Ejemplo n.º 1
0
def functionality_nominal(sequence: Sequence[Hashable]) -> float:
    examples = dict()
    for _t, (each_input, each_output) in enumerate(sequence):
        sub_dict = examples.get(each_input)
        if sub_dict is None:
            sub_dict = {each_output: 1}
            examples[each_input] = sub_dict
        else:
            sub_dict[each_output] = sub_dict.get(each_output, 0) + 1

        if Timer.time_passed(2000):
            print("{:05d} examples processed...".format(_t))

    best = 0
    total = 0
    for _i, (each_input, output_frequencies) in enumerate(examples.items()):
        frequencies = output_frequencies.values()
        max_frequency = max(frequencies)
        best += max_frequency
        total += sum(frequencies)

        if Timer.time_passed(2000):
            print("{:05d} examples processed...".format(total))

    return best / total
Ejemplo n.º 2
0
    def __init__(self, size, length=40):
        if length <= 2:
            raise ValueError('percent line length must be greater than 2')

        self.__size = size
        self.__current = 0
        self.__timer = Timer()
        self.__max_len = 1
        self.__length = length
Ejemplo n.º 3
0
    def __init__(self, machine: Machine, parent: QWidget=None):
        super().__init__(parent)
        self._machine = machine

        self._init_ui()

        self._draw_timer = Timer(interval=1.0 / 30)
        self._draw_timer.add_handler(self._draw_state_event)
        self._draw_timer.start()

        self._instruction_factory = InstructionFactory()
Ejemplo n.º 4
0
    def __init__(self, screen: Screen, parent: QWidget = None):
        super().__init__(parent)
        self._screen = screen
        screen_size = QDesktopWidget().screenGeometry(-1)
        self._pixel_width = int(screen_size.width() * 1 / 100)
        self._pixel_height = self._pixel_width

        self.init_ui()

        self._draw_timer = Timer(interval=1.0 / 30)
        self._draw_timer.add_handler(self._draw_screen_event)
        self._draw_timer.start()
Ejemplo n.º 5
0
def one_stage_train(myModel, data_reader_trn, my_optimizer,
                    loss_criterion, snapshot_dir, log_dir,
                    i_iter, start_epoch, best_val_accuracy=0, data_reader_eval=None,
                    scheduler=None):
    report_interval = cfg.training_parameters.report_interval
    snapshot_interval = cfg.training_parameters.snapshot_interval
    max_iter = cfg.training_parameters.max_iter

    avg_accuracy = 0
    accuracy_decay = 0.99
    best_epoch = 0
    writer = SummaryWriter(log_dir)
    best_iter = i_iter
    iepoch = start_epoch
    snapshot_timer = Timer('m')
    report_timer = Timer('s')

    while i_iter < max_iter:
        iepoch += 1
        for i, batch in enumerate(data_reader_trn):
            i_iter += 1
            if i_iter > max_iter:
                break

            scheduler.step(i_iter)

            my_optimizer.zero_grad()
            add_graph = False
            scores, total_loss, n_sample = compute_a_batch(batch, myModel, eval_mode=False,
                                                           loss_criterion=loss_criterion,
                                                           add_graph=add_graph, log_dir=log_dir)
            total_loss.backward()
            accuracy = scores / n_sample
            avg_accuracy += (1 - accuracy_decay) * (accuracy - avg_accuracy)

            clip_gradients(myModel, i_iter, writer)
            my_optimizer.step()

            if i_iter % report_interval == 0:
                save_a_report(i_iter, total_loss.detach().cpu().item(), accuracy, avg_accuracy, report_timer,
                              writer, data_reader_eval,myModel, loss_criterion)

            if i_iter % snapshot_interval == 0 or i_iter == max_iter:
                best_val_accuracy, best_epoch, best_iter = save_a_snapshot(snapshot_dir, i_iter, iepoch, myModel,
                                                                         my_optimizer, loss_criterion, best_val_accuracy,
                                                                          best_epoch, best_iter, snapshot_timer,
                                                                          data_reader_eval)

    writer.export_scalars_to_json(os.path.join(log_dir, "all_scalars.json"))
    writer.close()
    print("best_acc:%.6f after epoch: %d/%d at iter %d" % (best_val_accuracy, best_epoch, iepoch, best_iter))
    sys.stdout.flush()
Ejemplo n.º 6
0
def download_all_from(conn, file_size):
    data = bytearray()

    timer = Timer()
    while True:
        part = conn.recv(1024 * 16)  # 16KB
        if len(part) == 0:
            break

        data.extend(part)

        if file_size is None:
            print('\r' + str(len(data) / timer.elapsed / 1024) + " KB/s",
                  end='')
        else:
            progress_bar = get_progress_bar(
                compute_download_percentage(file_size, len(data)))
            if progress_bar is None:
                continue
            print('\r' + progress_bar + ' ' +
                  str(len(data) / timer.elapsed / 1024) + " KB/s",
                  end='')

    print('', end="\n\n")

    return bytes(data)
Ejemplo n.º 7
0
def test_3d():
    from mpl_toolkits.mplot3d import Axes3D

    dim_range = -10., 10.

    plot_axis, error_axis = setup_3d_axes()

    r = MultiplePolynomialFromLinearRegression(2,
                                               4,
                                               past_scope=100,
                                               learning_drag=0)

    # fun = lambda _x, _y: 10. + 1. * _x ** 1. + 1. * _y ** 1. + 4. * _x * _y + 1. * _x ** 2. + -2.6 * _y ** 2.
    fun = lambda _x, _y: -cos(_x / (1. * math.pi)) + -cos(_y / (1. * math.pi))
    plot_surface(plot_axis, fun, (dim_range, dim_range), resize=True)
    #pyplot.pause(.001)
    #pyplot.draw()

    iterations = 0

    error_development = deque(maxlen=10000)

    while True:
        x = random.uniform(*dim_range)
        y = random.uniform(*dim_range)
        z_o = r.output([x, y])

        z_t = fun(x, y)
        error = 0 if iterations < 1 else smear(error_development[-1],
                                               abs(z_o - z_t), iterations)
        error_development.append(error)

        if Timer.time_passed(1000):
            print(f"{iterations:d} finished")

            c = r.get_coefficients()
            print(c)
            print(r.derive_coefficients(c, 0))

            ln = plot_surface(plot_axis,
                              lambda _x, _y: r.output([_x, _y]),
                              (dim_range, dim_range),
                              resize=False)
            # ln_d = plot_surface(plot_axis, lambda _x, _y: r.derivation_output([_x, _y], 0), (dim_range, dim_range), resize=False)
            e, = error_axis.plot(range(len(error_development)),
                                 error_development,
                                 color="black")
            error_axis.set_ylim(
                (min(error_development), max(error_development)))

            pyplot.pause(.001)
            pyplot.draw()

            ln.remove()
            # ln_d.remove()
            e.remove()

        r.fit([x, y], z_t)  # , past_scope=iterations)
        iterations += 1
Ejemplo n.º 8
0
class Chip8ScreenWidget(QWidget):
    def __init__(self, screen: Screen, parent: QWidget = None):
        super().__init__(parent)
        self._screen = screen
        screen_size = QDesktopWidget().screenGeometry(-1)
        self._pixel_width = int(screen_size.width() * 1 / 100)
        self._pixel_height = self._pixel_width

        self.init_ui()

        self._draw_timer = Timer(interval=1.0 / 30)
        self._draw_timer.add_handler(self._draw_screen_event)
        self._draw_timer.start()

    def init_ui(self):
        self.setFixedSize(self._screen.width() * self._pixel_width,
                          self._screen.height() * self._pixel_height)
        self.show()

    def paintEvent(self, e):
        qp = QPainter()
        qp.begin(self)
        self._draw_screen(qp)
        qp.end()

    def keyPressEvent(self, a0: QtGui.QKeyEvent):
        self.parent().keyPressEvent(a0)

    def _draw_screen_event(self):
        self.update()

    def _draw_screen(self, qp):
        qp.setPen(QColor(0, 0, 0))
        for y in range(self._screen.height()):
            for x in range(self._screen.width()):
                self._draw_pixel(y, x, qp)

    def _draw_pixel(self, y, x, qp):
        qp.fillRect(
            x * self._pixel_width, y * self._pixel_height, self._pixel_width,
            self._pixel_height,
            QColor(0, 0, 0) if self._screen.get_pixel(y, x) == 0 else QColor(
                255, 255, 255))
Ejemplo n.º 9
0
 def test_inference_time(self, sess):
     _t = {'inference': Timer()}
     with sess.as_default(), sess.graph.as_default():
         sess.run(self.init_ops)
         for i in range(1000):
             _t['inference'].tic()
             sess.run(self.network.fixed_images[0])
             _t['inference'].toc()
             tf.logging.info('inference time is %f' %
                             _t['inference'].average_time)
Ejemplo n.º 10
0
    def _plot_h_stacked_bars(axis: pyplot.Axes.axes, segments: Sequence[Sequence[Tuple[Any, float]]]):
        for _i, each_level in enumerate(segments):
            for _x in range(len(each_level) - 1):
                each_left, each_shape = each_level[_x]
                each_right, _ = each_level[_x + 1]
                each_width = each_right - each_left
                hsv = distribute_circular(each_shape), .2, 1.
                axis.barh(_i, each_width, height=1., align="edge", left=each_left, color=hsv_to_rgb(hsv))

                if Timer.time_passed(2000):
                    print("Finished {:5.2f}% of plotting level {:d}/{:d}...".format(100. * _x / (len(each_level) - 1), _i, len(segments)))
Ejemplo n.º 11
0
    def __init__(self, machine: Machine, sound: bool=False, instruction_per_second: int = 500):
        super().__init__()
        self._machine = machine
        self.init_ui()
        self._sound = QSound('beep.wav')
        self._sound_support = sound

