        )
        with pytest.raises(KeyError) as excinfo:
            APIMessageBuilder.build('NEW',
                                    configurations="Invalid string",
                                    results="Invalid string")
        assert expected_result in str(excinfo.value)

    def test_6_build_incomplete_task_message(self):
        # Test #6. Build task message with incomplete parameters (without 'results')
        # Expected result: error is raised
        configurations = [[2200.0, 8]]
        expected_result = (
            "Invalid parameters passed to send message via API: "
            "The results(key parameter) are not provided or have invalid format!"
        )
        with pytest.raises(KeyError) as excinfo:
            APIMessageBuilder.build('NEW', configurations=configurations)
        assert expected_result in str(excinfo.value)

    def test_7_build_inconsistent_task_message(self):
        # Test #7. Build task message with inconsistent dimensionality of 'configurations' and 'results'
        # Expected result: error is raised
        configurations = [[2200.0, 8]]
        results = [123, 234]
        expected_result = "Different sizes of provided parameters!"
        with pytest.raises(KeyError) as excinfo:
            APIMessageBuilder.build('NEW',
                                    configurations=configurations,
                                    results=results)
        assert expected_result in str(excinfo.value)

    def test_8_build_experiment_message(self):
        # Test #8. Build experiment message according to the API message format
        # Expected result: the message of type 'dictionary' is built and contains all needed fields
        from tools.initial_config import load_experiment_setup
        experiment_description, searchspace_description = \
            load_experiment_setup("./Resources/EnergyExperiment/EnergyExperiment.json")
        global_config = experiment_description["General"]
        actual_result = APIMessageBuilder.build(
            'EXPERIMENT',
            global_config=global_config,
            experiment_description=experiment_description,
            searchspace_description=searchspace_description)
        assert actual_result["global_configuration"]
        assert actual_result["experiment_description"]
        assert actual_result["searchspace_description"]

    def test_9_build_incomplete_experiment_message(self):
        # Test #9. Build experiment message from incomplete parameters
        # Expected result: error is raised
        from tools.initial_config import load_experiment_setup
        expected_result = "Invalid parameters passed to send message via API: The search space description is not provided!"
        experiment_description, _ = load_experiment_setup(
            "./Resources/EnergyExperiment/EnergyExperiment.json")
        global_config = experiment_description["General"]
        with pytest.raises(KeyError) as excinfo:
            APIMessageBuilder.build(
                'EXPERIMENT',
                global_config=global_config,
                experiment_description=experiment_description)
        assert expected_result in str(excinfo.value)

    def test_10_send_valid_message(self):
        # Test #10. Send messages of all supported types and subtypes via the dummy API
        # Expected result: no errors are arised, sending is simulated
        expected_type = "log"
        expected_payload = "This is msg"
        msg = "This is msg"
        type_subtype = {}
        type_subtype["LOG"] = ["DEBUG", "INFO", "WARNING", "ERROR", "CRITICAL"]
        for msg_type in type_subtype:
            for msg_subtype in type_subtype[msg_type]:
                expected_subtype = msg_subtype.lower()
                actual_result = TestFrontApi.api.send(msg_type,
                                                      msg_subtype,
                                                      message=msg)
                assert actual_result[0][0] == expected_type
                assert actual_result[0][1] == expected_subtype
                assert actual_result[0][2] == expected_payload

    def test_11_send_unknown_type_of_msg(self, caplog):
        # Test #11. Try to send unknown (unsupported) type of message
        # Expected result: error is raised, that message type is not supported
        expected_result = "Message type is not supported!"
        msg = "This is msg"
        TestFrontApi.api.send('DUMMY', 'INFO', message=msg)
        for record in caplog.records:
            assert record.levelname == "ERROR"
            assert expected_result in str(record)

    def test_12_send_unknown_subtype_of_msg(self, caplog):
        # Test #12. Try to send unknown (unsupported) subtype of message
        # Expected result: error is raised, that message subtype is not supported
        expected_result = "Message subtype is not supported!"
        msg = "This is msg"
        msg_types = [
            "LOG", "NEW", "DEFAULT", "PREDICTIONS", "FINAL", "EXPERIMENT"
        ]
        for msg_type in msg_types:
            TestFrontApi.api.send(msg_type, 'dummy', message=msg)
            for record in caplog.records:
                assert record.levelname == "ERROR"
                assert expected_result in str(record)

    def test_13_send_invalid_format_of_message(self, caplog):
        # Test #13. Try to send supported type of message, but specified in unexpected format
        # Expected result: error is raised
        expected_result = "Wrong API message type object!"
        msg = "This is msg"
        TestFrontApi.api.send(['LOG'], 'dummy', message=msg)
        for record in caplog.records:
            assert record.levelname == "ERROR"
            assert expected_result in str(record)

