Ejemplo n.º 1
0
def point_transformix(txtflnm, transformfile, dst=False):
    '''apply elastix transform to points
    
    
    Inputs
    -------------
    txtflnm = list of points that have resizingtransform
    transformfile = elastix transform file
    dst = optional folder
    
    Returns
    ---------------
    trnsfrm_out_file = pth to file containing post transformix points
    
    '''
    sys.stdout.write('\n***********Starting Transformix***********')
    from subprocess import check_output
    #set paths
    if not dst:
        trnsfrm_outpath = os.path.join(os.path.dirname(transformfile),
                                       'posttransformix')
        makedir(trnsfrm_outpath)
    if dst:
        trnsfrm_outpath = os.path.join(dst, 'posttransformix')
        makedir(trnsfrm_outpath)
    trnsfrm_out_file = os.path.join(trnsfrm_outpath, 'outputpoints.txt')

    #run transformix point transform
    call = 'transformix -def {} -out {} -tp {}'.format(txtflnm,
                                                       trnsfrm_outpath,
                                                       transformfile)
    print(check_output(call, shell=True))
    writer(trnsfrm_outpath,
           '\n   Transformix File Generated: {}'.format(trnsfrm_out_file))
    return trnsfrm_out_file
Ejemplo n.º 2
0
def generate_masked_atlas(binarize = False, **kwargs):
    '''Wrapper to call mask_atlas and save in appropriate place
    
    Inputs
    -------------------
    binarize: (optional) if true convert all nonzero pixels to 255
    kwargs used: 
        ouputdirectory
        AtlasFile
        maskatlas
        
    Returns:
    -------------------
    path to newly saved masked atlas
    '''
    #make folder to store masked atlas
    fld = os.path.join(kwargs['outputdirectory'], 'maskedatlas')
    makedir(fld)
    
    #generate masked_atlas
    masked_atlas = mask_atlas(**kwargs)
    if binarize: 
        masked_atlas[masked_atlas>0]=255
        masked_atlas = change_bitdepth(masked_atlas)
    
    #save masked_atlas
    masked_atlas_pth = os.path.join(fld, 'masked_atlas.tif')
    tifffile.imsave(masked_atlas_pth, masked_atlas)
    
    return masked_atlas_pth
def overlay(AtlasFile, svlc, nm_to_sv, arr, gaussianblur=False):
    '''function to plot coordinates using depth color overlay.
    Inputs:
        pth=pth to allen annoation
        AtlasFile=pth to atlas (grayscale)
        svlc=pth to folder to save
        nm_to_sv=text to identify this structure
        arr= np array of [zyx] PIXEL COORDINATES to plot
        gaussianblur (optional):False/True
    '''
    im = sitk.GetArrayFromImage(sitk.ReadImage(AtlasFile))
    im = np.zeros(im.shape).astype('uint8')
    for i in tuple(map(tuple, arr.astype('int'))):
        im[i] = 255
    #optional
    if gaussianblur:
        from scipy.ndimage.filters import gaussian_filter
        im = gaussian_filter(im, (2,2,2)).astype('uint8')
        im[im>0]=255
        im = gaussian_filter(im, (2,2,2)).astype('uint8')
        im[im>0]=255
    makedir(svlc)
    svlc2=os.path.join(svlc, nm_to_sv)
    makedir(svlc2)    
    impth=os.path.join(svlc2, str(nm_to_sv)+'.tif')    
    tifffile.imsave(impth, im.astype('uint8'))
    allen_compare(AtlasFile, svlc, impth)
    return
Ejemplo n.º 4
0
def blend_lightsheets(flds, dst, cores, cleanup=False):
    """0=L, 1=R
    """
    #make sure l and r are in appropriate positions
    if np.any(["right_lightsheet" in xx for xx in flds]) and np.any(
        ["left_lightsheet" in xx for xx in flds]):
        l = [xx for xx in flds if "left_lightsheet" in xx][0]
        r = [xx for xx in flds if "right_lightsheet" in xx][0]
        flds = [l, r]
    #
    st = time.time()
    name = os.path.basename(dst)
    ch = dst[-2:]
    sys.stdout.write("\nStarting blending of {}...".format(dst))
    sys.stdout.flush()
    ydim0, xdim0 = sitk.GetArrayFromImage(
        sitk.ReadImage(listall(flds[0], keyword=".tif")[0])).shape
    ydim1, xdim1 = sitk.GetArrayFromImage(
        sitk.ReadImage(listall(flds[1], keyword=".tif")[0])).shape
    ydim = ydim0 if ydim0 < ydim1 else ydim1
    xdim = xdim0 if xdim0 < xdim1 else xdim1