        self._machine_update_timer = Timer(interval=1.0 / instruction_per_second)
        self._machine_update_timer.add_handler(self._execute_instruction)
        self._machine_update_timer.start()

        self._machine_sound_delay_timer = Timer(interval=1.0 / 60)  # 60 Hz
        self._machine_sound_delay_timer.add_handler(self._update_sound_delay)
        self._machine_sound_delay_timer.start()

        self._key_dict = {
            Qt.Key_1: 1, Qt.Key_2: 2, Qt.Key_3: 3, Qt.Key_4: 0xC,
            Qt.Key_Q: 4, Qt.Key_W: 5, Qt.Key_E: 6, Qt.Key_R: 0xD,
            Qt.Key_A: 7, Qt.Key_S: 8, Qt.Key_D: 9, Qt.Key_F: 0xE,
            Qt.Key_Z: 0xA, Qt.Key_X: 0x0, Qt.Key_C: 0xB, Qt.Key_V: 0xF
        }
Ejemplo n.º 12
0
class Chip8Widget(QWidget):

    def __init__(self, machine: Machine, sound: bool=False, instruction_per_second: int = 500):
        super().__init__()
        self._machine = machine
        self.init_ui()
        self._sound = QSound('beep.wav')
        self._sound_support = sound

        self._machine_update_timer = Timer(interval=1.0 / instruction_per_second)
        self._machine_update_timer.add_handler(self._execute_instruction)
        self._machine_update_timer.start()

        self._machine_sound_delay_timer = Timer(interval=1.0 / 60)  # 60 Hz
        self._machine_sound_delay_timer.add_handler(self._update_sound_delay)
        self._machine_sound_delay_timer.start()

        self._key_dict = {
            Qt.Key_1: 1, Qt.Key_2: 2, Qt.Key_3: 3, Qt.Key_4: 0xC,
            Qt.Key_Q: 4, Qt.Key_W: 5, Qt.Key_E: 6, Qt.Key_R: 0xD,
            Qt.Key_A: 7, Qt.Key_S: 8, Qt.Key_D: 9, Qt.Key_F: 0xE,
            Qt.Key_Z: 0xA, Qt.Key_X: 0x0, Qt.Key_C: 0xB, Qt.Key_V: 0xF
        }

    def init_ui(self):
        screen = Chip8ScreenWidget(self._machine.Screen, self)
        self.setWindowTitle('Chip 8')
        self.show()

    def keyPressEvent(self, event: QtGui.QKeyEvent):
        if event.key() in self._key_dict:
            self._machine.Keyboard.key_down(self._key_dict[event.key()])

    def keyReleaseEvent(self, event: QtGui.QKeyEvent):
        if event.key() in self._key_dict:
            self._machine.Keyboard.key_up(self._key_dict[event.key()])

    def _execute_instruction(self):
        self._machine.execute_next_instruction()

    def _update_sound_delay(self):
        if self._machine.SoundTimer.get_count() != 0 and self._sound_support:
            self._sound.play()
        self._machine.DelayTimer.decrease()
        self._machine.SoundTimer.decrease()
Ejemplo n.º 13
0
    def processor(self, sess):
        sess.run(tf.global_variables_initializer())
        self.net.load_weigths(self.arg.weights, sess, self.saver)
        timer = Timer()
        vispy_init()
        positive_cnt = 0
        negative_cnt = 0
        data_use_for = 'train'
        if data_use_for == 'valid':
            length = self.dataset.validing_rois_length
        elif data_use_for == 'train':
            length = self.dataset.training_rois_length
        else:
            assert False, 'There is something wrong in dataset description'

        for idx in range(length):
            blobs = self.dataset.get_minibatch(idx, data_use_for)
            feed_dict = {
                self.net.lidar3d_data: blobs['lidar3d_data'],
                self.net.lidar_bv_data: blobs['lidar_bv_data'],
                self.net.im_info: blobs['im_info'],
                self.net.keep_prob: 0.5,
                self.net.gt_boxes_bv: blobs['gt_boxes_bv'],
                self.net.gt_boxes_3d: blobs['gt_boxes_3d'],
                self.net.gt_boxes_corners: blobs['gt_boxes_corners'],
                self.net.calib: blobs['calib']
            }
            timer.tic()
            result_, label_ = sess.run([self.result, self.label],
                                       feed_dict=feed_dict)
            timer.toc()
            print('Begin to save data_cnt: ', idx)
            pos_p = os.path.join(self.arg.box_savepath, data_use_for,
                                 'POSITIVE')
            neg_p = os.path.join(self.arg.box_savepath, data_use_for,
                                 'NEGATIVE')
            if not os.path.exists(pos_p):
                os.makedirs(pos_p)
            if not os.path.exists(neg_p):
                os.makedirs(neg_p)

            for box_cnt in range(result_.shape[0]):
                box = result_[box_cnt].astype(np.int8)
                if label_[box_cnt]:
                    filename = os.path.join(
                        pos_p,
                        str(positive_cnt).zfill(6) + '.npy')
                    positive_cnt += 1
                else:
                    filename = os.path.join(
                        neg_p,
                        str(negative_cnt).zfill(6) + '.npy')
                    negative_cnt += 1
                np.save(filename, box)
Ejemplo n.º 14
0
def new_setup():
    iterations = 500000

    no_ex = 1
    cryptos = "qtum", "bnt", "snt", "eos"

    train_in_cryptos = cryptos[:1]
    train_out_crypto = cryptos[0]

    test_in_cryptos = cryptos[:1]
    test_out_crypto = cryptos[0]

    in_dim = len(train_in_cryptos)
    out_dim = 1

    start_stamp = 1501113780
    end_stamp = 1532508240
    behind = 60

    predictor = RationalSemioticModel(input_dimension=in_dim,
                                      output_dimension=out_dim,
                                      no_examples=no_ex,
                                      alpha=100,
                                      sigma=.2,
                                      drag=100,
                                      trace_length=1)
    training_streams = exchange_rate_sequence(start_stamp, end_stamp - behind,
                                              behind, train_in_cryptos,
                                              train_out_crypto)
    test_streams = exchange_rate_sequence(start_stamp + behind, end_stamp,
                                          behind, test_in_cryptos,
                                          test_out_crypto)

    setup = SetupPrediction("test",
                            predictor,
                            training_streams,
                            test_streams,
                            logging_steps=iterations // 1000)

    for _i in range(iterations):
        data = next(setup)
        if Timer.time_passed(2000):
            print(
                f"finished {(_i + 1) * 100 / iterations:5.2f}%...\n{str(data):s}\n"
            )
Ejemplo n.º 15
0
    def run_wild(self, sess):
        _t = {'inference': Timer()}
        self.wild_results = os.path.join(self.config.logdir, "wild_results")
        tf.gfile.MakeDirs(self.wild_results)
        fnt = ImageFont.truetype('Pillow/Tests/fonts/FreeMono.ttf', 12)
        with sess.as_default(), sess.graph.as_default():
            sess.run(self.init_ops)
            tf.logging.info("Generating results...")
            count = 0
            tf_images = (tf.concat([self.network.test_real_image] +
                                   self.network.fixed_images, 2) / 2.0 +
                         0.5) * 255
            while True:
                try:
                    images = sess.run(tf_images)

                    for image in images:
                        outputs_img = Image.fromarray(image.astype(np.uint8),
                                                      mode='RGB')
                        size = outputs_img.size
                        txt = Image.new('RGB', (size[0], size[1]), (0, 0, 0))
                        dr = ImageDraw.Draw(txt)

                        dr.text((0, 60),
                                "original",
                                font=fnt,
                                fill=(255, 255, 255))
                        j = 128
                        for ind, label in enumerate(
                                self.config.selected_attrs):
                            dr.text((j, 60),
                                    label,
                                    font=fnt,
                                    fill=(255, 255, 255))
                            j += 128
                        rez = np.concatenate((txt, outputs_img), 0)
                        rez = Image.fromarray(rez.astype(np.uint8), mode='RGB')
                        outputs_img.save(
                            os.path.join(self.wild_results,
                                         "image_{}.png".format(count)))
                        count += 1
                except tf.errors.OutOfRangeError:
                    tf.logging.info("End of training dataset.")
                    break
Ejemplo n.º 16
0
    def some_random_games_first():
        # Each of these is its own game.
        # this is each frame, up to 200...but we wont make it that far.

        average_reward = 0.
        iterations = 0
        sensor = None
        visualize = False
        while True:
            # This will display the environment
            # Only display if you really want to see it.
            # Takes much longer to display it.
            if average_reward >= .9:
                visualize = True
            if visualize:
                env.render()

            # This will just create a sample action in any environment.
            # In this environment, the action can be 0 or 1, which is left or right

            if sensor is None:
                # motor = env.action_space.sample()
                motor = 0.,
            else:
                motor = controller.react(tuple(sensor))

            # this executes the environment with an action,
            # and returns the observation of the environment,
            # the reward, if the env is over, and other info.
            state = env.step(numpy.array(motor))
            sensor, reward, done, info = state

            # (x_pos, x_vel, theta_ang, theta_vel)

            controller.integrate(tuple(sensor), tuple(motor), reward)

            average_reward = smear(average_reward, reward, iterations)
            iterations += 1

            if Timer.time_passed(2000):
                print(f"{iterations:010d} iterations, average reward: {average_reward:.2f}")
Ejemplo n.º 17
0
    def train_model(self):
        """Network training loop."""
        timer = Timer()
        model_paths = []
        while self.solver.iter < self.max_iters:

