Ejemplo n.º 1
0
def main():
    support_lib = os.getenv('SUPPORT_LIB')
    assert support_lib is not None, 'SUPPORT_LIB is undefined'
    if not os.path.exists(support_lib):
        raise FileNotFoundError(errno.ENOENT, os.strerror(errno.ENOENT),
                                support_lib)

    # CHECK-LABEL: TEST: test_output
    print('\nTEST: test_output')
    count = 0
    with ir.Context() as ctx, ir.Location.unknown():
        # Loop over various sparse types: CSR, DCSR, CSC, DCSC.
        levels = [[st.DimLevelType.dense, st.DimLevelType.compressed],
                  [st.DimLevelType.compressed, st.DimLevelType.compressed]]
        orderings = [
            ir.AffineMap.get_permutation([0, 1]),
            ir.AffineMap.get_permutation([1, 0])
        ]
        bitwidths = [8, 16, 32, 64]
        for level in levels:
            for ordering in orderings:
                for bwidth in bitwidths:
                    attr = st.EncodingAttr.get(level, ordering, bwidth, bwidth)
                    compiler = sparse_compiler.SparseCompiler(options='')
                    build_compile_and_run_output(attr, support_lib, compiler)
                    count = count + 1

    # CHECK: Passed 16 tests
    print('Passed', count, 'tests')
Ejemplo n.º 2
0
def _run_test(support_lib, kernel):
  """Compiles, runs and checks results."""
  compiler = sparse_compiler.SparseCompiler(
      options='', opt_level=2, shared_libs=[support_lib])
  module = ir.Module.parse(kernel)
  engine = compiler.compile_and_jit(module)

  # Set up numpy inputs and buffer for output.
  a = np.array(
      [[1.1, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 6.6, 0.0]],
      np.float64)
  b = np.array(
      [[1.1, 0.0, 0.0, 2.8], [0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0]],
      np.float64)

  mem_a = ctypes.pointer(ctypes.pointer(rt.get_ranked_memref_descriptor(a)))
  mem_b = ctypes.pointer(ctypes.pointer(rt.get_ranked_memref_descriptor(b)))

  # The sparse tensor output is a pointer to pointer of char.
  out = ctypes.c_char(0)
  mem_out = ctypes.pointer(ctypes.pointer(out))

  # Invoke the kernel.
  engine.invoke('main', mem_a, mem_b, mem_out)

  # Retrieve and check the result.
  rank, nse, shape, values, indices = test_tools.sparse_tensor_to_coo_tensor(
      support_lib, mem_out[0], np.float64)

  # CHECK: PASSED
  if np.allclose(values, [2.2, 2.8, 6.6]) and np.allclose(
      indices, [[0, 0], [0, 3], [2, 2]]):
    print('PASSED')
  else:
    quit('FAILURE')
Ejemplo n.º 3
0
def main():
    support_lib = os.getenv('SUPPORT_LIB')
    assert support_lib is not None, 'SUPPORT_LIB is undefined'
    if not os.path.exists(support_lib):
        raise FileNotFoundError(errno.ENOENT, os.strerror(errno.ENOENT),
                                support_lib)

    # CHECK-LABEL: TEST: testSDDMMM
    print('\nTEST: testSDDMMM')
    with ir.Context() as ctx, ir.Location.unknown():
        count = 0
        # Loop over various ways to compile and annotate the SDDMM kernel with
        # a *single* sparse tensor. Note that we deliberate do not exhaustively
        # search the full state space to reduce runtime of the test. It is
        # straightforward to adapt the code below to explore more combinations.
        levels = [[st.DimLevelType.dense, st.DimLevelType.dense],
                  [st.DimLevelType.dense, st.DimLevelType.compressed],
                  [st.DimLevelType.compressed, st.DimLevelType.dense],
                  [st.DimLevelType.compressed, st.DimLevelType.compressed]]
        orderings = [
            ir.AffineMap.get_permutation([0, 1]),
            ir.AffineMap.get_permutation([1, 0])
        ]
        for level in levels:
            for ordering in orderings:
                for pwidth in [32]:
                    for iwidth in [32]:
                        for par in [0]:
                            for vec in [0, 1]:
                                for e in [True]:
                                    vl = 1 if vec == 0 else 16
                                    attr = st.EncodingAttr.get(
                                        level, ordering, pwidth, iwidth)
                                    opt = (f'parallelization-strategy={par} '
                                           f'vectorization-strategy={vec} '
                                           f'vl={vl} enable-simd-index32={e}')
                                    compiler = sparse_compiler.SparseCompiler(
                                        options=opt,
                                        opt_level=0,
                                        shared_libs=[support_lib])
                                    build_compile_and_run_SDDMMM(
                                        attr, compiler)
                                    count = count + 1
    # CHECK: Passed 16 tests
    print('Passed ', count, 'tests')
Ejemplo n.º 4
0
def main():
    """
  USAGE: python3 test_stress.py [raw_module.mlir [compiled_module.mlir]]