    def test_14_singleton_front_api(self):
        # Test #14. Try to create 2 instances of the API class
        # Expected result: only a single instance exists (due to the singleton)
        API._instance = None
        api1 = API()
        api2 = API()
        assert api1 is api2

    def test_15_singleton_front_api_different_objects(self):
        # Test #15. Try to create 2 instances of the API class, initialized with different api objects
        # Expected result: only a single instance exists (due to the singleton)
        API._instance = None
        api1 = API()
        api2 = API(api_object=RabbitApi("event-service", 49153))
        assert api1 is api2

    def test_16_api_without_emit(self):
        # Test #16. Try to create an instance of the API class, with api object without emit() method
        # Expected result: AttributeError is thrown, informing about the requirements to the api object
        class BadAPI:
            def no_emit(self):
                pass

        expected_result = "Provided API object doesn't contain 'emit()' method"
        # cleanup
        API._instance = None
        with pytest.raises(AttributeError) as excinfo:
            API(BadAPI())
        assert expected_result in str(excinfo.value)

    def test_17_api_with_wrong_emit_parameter_types(self):
        # Test #17. Try to create an instance of the API class, with wrong api object emit() parameters' types
        # Expected result: AttributeError is thrown, informing about the requirements to the api object
        class BadAPI:
            def emit(self, message_type: dict, message_subtype: dict,
                     message: dict):
                pass

        expected_result = (
            "Provided API object has unsupported 'emit()' method."
            "Its parameters do not correspond to the required!"
            "Expected parameters are: 'message_type: str', 'message_subtype: str', 'message: str'"
        )
        # cleanup
        API._instance = None
        with pytest.raises(AttributeError) as excinfo:
            API(BadAPI())
        assert expected_result in str(excinfo.value)

    def test_18_api_with_unexpected_emit_parameter_names(self, caplog):
        # Test #18. Try to create an instance of the API class, with wrong api object emit() parameters' names
        # Expected result: object is created, but user is warned about the advisable parameters' names
        import logging
        caplog.set_level(logging.WARNING)

        class BadAPI:
            def emit(self, dummy: str, message_subtype: str, message: str):
                pass

        expected_result = (
            "Parameter names of the emit() method are untypical for your API object."
            "It is advisable to check emit() parameters."
            "Expected parameters are: 'message_type', 'message_subtype', 'message'"
        )
        # cleanup
        API._instance = None
        API(BadAPI())
        for record in caplog.records:
            assert record.levelname == "WARNING"
            assert expected_result in str(record)

    def test_19_api_with_missing_emit_parameters(self):
        # Test #19. Try to create an instance of the API class, with missing api object emit() parameters
        # Expected result: AttributeError is thrown, informing about the requirements to the api object
        class BadAPI:
            def emit(self, message_type: str, message_subtype: str):
                pass

        expected_result = (
            "Provided API object has unsupported 'emit()' method."
            "Its parameters do not correspond to the required!"
            "Expected parameters are: 'message_type: str', 'message_subtype: str', 'message: str'"
        )
        # cleanup
        API._instance = None
        with pytest.raises(AttributeError) as excinfo:
            API(BadAPI())
        assert expected_result in str(excinfo.value)

    def test_20_correct_api_object(self):
        # Test #20. Try to create an instance of the API class, with expected api object
        # Expected result: an instance is created
        class GoodAPI:
            def emit(self, message_type: str, message_subtype: str,
                     message: str):
                pass

        API._instance = None
        test_api = API(GoodAPI())
        assert isinstance(test_api, API)
Ejemplo n.º 25
0
import pickle
import time
from threading import Thread

import pika
# USER
from logger.default_logger import BRISELogConfigurator
from main import MainThread
from tools.front_API import API
from tools.rabbit_API_class import RabbitApi

logger = BRISELogConfigurator().get_logger(__name__)
# from tools.main_mock import run as main_run

# Initialize the API singleton
API(api_object=RabbitApi(os.getenv("BRISE_EVENT_SERVICE_HOST"),
                         os.getenv("BRISE_EVENT_SERVICE_AMQP_PORT")))


class ConsumerThread(Thread):
    """
    This class runs in a separate thread and handles requests client nodes (e.g. benchmark, front-end),
    connected to the `main_start_queue`, `main_status_queue`, `main_stop_queue`, `main_download_dump_queue`,
    produces results in specified queue with specified tag, works as server part of RPC
    """
    def __init__(self, host, port, *args, **kwargs):
        super(ConsumerThread, self).__init__(*args, **kwargs)

        self._host = host
        self._port = port
        self.connection = pika.BlockingConnection(
            pika.ConnectionParameters(host=self._host, port=self._port))