            # Make one SGD update
            timer.tic()
            self.solver.step(1)
            timer.toc()
            if self.solver.iter % (10 * self.solver_param.display) == 0:
                print 'speed: {:.3f}s / iter'.format(timer.average_time)

            if self.solver.iter % self.snapshot_iters == 0:
                model_paths.append(self.snapshot())
Ejemplo n.º 18
0
    def training(self, sess):
        sess.run(tf.global_variables_initializer())
        reader = pywrap_tensorflow.NewCheckpointReader(self.weights)
        var_to_shape_map = reader.get_variable_to_shape_map()
        glb_var = tf.global_variables()
        with tf.variable_scope('', reuse=tf.AUTO_REUSE) as scope:
            for key in var_to_shape_map:
                try:
                    var = tf.get_variable(key, trainable=False)
                    sess.run(var.assign(reader.get_tensor(key)))
                    print "    Assign pretrain model: " + key
                except ValueError:
                    print "    Ignore variable:" + key

        cubic_cls_score = tf.nn.softmax(self.result)
        timer = Timer()
        vispy_init()
        res = []
        loop_parameters = np.arange(0, 360, 2)
        for data_idx in loop_parameters:  # DO NOT EDIT the "training_series",for the latter shuffle
            run_options = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE)
            run_metadata = tf.RunMetadata()
            feed_dict = self.cubic_rpn_grid(
                30,
                box_idx=0,
                angel=data_idx,
                scalar=1.0,  #float(data_idx)/180.*1.0,
                translation=[0, 0, 0])
            timer.tic()
            cubic_cls_score_ = sess.run(cubic_cls_score,
                                        feed_dict=feed_dict,
                                        options=run_options,
                                        run_metadata=run_metadata)
            timer.toc()
            cubic_cls_score_ = np.array(cubic_cls_score_)
            cubic_result = cubic_cls_score_.argmax(axis=1)
            res.append(cubic_cls_score_[0, 1])
            # print 'rotation: {:3d}  score: {:>8,.7f} {:>8,.7f}  result: {}'.format(data_idx,cubic_cls_score_[0,0],cubic_cls_score_[0,1],cubic_result[0])

        plt.plot(loop_parameters, res)
        plt.grid(True, color='black', linestyle='--', linewidth='1')
        plt.title('Rubust Test')
        plt.xlabel('rotated angle metric:degree')
        plt.ylabel('score')
        plt.legend(['positive'])
        plt.savefig('Rotation.png')
        plt.show()
Ejemplo n.º 19
0
    def _get_segments(time_axis: Sequence[Any], states: List[Tuple[int, ...]]) -> Tuple[Sequence[Tuple[int, Any]], ...]:
        assert(len(time_axis) == len(states))
        max_level = max(len(_x) for _x in states)
        levels = tuple([] for _ in range(max_level))

        for _j, (each_time, each_context) in enumerate(zip(time_axis, states)):
            for _i, each_level in enumerate(levels):
                each_shape = each_context[_i] if _i < len(each_context) else -1

                if 0 < len(each_level):
                    _, last_shape = each_level[-1]
                else:
                    last_shape = -1

                if each_shape != last_shape:
                    data_point = each_time, each_shape
                    each_level.append(data_point)

            if Timer.time_passed(2000):
                print("Finished {:5.2f}% of segmenting...".format(100. * _j / len(time_axis)))

        return levels
Ejemplo n.º 20
0
    def training(self, sess):
        sess.run(tf.global_variables_initializer())
        reader = pywrap_tensorflow.NewCheckpointReader(self.weights)
        var_to_shape_map = reader.get_variable_to_shape_map()
        glb_var = tf.global_variables()
        with tf.variable_scope('', reuse=tf.AUTO_REUSE) as scope:
            for key in var_to_shape_map:
                try:
                    var = tf.get_variable(key, trainable=False)
                    sess.run(var.assign(reader.get_tensor(key)))
                    print "    Assign pretrain model: " + key
                except ValueError:
                    print "    Ignore variable:" + key

        timer = Timer()
        vispy_init()
        res = []
        input_series = []
        merge_op = tf.summary.merge_all()
        train_writer = tf.summary.FileWriter(cfg.LOG_DIR,
                                             sess.graph,
                                             max_queue=1000,
                                             flush_secs=1)
        loop_parameters = np.arange(-90, 90, 1)
        data_id = 1
        box_cnt = 0
        for data_idx in loop_parameters:  # DO NOT EDIT the "training_series",for the latter shuffle
            run_options = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE)
            run_metadata = tf.RunMetadata()
            debug_mod = True if data_idx == 0 else False
            # debug_mod = True
            feed_dict = self.cubic_rpn_grid(
                data_id,
                box_idx=box_cnt,
                angel=data_idx,
                scalar=1.00,  #float(data_idx)/180.*1.0,
                translation=[0, 0, 0],
                DEBUG=debug_mod)

            timer.tic()
            img_tf_, cubic_theta_, merge_op_ = sess.run(
                [self.cubic_theta.img_tf, self.cubic_theta.res, merge_op],
                feed_dict=feed_dict,
                options=run_options,
                run_metadata=run_metadata)
            timer.toc()
            input_series.append(img_tf_)
            res.append(cubic_theta_[0] * 180 / 3.1415926)
            # print 'rotation: {:3d}  score: {:>8,.7f} {:>8,.7f}  result: {}'.format(data_idx,cubic_cls_score_[0,0],cubic_cls_score_[0,1],cubic_result[0])
            train_writer.add_summary(merge_op_, data_idx)
        imge_op = tf.summary.image("imagesss",
                                   np.array(input_series,
                                            dtype=np.float32).reshape(
                                                -1, 30, 30, 1),
                                   max_outputs=180)
        imge_op_ = sess.run(imge_op)
        train_writer.add_summary(imge_op_, 1)
        plt.plot(loop_parameters, res)
        plt.grid(True, color='black', linestyle='--', linewidth='1')
        plt.title('Car_{}_{}'.format(data_id, box_cnt))
        plt.xlabel('gt_yaw+')
        plt.ylabel('pred-yaw')
        plt.legend(['positive'])
        plt.savefig('Roation_of_Car2.png')

        xmajorLocator = MultipleLocator(10)  # 将x主刻度标签设置为20的倍数
        xmajorFormatter = FormatStrFormatter('%1.0f')  # 设置x轴标签文本的格式
        xminorLocator = MultipleLocator(5)  # 将x轴次刻度标签设置为5的倍数

        ymajorLocator = MultipleLocator(10)  # 将y轴主刻度标签设置为0.5的倍数
        ymajorFormatter = FormatStrFormatter('%1.0f')  # 设置y轴标签文本的格式
        yminorLocator = MultipleLocator(5)  # 将此y轴次刻度标签设置为0.1的倍数

        ax = plt.axes()

        # 设置主刻度标签的位置,标签文本的格式
        ax.xaxis.set_major_locator(xmajorLocator)
        ax.xaxis.set_major_formatter(xmajorFormatter)

        ax.yaxis.set_major_locator(ymajorLocator)
        ax.yaxis.set_major_formatter(ymajorFormatter)

        # 显示次刻度标签的位置,没有标签文本
        ax.xaxis.set_minor_locator(xminorLocator)
        ax.yaxis.set_minor_locator(yminorLocator)

        ax.xaxis.grid(True, which='major')  # x坐标轴的网格使用主刻度
        ax.yaxis.grid(True, which='minor')  # y坐标轴的网格使用次刻度

        plt.show()
def setup(predictor: Predictor,
          train_generator,
          test_generator,
          visualization_steps: int,
          iterations: int = 500000):
    print("Starting experiment with {:s} for {:d} iterations...".format(
        predictor.name(), iterations))

    average_train_error = 0.
    average_test_error = 0.
    average_duration = 0.

    # exchange rate adaptation
    # error_list = []

    for t in range(iterations):
        # get concurrent examples
        examples_train = next(train_generator)
        inputs_train, targets_train = zip(*examples_train)

        examples_test = next(test_generator)
        inputs_test, targets_test = zip(*examples_test)

        # perform predictors and fit
        this_time = time.time()
        outputs_train = predictor.predict(inputs_train)
        outputs_test = predictor.predict(inputs_test)

        predictor.fit(examples_train)

        duration = time.time() - this_time

        # todo: continue from here

        # update plot
        try:
            train_error = sum(
                sqrt(sum((__o - __t)**2 for __o, __t in zip(_o, _t))) for _o,
                _t in zip(outputs_train, targets_train)) / len(targets_train)
        except TypeError:
            train_error = sum(
                float(_o != _t) for _o, _t in zip(
                    outputs_train, targets_train)) / len(targets_train)

        try:
            test_error = sum(
                sqrt(sum((__o - __t)**2
                         for __o, __t in zip(_o, _t))) for _o, _t in zip(
                             outputs_test, targets_test)) / len(targets_test)
        except TypeError:
            test_error = sum(
                float(_o != _t) for _o, _t in zip(
                    outputs_test, targets_test)) / len(targets_test)

        # exchange rate adaptation
        # if .5 < concurrent_outputs[0][0]:
        #     error_list.append(error)

        average_train_error = (average_train_error * t + train_error) / (t + 1)
        average_test_error = (average_test_error * t + test_error) / (t + 1)

        average_duration = (average_duration * t + duration) / (t + 1)
        if (t + 1) % visualization_steps == 0:
            # exchange rate adaptation
            Visualize.append("error train", predictor.__class__.__name__,
                             average_train_error)
            Visualize.append("error test", predictor.__class__.__name__,
                             average_test_error)