  The environment variable SUPPORT_LIB must be set to point to the
  libmlir_c_runner_utils shared library.  There are two optional
  arguments, for debugging purposes.  The first argument specifies where
  to write out the raw/generated ir.Module.  The second argument specifies
  where to write out the compiled version of that ir.Module.
  """
    support_lib = os.getenv('SUPPORT_LIB')
    assert support_lib is not None, 'SUPPORT_LIB is undefined'
    if not os.path.exists(support_lib):
        raise FileNotFoundError(errno.ENOENT, os.strerror(errno.ENOENT),
                                support_lib)

    # CHECK-LABEL: TEST: test_stress
    print("\nTEST: test_stress")
    with ir.Context() as ctx, ir.Location.unknown():
        par = 0
        vec = 0
        vl = 1
        e = False
        # Disable direct sparse2sparse conversion, because it doubles the time!
        # TODO: While direct s2s is far too slow for per-commit testing,
        # we should have some framework ensure that we run this test with
        # `s2s=0` on a regular basis, to ensure that it does continue to work.
        s2s = 1
        sparsification_options = (f'parallelization-strategy={par} '
                                  f'vectorization-strategy={vec} '
                                  f'vl={vl} '
                                  f'enable-simd-index32={e} '
                                  f's2s-strategy={s2s}')
        compiler = sparse_compiler.SparseCompiler(
            options=sparsification_options,
            opt_level=0,
            shared_libs=[support_lib])
        f64 = ir.F64Type.get()
        # Be careful about increasing this because
        #     len(types) = 1 + 2^rank * rank! * len(bitwidths)^2
        shape = range(2, 6)
        rank = len(shape)
        # All combinations.
        levels = list(
            itertools.product(*itertools.repeat(
                [st.DimLevelType.dense, st.DimLevelType.compressed], rank)))
        # All permutations.
        orderings = list(
            map(ir.AffineMap.get_permutation,
                itertools.permutations(range(rank))))
        bitwidths = [0]
        # The first type must be a dense tensor for numpy conversion to work.
        types = [ir.RankedTensorType.get(shape, f64)]
        for level in levels:
            for ordering in orderings:
                for pwidth in bitwidths:
                    for iwidth in bitwidths:
                        attr = st.EncodingAttr.get(level, ordering, pwidth,
                                                   iwidth)
                        types.append(ir.RankedTensorType.get(shape, f64, attr))
        #
        # For exhaustiveness we should have one or more StressTest, such
        # that their paths cover all 2*n*(n-1) directed pairwise combinations
        # of the `types` set.  However, since n is already superexponential,
        # such exhaustiveness would be prohibitive for a test that runs on
        # every commit.  So for now we'll just pick one particular path that
        # at least hits all n elements of the `types` set.
        #
        tyconv = TypeConverter(ctx)
        size = 1
        for d in shape:
            size *= d
        np_arg0 = np.arange(size,
                            dtype=tyconv.irtype_to_dtype(f64)).reshape(*shape)
        np_out = (
            StressTest(tyconv).build(types).writeTo(
                sys.argv[1] if len(sys.argv) > 1 else None).compile(compiler).
            writeTo(sys.argv[2] if len(sys.argv) > 2 else None).run(np_arg0))
        # CHECK: Passed
        if np.allclose(np_out, np_arg0):
            print('Passed')
        else:
            sys.exit('FAILURE')