            Visualize.append("duration", predictor.__class__.__name__,
                             average_duration)

            try:
                for _e, (each_train_output, each_train_target) in enumerate(
                        zip(outputs_train, targets_train)):
                    for _o, (train_output_value,
                             train_target_value) in enumerate(
                                 zip(each_train_output, each_train_target)):
                        axis_key = f"output train {_o:02d}/{_e:02d}"
                        Visualize.append(axis_key,
                                         predictor.__class__.__name__,
                                         train_output_value)
                        Visualize.append(axis_key, "target train",
                                         train_target_value)

            except TypeError:
                pass

            try:
                for _e, (each_test_output, each_test_target) in enumerate(
                        zip(outputs_test, targets_test)):
                    for _o, (test_output_value,
                             test_target_value) in enumerate(
                                 zip(each_test_output, each_test_target)):
                        axis_key = f"output test {_o:02d}/{_e:02d}"
                        Visualize.append(axis_key,
                                         predictor.__class__.__name__,
                                         test_output_value)
                        Visualize.append(axis_key, "target test",
                                         test_target_value)

            except TypeError:
                pass

        if Timer.time_passed(2000):
            print("Finished {:05.2f}%...".format(100. * t / iterations))

    Visualize.finalize("error train", predictor.__class__.__name__)
    Visualize.finalize("error test", predictor.__class__.__name__)
    Visualize.finalize("duration", predictor.__class__.__name__)
    dataset_folder = args.dataset_folder
    anno_file = "label.txt"

    # read images from annotation file
    image_list = []
    with open(os.path.join(dataset_folder, anno_file), 'r') as f:
        lines = f.readlines()
        for line in lines:
            line = line.strip()
            if line.startswith('#'):
                line = line[2:]
                image_list.append(line)

    num_images = len(image_list)

    timer = {'forward_pass': Timer(), 'misc': Timer()}

    for i, img_name in enumerate(image_list):
        image_path = os.path.join(dataset_folder, "images", img_name)
        img_bgr = cv2.imread(image_path)
        img = cv2.cvtColor(img_bgr, cv2.COLOR_BGR2RGB)

        img = np.float32(img)

        im_height, im_width, _ = img.shape
        cfg.DATA.image_size = img.shape[0:2]
        img -= cfg.DATA.rgb_mean
        img = img.transpose(2, 0, 1)
        img = torch.from_numpy(img).unsqueeze(0)
        img = img.to(device)
Ejemplo n.º 23
0
def main(argv):
    prg_timer = Timer()

    args = parse_args()
    config_file = args.config
    seed = args.seed if args.seed > 0 else random.randint(1, 100000)
    process_config(config_file, args.config_overwrite)

    torch.manual_seed(seed)
    if use_cuda:
        torch.cuda.manual_seed(seed)

    basename = 'default' \
        if args.config is None else os.path.basename(args.config)

    cmd_cfg_obj = demjson.decode(args.config_overwrite) \
        if args.config_overwrite is not None else None

    middle_name, final_name = get_output_folder_name(basename, cmd_cfg_obj,
                                                     seed, args.suffix)

    out_dir = args.out_dir if args.out_dir is not None else os.getcwd()

    snapshot_dir = os.path.join(out_dir, "results", middle_name, final_name)
    boards_dir = os.path.join(out_dir, "boards", middle_name, final_name)
    if args.force_restart:
        if os.path.exists(snapshot_dir):
            shutil.rmtree(snapshot_dir)
        if os.path.exists(boards_dir):
            shutil.rmtree(boards_dir)

    os.makedirs(snapshot_dir, exist_ok=True)
    os.makedirs(boards_dir, exist_ok=True)

    print("Results: {}".format(snapshot_dir))
    print("Tensorboard: {}".format(boards_dir))
    print("fast data reader = " + str(cfg['data']['image_fast_reader']))
    print("use cuda = " + str(use_cuda))

    print("Adversary nhid: {}".format(cfg.adv_model.nhid))

    print("lambda_q: {}".format(cfg.training_parameters.lambda_q))

    print("lambda_grl: {}".format(cfg.training_parameters.lambda_grl))
    print("lambda_grl_start: {}".format(
        cfg.training_parameters.lambda_grl_start))
    print("lambda_grl_steps: {}".format(
        cfg.training_parameters.lambda_grl_steps))

    if cfg.training_parameters.lambda_grl > 0:
        print("WARNING: lambda_grl {} is pos., but GRL expects neg. values".
              format(cfg.training_parameters.lambda_grl))

    print("LRs: {} {}".format(cfg.optimizer.par.lr, cfg.adv_optimizer.par.lr))
    print("Static LR: {}".format(cfg.training_parameters.static_lr))

    # dump the config file to snap_shot_dir
    config_to_write = os.path.join(snapshot_dir, "config.yaml")
    dump_config(cfg, config_to_write)

    train_dataSet = prepare_train_data_set(**cfg['data'], **cfg['model'])
    print("=> Loaded trainset: {} examples".format(len(train_dataSet)))

    main_model, adv_model = build_model(cfg, train_dataSet)

    model = main_model
    if hasattr(main_model, 'module'):
        model = main_model.module

    params = [{
        'params': model.image_embedding_models_list.parameters()
    }, {
        'params': model.question_embedding_models.parameters()
    }, {
        'params': model.multi_modal_combine.parameters()
    }, {
        'params': model.classifier.parameters()
    }, {
        'params': model.image_feature_encode_list.parameters(),
        'lr': cfg.optimizer.par.lr * 0.1
    }]

    main_optim = getattr(optim, cfg.optimizer.method)(params,
                                                      **cfg.optimizer.par)

    adv_optim = getattr(optim, cfg.optimizer.method)(adv_model.parameters(),
                                                     **cfg.adv_optimizer.par)

    i_epoch = 0
    i_iter = 0
    best_accuracy = 0
    if not args.force_restart:
        md_pths = os.path.join(snapshot_dir, "model_*.pth")
        files = glob.glob(md_pths)
        if len(files) > 0:
            latest_file = max(files, key=os.path.getctime)
            print("=> Loading save from {}".format(latest_file))
            info = torch.load(latest_file)
            i_epoch = info['epoch']
            i_iter = info['iter']
            main_model.load_state_dict(info['state_dict'])
            main_optim.load_state_dict(info['optimizer'])
            adv_model.load_state_dict(info['adv_state_dict'])
            adv_optim.load_state_dict(info['adv_optimizer'])
            if 'best_val_accuracy' in info:
                best_accuracy = info['best_val_accuracy']

    scheduler = get_optim_scheduler(main_optim)
    adv_scheduler = get_optim_scheduler(adv_optim)

    my_loss = get_loss_criterion(cfg.loss)

    dataset_val = prepare_eval_data_set(**cfg['data'], **cfg['model'])
    print("=> Loaded valset: {} examples".format(len(dataset_val)))

    dataset_test = prepare_test_data_set(**cfg['data'], **cfg['model'])
    print("=> Loaded testset: {} examples".format(len(dataset_test)))

    data_reader_trn = DataLoader(dataset=train_dataSet,
                                 batch_size=cfg.data.batch_size,
                                 shuffle=True,
                                 num_workers=cfg.data.num_workers)
    data_reader_val = DataLoader(dataset_val,
                                 shuffle=True,
                                 batch_size=cfg.data.batch_size,
                                 num_workers=cfg.data.num_workers)
    data_reader_test = DataLoader(dataset_test,
                                  shuffle=True,
                                  batch_size=cfg.data.batch_size,
                                  num_workers=cfg.data.num_workers)

    main_model.train()
    adv_model.train()

    print("=> Start training...")
    one_stage_train(main_model,
                    adv_model,
                    data_reader_trn,
                    main_optim,
                    adv_optim,
                    my_loss,
                    data_reader_eval=data_reader_val,
                    data_reader_test=data_reader_test,
                    snapshot_dir=snapshot_dir,
                    log_dir=boards_dir,
                    start_epoch=i_epoch,
                    i_iter=i_iter,
                    scheduler=scheduler,
                    adv_scheduler=adv_scheduler,
                    best_val_accuracy=best_accuracy)
    print("=> Training complete.")

    model_file = os.path.join(snapshot_dir, "best_model.pth")
    if os.path.isfile(model_file):
        print("=> Testing best model...")
        main_model, _ = build_model(cfg, dataset_test)
        main_model.load_state_dict(torch.load(model_file)['state_dict'])
        main_model.eval()
        print("=> Loaded model from file {}".format(model_file))

        print("=> Start testing...")
        acc_test, loss_test, _ = one_stage_eval_model(data_reader_test,
                                                      main_model,
                                                      one_stage_run_model,
                                                      my_loss)
        print("Final results:\nacc: {:.4f}\nloss: {:.4f}".format(
            acc_test, loss_test))
        result_file = os.path.join(snapshot_dir, 'result_on_val.txt')
        with open(result_file, 'a') as fid:
            fid.write('FINAL RESULT ON TEST: {:.6f}'.format(acc_test))
    else:
        print("File {} not found. Skipping testing.".format(model_file))
        acc_test = loss_test = 0

    # print("BEGIN PREDICTING ON TEST/VAL set...")
    # if 'predict' in cfg.run:
    #     print_eval(prepare_test_data_set, "test")
    # if cfg.run == 'train+val':
    #     print_eval(prepare_eval_data_set, "val")

    print("total runtime(h): %s" % prg_timer.end())

    return (acc_test, loss_test)
Ejemplo n.º 24
0
    def train(self, fold_num):

        train_holder, seg_holder, dst_holder = self.provider.get_train_holder()

        model = self.model_class(self.is_training)
        inference_op = model.inference_op(train_holder)

        if cfg.use_dst_weight == True:
            loss_op, acc_op = model.loss_op(inference_op, seg_holder,
                                            dst_holder)
        else:
            loss_op, acc_op = model.loss_op(inference_op, seg_holder)
        train_op = self._get_optimizer(loss_op)

        merged = tf.summary.merge_all()
        self._count_trainables()
        log_output_path = os.path.join(self.output_path, "log")
        if not os.path.exists(log_output_path):
            os.makedirs(log_output_path)

        model_output_path = os.path.join(self.output_path, "model")
        if not os.path.exists(model_output_path):
            os.makedirs(model_output_path)

        loss_txt_path = os.path.join(self.output_path, "loss")
        if not os.path.exists(loss_txt_path):
            os.makedirs(loss_txt_path)

        train_writer = tf.summary.FileWriter(
            os.path.join(log_output_path, "train"))
        test_writer = tf.summary.FileWriter(
            os.path.join(log_output_path, "val"))

        line_buffer = 1
        config = tf.ConfigProto()
        config.gpu_options.allow_growth = True
        config = config
        with tf.Session(config=config) as sess:
            sess.run(tf.global_variables_initializer())
            saver = tf.train.Saver(max_to_keep=1)

            train_timer = Timer()
            load_timer = Timer()
            # if model checkpoint exist, then load last checkpoint
            #self._load_model(saver, sess, model_output_path)
            with open(file=loss_txt_path + '/loss_' + cfg.name +
                      str(fold_num) + '.txt',
                      mode='w',
                      buffering=line_buffer) as loss_log:
                for step in range(self.train_step):

                    if cfg.use_dst_weight == True:
                        load_timer.tic()
                        image, label, weights = self.provider.get_train_value(
                            with_weight=cfg.use_dst_weight)
                        image_val, label_val, val_weights = self.provider.get_val_value(
                            with_weight=cfg.use_dst_weight)
                        load_timer.toc()

                        train_timer.tic()
                        train_merge, train_loss, _, train_acc = sess.run(
                            [merged, loss_op, train_op, acc_op],
                            feed_dict={
                                train_holder: image,
                                seg_holder: label,
                                dst_holder: weights
                            })
                        valid_merge, val_loss, val_acc = sess.run(
                            [merged, loss_op, acc_op],
                            feed_dict={
                                train_holder: image_val,
                                seg_holder: label_val,
                                dst_holder: val_weights,
                                self.is_training: False
                            })
                        train_timer.toc()
                    else:
                        load_timer.tic()
                        image, label = self.provider.get_train_value(
                            with_weight=cfg.use_dst_weight)
                        image_val, label_val = self.provider.get_val_value(
                            with_weight=cfg.use_dst_weight)
                        load_timer.toc()

                        train_timer.tic()
                        train_merge, train_loss, _, train_acc = sess.run(
                            [merged, loss_op, train_op, acc_op],
                            feed_dict={
                                train_holder: image,
                                seg_holder: label
                            })
                        valid_merge, val_loss, val_acc = sess.run(
                            [merged, loss_op, acc_op],
                            feed_dict={
                                train_holder: image_val,
                                seg_holder: label_val,
                                self.is_training: False
                            })
                        train_timer.toc()

                    #if val_loss < self.min_valid_loss:
                    #self.min_valid_loss = val_loss
                    #saver.save(sess, os.path.join(self.output_path, "model/model_%d_%.6f"%(fold_num,self.min_valid_loss)))
                    if np.mod(step + 1, self.save_interval) == 0:
                        #saver_final = tf.train.Saver(max_to_keep=1)
                        saver.save(
                            sess,
                            os.path.join(self.output_path,
                                         "model/model_saved_%d" % fold_num))
                        #saver_final.save(sess, os.path.join(self.output_path, "model_final/model_saved_%d"%fold_num))
                    '''train_merge, train_loss, t_dice_loss, t_weight_loss, m_dice_loss, m_weight_loss,_ = sess.run([merged,
                                                        loss_op, total_dice_loss, total_weight_loss,
                                                        main_dice_loss, main_weight_loss,train_op],
                                                       feed_dict={train_holder: image, seg_holder: label})'''
                    '''train_merge, train_loss, t_dice_loss, t_focal_loss, m_dice_loss, m_focal_loss, _ = sess.run(
                        [merged,
                         loss_op, total_dice_loss, total_focal_loss,
                         main_dice_loss, main_focal_loss, train_op],
                        feed_dict={train_holder: image, seg_holder: label})'''
                    '''train_merge, train_loss, t_dice_loss, m_dice_loss, _ = sess.run(
                        [merged,
                         loss_op, total_dice_loss,
                         main_dice_loss, train_op],
                        feed_dict={train_holder: image, seg_holder: label})'''
                    '''output_format = '[Epoch]%d, Speed: %.3fs/iter,Load: %.3fs/iter, Remain: %s' \
                                    ' train_loss: %.8f, valid_loss: %.8f\n' \
                                    '[Loss]dice_loss: %.8f,main_dice_loss: %.8f \n' \
                                    % (step, train_timer.average_time, load_timer.average_time,
                                       train_timer.remain(step, self.train_step), train_loss, val_loss,
                                       t_dice_loss, m_dice_loss)'''
                    '''output_format = '[Epoch]%d, Speed: %.3fs/iter,Load: %.3fs/iter, Remain: %s' \
                                    ' train_loss: %.8f, valid_loss: %.8f\n' \
                                    '[Loss]dice_loss: %.8f, focal_loss: %.8f, main_dice_loss: %.8f, main_focal_loss: %.8f\n' \
                                    % (step, train_timer.average_time, load_timer.average_time,
                                       train_timer.remain(step,self.train_step),train_loss, val_loss,
                                       t_dice_loss, t_focal_loss, m_dice_loss, m_focal_loss)'''
                    '''output_format = 'Epoch:%d,Speed: %.3fs/iter,Load: %.3fs/iter,Remain: %s\n'\
                                    'train_loss: %.8f,valid_loss: %.8f,main_dice_loss: %.8f,main_weight_loss: %.8f'\
                                    % (step, train_timer.average_time, load_timer.average_time,
                                       train_timer.remain(step, self.train_step), train_loss, val_loss,
                                       m_dice_loss, m_weight_loss)'''
                    '''output_format = '[Epoch]%d, Speed: %.3fs/iter,Load: %.3fs/iter, Remain: %s' \
                                    ' train_loss: %.8f, valid_loss: %.8f\n' \
                                    '[Loss] main_jacc_loss: %.8f, auxi_jacc_loss: %.8f\n' \
                                    % (step, train_timer.average_time, load_timer.average_time,
                                       train_timer.remain(step, self.train_step), train_loss, val_loss,
                                       main_jacc_loss, auxi_jacc_loss)'''
                    output_format = "train loss: %f, valid loss: %f, train accuracy: %f, val accuracy: %f, step: %d" % \
                                    (train_loss, val_loss, train_acc, val_acc, step)
                    print(output_format)
                    train_writer.add_summary(train_merge, step)
                    test_writer.add_summary(valid_merge, step)

                    if step % 5 == 0:
                        loss_log.write(output_format + '\n')
                    #if np.mod(step + 1, self.save_interval) == 0:
                    #saver.save(sess, os.path.join(self.output_path, "model/model_saved_%d"%fold_num))
                train_writer.close()
                test_writer.close()
Ejemplo n.º 25
0
    def testing(self, sess, test_writer):
        # =======================================
        if USE_ROS:
            import rospy
            from sensor_msgs.msg import PointCloud,Image
            from visualization_msgs.msg import MarkerArray, Marker
            from tools.data_visualize import Boxes_labels_Gen, Image_Gen,PointCloud_Gen

            rospy.init_node('rostensorflow')
            pub = rospy.Publisher('prediction', PointCloud, queue_size=1000)
            img_pub = rospy.Publisher('images_rgb', Image, queue_size=1000)
            box_pub = rospy.Publisher('label_boxes', MarkerArray, queue_size=1000)
            rospy.loginfo("ROS begins ...")
        # =======================================
        with tf.name_scope("Inference"):
            # RNet_rpn_yaw_pred = self.net.get_output('RNet_theta')[1]
            # RNet_rpn_yaw_gt_delta = self.net.get_output('cubic_grid')[1]
            # RNet_rpn_yaw_pred_toshow = RNet_rpn_yaw_pred+RNet_rpn_yaw_gt_delta
            rpn_rois_3d = self.net.get_output('rpn_rois')[1]

        with tf.name_scope('view_rpn_bv_tb'):
            # roi_bv = self.net.get_output('rpn_rois')[0]
            # data_bv = self.net.lidar_bv_data
            # image_rpn = tf.reshape(test_show_rpn_tf(data_bv,roi_bv), (1, 601, 601, -1))
            # tf.summary.image('lidar_bv_test', image_rpn)
            feature = tf.reshape(tf.transpose(tf.reduce_sum(self.net.watcher[0],axis=-2),[2,0,1]),[-1,30,30,1])
            tf.summary.image('shape_extractor_P1', feature,max_outputs=50)
            # feature = tf.reshape(tf.transpose(tf.reduce_sum(self.net.watcher[1],axis=-1),[2,0,1]),[-1,30,30,1])
            # tf.summary.image('shape_extractor_P2', feature,max_outputs=10)
            # feature = tf.reshape(tf.transpose(tf.reduce_sum(self.net.watcher[-1],axis=-1),[2,0,1]),[-1,30,30,1])
            # tf.summary.image('shape_extractor_N1', feature,max_outputs=3)
            # feature = tf.reshape(tf.transpose(tf.reduce_sum(self.net.watcher[-2],axis=-1),[2,0,1]),[-1,30,30,1])
            # tf.summary.image('shape_extractor_N2', feature,max_outputs=3)
            merged = tf.summary.merge_all()

        with tf.name_scope('load_weights'):
            print 'Loading pre-trained model weights from {:s}'.format(self.args.weights)
            self.net.load_weigths(self.args.weights, sess, self.saver)
            self.net.load_weigths(self.args.weights_cube, sess, self.saver,specical_flag=True)

        vispy_init()  # TODO: Essential step(before sess.run) for using vispy beacuse of the bug of opengl or tensorflow
        timer = Timer()
        cubic_cls_score = tf.reshape(self.net.get_output('cubic_cnn'), [-1, 2])

        for idx in range(0,self.epoch,1):
            # index_ = input('Type a new index: ')
            blobs = self.dataset.get_minibatch(idx)
            feed_dict = {
                self.net.lidar3d_data: blobs['lidar3d_data'],
                self.net.lidar_bv_data: blobs['lidar_bv_data'],
                self.net.im_info: blobs['im_info'],
                # self.net.calib: blobs['calib']
            }
            run_options = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE)
            run_metadata = tf.RunMetadata()
            timer.tic()
            cubic_cls_score_,rpn_rois_3d_,summary = sess.run([cubic_cls_score,rpn_rois_3d,merged]
                         ,feed_dict=feed_dict, options=run_options, run_metadata=run_metadata)
            timer.toc()

            if idx % 3 ==0 and cfg.TEST.DEBUG_TIMELINE:
                # chrome://tracing
                trace = timeline.Timeline(step_stats=run_metadata.step_stats)
                trace_file = open(cfg.LOG_DIR + '/' +'testing-step-'+ str(idx).zfill(7) + '.ctf.json', 'w')
                trace_file.write(trace.generate_chrome_trace_format(show_memory=False))
                trace_file.close()
            if idx % cfg.TEST.ITER_DISPLAY == 0:
                pass
                print 'Test: %06d/%06d  speed: %.4f s / iter' % (idx+1, self.epoch, timer.average_time)
            if VISION_DEBUG:
                scan = blobs['lidar3d_data']
                img = blobs['image_data']
                cubic_cls_value = cubic_cls_score_.argmax(axis=1)

                if USE_ROS:
                    import numpy as np
                    from tools.data_visualize import PointCloud_Gen,Boxes_labels_Gen,Image_Gen
                    pointcloud = PointCloud_Gen(scan)

                    label_boxes = Boxes_labels_Gen(rpn_rois_3d_, ns='Predict')
                    img_ros = Image_Gen(img)
                    pub.publish(pointcloud)
                    img_pub.publish(img_ros)
                    box_pub.publish(label_boxes)
                else:
                    boxes = BoxAry_Theta(pre_box3d=rpn_rois_3d_,pre_cube_cls=cubic_cls_value)  # RNet_rpn_yaw_pred_toshow_  rpn_rois_3d_[:,-1]
                    pcd_vispy(scan, img, boxes,index=idx,
                              save_img=False,#cfg.TEST.SAVE_IMAGE,
                              visible=True,
                              name='CubicNet testing')
            if idx % 1 == 0 and cfg.TEST.TENSORBOARD:
                test_writer.add_summary(summary, idx)
                pass
        print 'Testing process has done, happy every day !'
Ejemplo n.º 26
0
    model.load_state_dict(torch.load(model_file)['state_dict'])
    model.eval()

    question_ids, soft_max_result = run_model(model,
                                              data_reader_test,
                                              ans_dic.UNK_idx)
    print_result(question_ids,
                 soft_max_result,
                 ans_dic,
                 out_file,
                 json_only=False,
                 pkl_res_file=pkl_res_file)


if __name__ == '__main__':
    prg_timer = Timer()

    args = parse_args()
    config_file = args.config
    seed = args.seed if args.seed > 0 else random.randint(1, 100000)
    process_config(config_file, args.config_overwrite)

    torch.manual_seed(seed)
    if use_cuda:
        torch.cuda.manual_seed(seed)

    basename = 'default' \
        if args.config is None else os.path.basename(args.config)

    cmd_cfg_obj = demjson.decode(args.config_overwrite) \
        if args.config_overwrite is not None else None
Ejemplo n.º 27
0
    model.eval()

    question_ids, soft_max_result = run_model(model, data_reader_test,
                                              ans_dic.UNK_idx)
    print_result(
        question_ids,
        soft_max_result,
        ans_dic,
        out_file,
        json_only=False,
        pkl_res_file=pkl_res_file,
    )


if __name__ == "__main__":
    prg_timer = Timer()

    args = parse_args()
    config_file = args.config
    seed = args.seed if args.seed > 0 else random.randint(1, 100000)
    process_config(config_file, args.config_overwrite)

    torch.manual_seed(seed)
    if use_cuda:
        torch.cuda.manual_seed(seed)

    basename = "default" if args.config is None else os.path.basename(
        args.config)

    cmd_cfg_obj = (demjson.decode(args.config_overwrite)
                   if args.config_overwrite is not None else None)
Ejemplo n.º 28
0
    def training(self, sess, train_writer):
        with tf.name_scope('loss_cubic'):
            cubic_cls_score = tf.reshape(self.net.get_output('cubic_cnn'),
                                         [-1, 2])
            cubic_cls_labels = tf.reshape(
                tf.cast(self.net.get_output('rpn_rois')[:, -2], tf.int64),
                [-1])

            if not cfg.TRAIN.FOCAL_LOSS:
                cubic_cross_entropy = tf.reduce_mean(
                    tf.nn.sparse_softmax_cross_entropy_with_logits(
                        logits=cubic_cls_score, labels=cubic_cls_labels))
            else:
                # alpha = [0.75,0.25]  # 0.25 for label=1
                gamma = 2
                cubic_cls_probability = tf.nn.softmax(cubic_cls_score)
                # formula :  Focal Loss for Dense Object Detection: FL(p)= -((1-p)**gama)*log(p)
                cubic_cross_entropy = tf.reduce_mean(-tf.reduce_sum(
                    tf.one_hot(cubic_cls_labels, depth=2) *
                    ((1 - cubic_cls_probability)**gamma) *
                    tf.log([cfg.EPS, cfg.EPS] + cubic_cls_probability),
                    axis=1))
            loss = cubic_cross_entropy

        with tf.name_scope('train_op'):
            global_step = tf.Variable(1, trainable=False, name='Global_Step')
            lr = tf.train.exponential_decay(cfg.TRAIN.LEARNING_RATE,
                                            global_step,
                                            10000,
                                            0.996,
                                            name='decay-Lr')
            train_op = tf.train.AdamOptimizer(lr).minimize(
                loss, global_step=global_step)

        with tf.name_scope('train_cubic'):
            tf.summary.scalar('total_loss', loss)
            # bv_anchors = self.net.get_output('rpn_anchors_label')[2]
            # roi_bv = self.net.get_output('rpn_rois')[0]
            # data_bv = self.net.lidar_bv_data
            # data_gt = self.net.gt_boxes_bv
            # image_rpn = tf.reshape(show_rpn_tf(data_bv, data_gt, bv_anchors, roi_bv), (1, 601, 601, -1))
            # tf.summary.image('lidar_bv_test', image_rpn)
            glb_var = tf.global_variables()
            for i in range(len(glb_var)):
                # print glb_var[i].name
                if 'moving' not in str(glb_var[i].name):
                    if 'Adam' not in str(glb_var[i].name):
                        if 'weights' not in str(glb_var[i].name):
                            if 'rpn' not in str(glb_var[i].name):
                                if 'biases' not in str(glb_var[i].name):
                                    if 'beta' not in str(glb_var[i].name):
                                        if 'gamma' not in str(glb_var[i].name):
                                            if 'batch' not in str(
                                                    glb_var[i].name):
                                                tf.summary.histogram(
                                                    glb_var[i].name,
                                                    glb_var[i])
            merged = tf.summary.merge_all()

        with tf.name_scope('valid_cubic'):
            epoch_rpn_recall = tf.placeholder(dtype=tf.float32)
            rpn_recall_smy_op = tf.summary.scalar('rpn_recall',
                                                  epoch_rpn_recall)
            epoch_cubic_recall = tf.placeholder(dtype=tf.float32)
            cubic_recall_smy_op = tf.summary.scalar('cubic_recall',
                                                    epoch_cubic_recall)
            epoch_cubic_precise = tf.placeholder(dtype=tf.float32)
            cubic_prec_smy_op = tf.summary.scalar('cubic_precise',
                                                  epoch_cubic_precise)

        sess.run(tf.global_variables_initializer())
        if self.args.fine_tune:
            if True:
                # #full graph restore
                print 'Loading pre-trained model weights from {:s}'.format(
                    self.args.weights)
                self.net.load(self.args.weights, sess, self.saver, True)
            else:  # #part graph restore
                #  # METHOD one
                # ref_vars = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES,scope=['vgg_feat_fc'])
                # saver1 = tf.train.Saver(ref_vars)
                # saver1.restore(sess, self.args.weights)
                #  # METHOD two
                reader = pywrap_tensorflow.NewCheckpointReader(
                    self.args.weights)
                var_to_shape_map = reader.get_variable_to_shape_map()
                with tf.variable_scope('', reuse=tf.AUTO_REUSE) as scope:
                    for key in var_to_shape_map:
                        try:
                            var = tf.get_variable(key, trainable=False)
                            sess.run(var.assign(reader.get_tensor(key)))
                            print "    Assign pretrain model: " + key
                        except ValueError:
                            print "    Ignore variable:" + key
        trainable_var_for_chk = tf.trainable_variables(
        )  #tf.get_collection(ops.GraphKeys.TRAINABLE_VARIABLES)
        print 'Variables to training: ', trainable_var_for_chk

        timer = Timer()
        rpn_rois = self.net.get_output('rpn_rois')
        cubic_grid = self.net.get_output('cubic_grid')
        cubic_cnn = self.net.get_output('cubic_cnn')
        if DEBUG:
            vispy_init(
            )  # TODO: Essential step(before sess.run) for using vispy beacuse of the bug of opengl or tensorflow
            # vision_qt = Process(target=pcd_vispy_client, args=(MSG_QUEUE,))
            # vision_qt.start()
            # print 'Process vision_qt started ...'

        training_series = range(self.epoch)  # self.epoch
        for epo_cnt in range(self.args.epoch_iters):
            for data_idx in training_series:  # DO NOT EDIT the "training_series",for the latter shuffle
                iter = global_step.eval(
                )  # function "minimize()"will increase global_step
                blobs = self.dataset.get_minibatch(data_idx,
                                                   'train')  # get one batch
                feed_dict = {
                    self.net.lidar3d_data: blobs['lidar3d_data'],
                    self.net.gt_boxes_3d: blobs['gt_boxes_3d']
                }
                run_options = tf.RunOptions(
                    trace_level=tf.RunOptions.FULL_TRACE)
                run_metadata = tf.RunMetadata()

                timer.tic()
                cubic_cls_score_, cubic_cls_labels_, rpn_rois_, cubic_cnn_, cubic_grid_, loss_, merged_, _ = sess.run(
                    [
                        cubic_cls_score, cubic_cls_labels, rpn_rois, cubic_cnn,
                        cubic_grid, loss, merged, train_op
                    ],
                    feed_dict=feed_dict,
                    options=run_options,
                    run_metadata=run_metadata)
                timer.toc()

                cubic_result = cubic_cls_score_.argmax(axis=1)
                one_hist = fast_hist(cubic_cls_labels_, cubic_result)
                cubic_car_cls_prec = one_hist[1, 1] / (one_hist[1, 1] +
                                                       one_hist[0, 1] + 1e-5)
                cubic_car_cls_recall = one_hist[1, 1] / (one_hist[1, 1] +
                                                         one_hist[1, 0] + 1e-5)

                if iter % 1000 == 0 and cfg.TRAIN.DEBUG_TIMELINE:
                    #chrome://tracing
                    trace = timeline.Timeline(
                        step_stats=run_metadata.step_stats)
                    trace_file = open(
                        cfg.LOG_DIR + '/' + 'training-StiData-step-' +
                        str(iter).zfill(7) + '.ctf.json', 'w')
                    trace_file.write(
                        trace.generate_chrome_trace_format(show_memory=False))
                    trace_file.close()
                if iter % cfg.TRAIN.ITER_DISPLAY == 0:
                    print 'Iter: %d / %d, loss: %.3f' % (
                        iter,
                        self.args.epoch_iters * self.epoch,
                        loss_,
                    )
                    print 'Cubic classify precise: {:.3f}  recall: {:.3f}'.format(
                        cubic_car_cls_prec, cubic_car_cls_recall)
                    print 'Speed: {:.3f}s / iter'.format(timer.average_time)
                    print 'divine: ', cubic_result
                    print 'labels: ', cubic_cls_labels_
                if iter % 10 == 0 and cfg.TRAIN.TENSORBOARD:
                    train_writer.add_summary(merged_, iter)
                    pass
                if iter % cfg.TRAIN.SNAPSHOT_ITERS == 0:
                    self.snapshot(sess, iter)
                    pass
                if DEBUG:
                    scan = blobs['lidar3d_data']
                    gt_box3d = blobs['gt_boxes_3d'][:, (0, 1, 2, 3, 4, 5, 6)]
                    gt_box3d = np.hstack(
                        (gt_box3d, np.ones([gt_box3d.shape[0], 2]) * 4))
                    pred_boxes = np.hstack(
                        (rpn_rois_, cubic_result.reshape(-1, 1) * 2))
                    bbox = np.vstack((pred_boxes, gt_box3d))
                    # msg = msg_qt(scans=scan, boxes=bbox,name='CubicNet training')
                    # MSG_QUEUE.put(msg)
                    pcd_vispy(scan, boxes=bbox, name='CubicNet training')
            random.shuffle(training_series)  # shuffle the training series
            if cfg.TRAIN.USE_VALID:
                with tf.name_scope('valid_cubic_' + str(epo_cnt + 1)):
                    print 'Valid the net at the end of epoch_{} ...'.format(
                        epo_cnt + 1)
                    # roi_bv = self.net.get_output('rpn_rois')[0]
                    # bv_anchors = self.net.get_output('rpn_anchors_label')[2]
                    # pred_rpn_ = show_rpn_tf(self.net.lidar_bv_data, self.net.gt_boxes_bv, bv_anchors, roi_bv)
                    # pred_rpn = tf.reshape(pred_rpn_,(1, 601, 601, -1))
                    # predicted_bbox = tf.summary.image('predict_bbox_bv', pred_rpn)
                    # valid_result = tf.summary.merge([predicted_bbox])
                    recalls = self.net.get_output('rpn_rois')[2]
                    pred_tp_cnt, gt_cnt = 0., 0.
                    hist = np.zeros((cfg.NUM_CLASS, cfg.NUM_CLASS),
                                    dtype=np.float32)

                    for data_idx in range(self.val_epoch):  # self.val_epoch
                        blobs = self.dataset.get_minibatch(data_idx, 'valid')
                        feed_dict_ = {
                            self.net.lidar3d_data: blobs['lidar3d_data'],
                            self.net.lidar_bv_data: blobs['lidar_bv_data'],
                            self.net.im_info: blobs['im_info'],
                            self.net.keep_prob: 0.5,
                            self.net.gt_boxes_bv: blobs['gt_boxes_bv'],
                            self.net.gt_boxes_3d: blobs['gt_boxes_3d'],
                            self.net.gt_boxes_corners:
                            blobs['gt_boxes_corners'],
                            self.net.calib: blobs['calib']
                        }
                        cubic_cls_score_, cubic_cls_labels_, recalls_ = sess.run(
                            [cubic_cls_score, cubic_cls_labels, recalls],
                            feed_dict=feed_dict_)
                        # train_writer.add_summary(valid, data_idx)

                        pred_tp_cnt = pred_tp_cnt + recalls_[1]
                        gt_cnt = gt_cnt + recalls_[2]
                        cubic_class = cubic_cls_score_.argmax(axis=1)
                        one_hist = fast_hist(cubic_cls_labels_, cubic_class)
                        if not math.isnan(one_hist[1, 1] /
                                          (one_hist[1, 1] + one_hist[0, 1])):
                            if not math.isnan(
                                    one_hist[1, 1] /
                                (one_hist[1, 1] + one_hist[1, 0])):
                                hist += one_hist
                        if cfg.TRAIN.VISUAL_VALID:
                            print 'Valid step: {:d}/{:d} , rpn recall = {:.3f}'\
                                  .format(data_idx + 1,self.val_epoch,float(recalls_[1]) / recalls_[2])
                            print(
                                '    class bg precision = {:.3f}  recall = {:.3f}'
                                .format((one_hist[0, 0] /
                                         (one_hist[0, 0] + one_hist[1, 0])),
                                        (one_hist[0, 0] /
                                         (one_hist[0, 0] + one_hist[0, 1]))))
                            print(
                                '    class car precision = {:.3f}  recall = {:.3f}'
                                .format((one_hist[1, 1] /
                                         (one_hist[1, 1] + one_hist[0, 1])),
                                        (one_hist[1, 1] /
                                         (one_hist[1, 1] + one_hist[1, 0]))))

                precise_total = hist[1, 1] / (hist[1, 1] + hist[0, 1])
                recall_total = hist[1, 1] / (hist[1, 1] + hist[1, 0])
                recall_rpn = pred_tp_cnt / gt_cnt
                valid_summary = tf.summary.merge([
                    rpn_recall_smy_op, cubic_recall_smy_op, cubic_prec_smy_op
                ])
                valid_res = sess.run(valid_summary,
                                     feed_dict={
                                         epoch_rpn_recall: recall_rpn,
                                         epoch_cubic_recall: recall_total,
                                         epoch_cubic_precise: precise_total
                                     })
                train_writer.add_summary(valid_res, epo_cnt + 1)
                print 'Validation of epoch_{}: rpn_recall {:.3f} cubic_precision = {:.3f}  cubic_recall = {:.3f}'\
                      .format(epo_cnt + 1,recall_rpn,precise_total,recall_total)
        self.snapshot(sess, iter, final=True)
        print 'Training process has done, enjoy every day !'
Ejemplo n.º 29
0
    def train(self):
        """
        now tf_records are no used for the full image.
        :return:
        """

        train_holder, seg_holder, dst_holder = self.provider.get_train_holder()

        if self.model_name == 'cnn_v2':
            model = self.model_class(self.is_training)
            model.build_model(train_holder, seg_holder)
            total_loss = model.total_loss
            total_dice_loss = model.total_dice_loss
            total_weight_loss = model.total_weight_loss
            #main_dice_loss = model.main_dice_loss
            #dice = model.dice_coefficient

            loss_op = model.entropy_loss
            train_op = self._get_optimizer(total_loss)
        else:
            model = self.model_class(self.is_training)
            inference_op = model.inference_op(train_holder)

            if cfg.use_dst_weight == True:
                loss_op = model.loss_op(inference_op, seg_holder, dst_holder)
            else:
                loss_op = model.loss_op(inference_op, seg_holder)
            #loss_op = model.loss_op(inference_op, seg_holder)

            total_dice_loss = model.total_dice_loss
            total_weight_loss = model.total_weight_loss
            main_weight_loss = model.main_weight_loss
            main_dice_loss = model.main_dice_loss

            train_op = self._get_optimizer(loss_op)

        merged = tf.summary.merge_all()
        self._count_trainables()
        log_output_path = os.path.join(self.output_path, "log")
        if not os.path.exists(log_output_path):
            os.makedirs(log_output_path)

        model_output_path = os.path.join(self.output_path, "model")
        if not os.path.exists(model_output_path):
            os.makedirs(model_output_path)

        loss_txt_path = os.path.join(self.output_path, "loss")
        if not os.path.exists(loss_txt_path):
            os.makedirs(loss_txt_path)

        train_writer = tf.summary.FileWriter(
            os.path.join(log_output_path, "train"))
        test_writer = tf.summary.FileWriter(
            os.path.join(log_output_path, "val"))

        line_buffer = 1
        config = tf.ConfigProto()
        config.gpu_options.allow_growth = True
        with tf.Session(config=config) as sess:
            sess.run(tf.global_variables_initializer())
            saver = tf.train.Saver()

            train_timer = Timer()
            load_timer = Timer()

            # if model checkpoint exist, then load last checkpoint
            #self._load_model(saver, sess, model_output_path)

            with open(file=loss_txt_path + '/loss_' + cfg.name + '.txt',
                      mode='w',
                      buffering=line_buffer) as loss_log:
                for step in range(self.train_step):
                    load_timer.tic()
                    image, label, weight = self.provider.get_train_value(
                        with_weight=cfg.use_weight)
                    image_val, label_val, weight = self.provider.get_val_value(
                        with_weight=cfg.use_weight)
                    load_timer.toc()

                    train_timer.tic()
                    train_merge, train_loss, t_dice_loss, t_weight_loss, m_dice_loss, m_weight_loss, _ = sess.run(
                        [
                            merged, loss_op, total_dice_loss,
                            total_weight_loss, main_dice_loss,
                            main_weight_loss, train_op
                        ],
                        feed_dict={
                            train_holder: image,
                            seg_holder: label,
                            dst_holder: weight
                        })
                    valid_merge, val_loss = sess.run(
                        [merged, loss_op],
                        feed_dict={
                            train_holder: image_val,
                            seg_holder: label_val,
                            dst_holder: weight,
                            self.is_training: False
                        })
                    train_timer.toc()
                    output_format = '[Epoch]%d, Speed: %.3fs/iter,Load: %.3fs/iter, Remain: %s' \
                                    ' train_loss: %.8f, valid_loss: %.8f\n' \
                                    '[Loss]dice_loss: %.8f, weight_loss: %.8f, main_dice_loss: %.8f, main_weight_loss: %.8f\n' \
                                    % (step, train_timer.average_time, load_timer.average_time,
                                       train_timer.remain(step,self.train_step),train_loss, val_loss,
                                       t_dice_loss, t_weight_loss, m_dice_loss, m_weight_loss)
                    print(output_format)
                    train_writer.add_summary(train_merge, step)
                    test_writer.add_summary(valid_merge, step)

                    if step % 10 == 0:
                        loss_log.write(
                            'train loss: %.5f, valid_loss: %.5f, glabl step: %d'
                            % (train_loss, val_loss, step) + '\n')

                    if np.mod(step + 1, self.save_interval) == 0:
                        saver.save(
                            sess,
                            os.path.join(self.output_path,
                                         "model/model_saved"))
                train_writer.close()
                test_writer.close()

# N-th pentagonal number
def p(n):
    return n * (3 * n - 1) // 2


# N-th hexagonal number
def h(n):
    return n * (2 * n - 1)


# p(n) - p(n-1) = 3n-2
# h(n) - h(n-1) = 4n-3

Timer.start_measure()

# p, h = 5, 6
# ip, ih = 2, 2
# while h < 10**13:
#     # print(p, h)
#     if p < h:
#         ip += 1
#         p += 3*ip - 2
#     elif h < p:
#         ih += 1
#         h += 4*ih - 3
#     else:
#         print('p({}) = h({}) = {}'.format(ip, ih, p))
#         ip += 1
#         ih += 1
Ejemplo n.º 31
0
    def train_per_epoch(self, epoch):
        conf_loss = 0
        _t = Timer()
        conf_loss_v = 0
      
        epoch_size = int( len(self.train_loader) )
        
        train_end = int( epoch_size);
        batch_iterator = iter(self.train_loader)
      #  print('epoch_size ', epoch_size, " train_end ", train_end)
        
        
        for iteration  in range(epoch_size):
            images, targets,targets_src = next(batch_iterator)
       #     print('images ', images.shape)
            if len (images) == 1:
                continue
         #   print('imgs from data_load shape ', images.shape)
            targets = np.array(targets)
           # print('iteration ', iteration)
            if iteration == (train_end - 2):
                if self.use_gpu:
                    images = Variable(images.cuda())
                self.visualize_epoch(images, epoch)
            if iteration <= train_end:
                if self.use_gpu:
                    images = Variable(images.cuda())
                  #  targets = [Variable(anno.cuda(), volatile=True) for anno in targets]
                else:
                    images = Variable(images)
                self.model.train()
                #train:
                _t.tic()
             #   print('---img shape 2 ', images.shape)
                out = self.model(images, phase='train')

                self.optimizer.zero_grad()
             #   print('tr_out ', out)
             #   print('targets ', targets.shape)
                loss_c = self.criterion(out, targets)

                # some bugs in coco train2017. maybe the annonation bug.
                if loss_c.data[0] == float("Inf"):
                    continue
                if math.isnan(loss_c.data[0]):
                    continue
             #   if loss_c.data[0] > 10000:
             #       continue

                loss_c.backward()
                self.optimizer.step()

                time = _t.toc()
                conf_loss += loss_c.data[0]

                # log per iter
                log = '\r==>Train_class{}: || {iters:d}/{epoch_size:d} in {time:.3f}s [{prograss}] ||  cls_loss: {cls_loss:.4f}\r'.format(self.train_class,
                    prograss='#'*int(round(10*iteration/epoch_size)) + '-'*int(round(10*(1-iteration/epoch_size))), iters=iteration, epoch_size=epoch_size,
                    time=time, cls_loss=loss_c.data[0])

                sys.stdout.write(log)
                sys.stdout.flush()
                
                if iteration == (train_end-2):
                    # log per epoch
                    sys.stdout.write('\r')
                    sys.stdout.flush()
                    lr = self.optimizer.param_groups[0]['lr']
                    log = '\r==>Train: || Total_time: {time:.3f}s ||  conf_loss: {conf_loss:.4f} || lr: {lr:.6f}\n'.format(lr=lr,
                        time=_t.total_time,  conf_loss=conf_loss/epoch_size)
                    sys.stdout.write(log)
                    sys.stdout.flush()
                 #   print(log)
                    # log for tensorboard
                    title = str(self.train_class) + '/conf_loss'
                  #  title = str(self.train_class)+'/conf_loss'

                    self.writer.add_scalar(title, conf_loss/epoch_size, epoch)
                    title = str(self.train_class) + '/lr'
                    self.writer.add_scalar(title, lr, epoch)
                    
                    conf_loss = 0
       
        val_epoch_size = int( len(self.val_loader) )     
        val_batch_iterator = iter(self.val_loader) 
        pre_for_f1 = []
        t_for_f1 = []
        for iteration  in range(val_epoch_size):
            images, targets, tar_srcs = next(val_batch_iterator)
            if iteration < (val_epoch_size - 1):
             #   self.visualize_epoch(model, images[0], targets[0], self.priorbox, writer, epoch, use_gpu)
                #eval:
             #   print('tar_srcs ', tar_srcs)
                targets = np.array(targets)
                if self.use_gpu:
                    images = Variable(images.cuda())
                else:
                    images = Variable(images)
                self.model.eval()
                out = self.model(images, phase='eval')

                # loss
                loss_c = self.criterion(out, targets)
                
                if loss_c.data[0] == float("Inf"):
                    continue
                if math.isnan(loss_c.data[0]):
                    continue
              #  if loss_c.data[0] > 100000000:
              #      continue
                print('out ', out)
                for i_ys,  ys in enumerate( out ):
                    
                    tail = ''
                    mid = ''
                    t_val = 0
                    targets_t = [int (tthis) for tthis in tar_srcs[i_ys].split(' ')]
                    if self.train_class in targets_t:
                        tail = '-----------'
                        t_val = 1
                    t_for_f1.append(t_val)
                    if ys[1] >= 0.5:
                        mid = '||||||||'
                        pre_for_f1.append(1)
                        print('ci ', self.train_class, ' i_ys ', i_ys, ' pre ' , ys[1], mid,  ' t ', tar_srcs[i_ys], tail)
                    else:
                        pre_for_f1.append(0)
                        print('ci ', self.train_class, ' i_ys ', i_ys, ' pre ' , ys[1], ' t ', tar_srcs[i_ys], tail)
                time = _t.toc()

                conf_loss_v += loss_c.data[0]

                # log per iter
                log = '\r==>Eval_class{}: || {iters:d}/{epoch_size:d} in {time:.3f}s [{prograss}] ||  cls_loss: {cls_loss:.4f}\r'.format(self.train_class,
                    prograss='#'*int(round(10*iteration/val_epoch_size)) + '-'*int(round(10*(1-iteration/val_epoch_size))), iters=iteration, epoch_size=val_epoch_size,
                    time=time,  cls_loss=loss_c.data[0])
                
           
                #print(log)
                sys.stdout.write(log)
                sys.stdout.flush()
           #     self.writer.add_scalar('Eval/conf_loss', conf_loss_v/epoch_size, epoch)
              #  if iteration == (val_epoch_size - 1):
                    # eval mAP
             #       prec, rec, ap = cal_pr(label, score, npos)

                    # log per epoch
        sys.stdout.write('\r')
        sys.stdout.flush()
        log = '\r==>Eval: || {iters:d}/{epoch_size:d} in {time:.3f}s [{prograss}] ||  cls_loss: {cls_loss:.4f}\r'.format(
        prograss='#'*int(round(10*iteration/val_epoch_size)) + '-'*int(round(10*(1-iteration/val_epoch_size))), iters=iteration, epoch_size=val_epoch_size,
                    time=time,  cls_loss=loss_c.data[0])
        sys.stdout.write(log)
        sys.stdout.flush()
                    # log for tensorboard
        title =  str(self.train_class) +'/e_conf_loss' 
        self.writer.add_scalar(title, conf_loss_v/epoch_size, epoch)
                    
        f1 = f1_score(t_for_f1, pre_for_f1, average = "macro")
        print('c--- ',self.train_class, '---------f1 ',f1)
        title = str(self.train_class) + '/f'
                  #  title = str(self.train_class) + '/f'
        self.writer.add_scalar(title, f1, epoch)