    #alpha=np.tile(scipy.stats.logistic.cdf(np.linspace(-250, 250, num=xdim)), (ydim, 1))
    fls0 = listall(flds[0], keyword=".tif")
    fls0.sort()
    fls1 = listall(flds[1], keyword=".tif")
    fls1.sort()
    fls = fls0 if len(fls0) < len(fls1) else fls1

    makedir(dst)
    #makedir(os.path.join(dst, name))

    iterlst = [{
        "xdim": xdim,
        "ydim": ydim,
        "fl0": fls0[i],
        "channel": ch,
        "fl1": fls1[i],
        "dst": dst,
        "name": name,
        "zplane": i
    } for i, fl0 in enumerate(fls)]

    if cores >= 2:
        p = mp.Pool(cores)
        p.map(blend, iterlst)
        p.terminate()
    else:
        [blend(dct) for dct in iterlst]

    #if cleanup: [shutil.rmtree(xx) for xx in flds]
    sys.stdout.write("\n...finished in {} minutes.\n".format(np.round(
        (time.time() - st) / 60),
                                                             decimals=2))
    sys.stdout.flush()
    return
Ejemplo n.º 5
0
def apply_classifier(classifier, raw_src, cnn_src, collect_cnn = False, size = (3,12,12), pad=False, cores=10, numZSlicesPerSplit=50, overlapping_planes = 15, verbose=True, save=True, maxip=0):
    '''
    classifier = pretrained random forest or path to pretrained random forest
    raw_src = folder of tiffs of raw input data
    cnn_src = folder of tiffs from cnn output
    size
    pad = if True, pad the edges of objects determined. False: remove edge cases, usually better since they will be few in number
    cores = number of cores for parallelization, larger the number the less memory efficient
    numZSlicesPerSplit: chunk of zplanes to process at once. Adjust this and cores based on memory constraints.
    overlapping_planes: number of planes on each side to overlap by, this should be a comfortable amount larger than the maximum z distances of a single object
    save (optional): #optional save to prevent rerun of jobs
    collect_cnn = optional to include cnn data for random forest input
    
    Returns
    ----------------
    a dictionary consisting of k=centers, v=[corresponding pixel indices determine by CNN, maximum intensity, list of maximum radius/plane]
    
    '''
    #handle inputs
    threshold = 1
    zyx_search_range = (2,10,10)
    zdim = len(listdirfull(cnn_src, keyword='.tif'))
    
    #optional save to prevent rerun of jobs
    if save: 
        save = cnn_src+'_apply_classifier_tmp'
        makedir(save)
    
    #run
    if verbose: sys.stdout.write('\n   Thesholding, determining connected pixels, identifying center of masses, applying classifier\n\n'); sys.stdout.flush(); st = time.time()
    rng = range(0, zdim, numZSlicesPerSplit); jobs = len(rng);
    iterlst=[(cnn_src, raw_src, collect_cnn, z, zdim, numZSlicesPerSplit, overlapping_planes, threshold, classifier, size, zyx_search_range, pad, job, jobs, verbose, save, maxip) for job, z in enumerate(rng)]
    #par vs not par
    if cores > 1:
        p = mp.Pool(cores)
        center_pixels_intensity_radius_lst = p.starmap(apply_classifier_helper, iterlst)
        p.terminate()
    else:
        center_pixels_intensity_radius_lst = []
        for i in iterlst:
            center_pixels_intensity_radius_lst.append(apply_classifier_helper(i))
    #optional reload:
    if save:
        center_pixels_intensity_radius_lst = [load_dictionary(xx) for xx in listdirfull(save)]
        shutil.rmtree(save)

    #unpack
    if verbose: sys.stdout.write('\n...finished, formatting dictionary...'); sys.stdout.flush()
    center_pixels_intensity_radius_dct = {}; [center_pixels_intensity_radius_dct.update(xx) for xx in center_pixels_intensity_radius_lst]
    if 'None' in center_pixels_intensity_radius_dct: del center_pixels_intensity_radius_dct['None']
        
    if verbose: print ('Total time {} minutes'.format(round((time.time() - st) / 60)))
    if verbose: print('{} centers found.'.format(len(center_pixels_intensity_radius_dct)))

    return center_pixels_intensity_radius_dct
Ejemplo n.º 6
0
def move_images_after_stitching(ts_out, dst, channel):

    #make sure destination exists
    makedir(dst)
    imgs = listall(ts_out, '.tif')
    imgs.sort()
    #parellelize
    iterlst = [(i, img, dst, channel) for i, img in enumerate(imgs)]
    p = mp.Pool(6)
    p.starmap(move_images_after_stitching_par, iterlst)

    return dst
Ejemplo n.º 7
0
def generate_transformed_cellcount(dataframe,
                                   dst,
                                   transformfiles,
                                   lightsheet_parameter_dictionary,
                                   verbose=False):
    '''Function to take a csv file and generate an input to transformix
    
    Inputs
    ----------------
    dataframe = preloaded pandas dataframe
    dst = destination to save files
    transformfiles = list of all elastix transform files used, and in order of the original transform****
    lightsheet_parameter_file = .p file generated from lightsheet package
    '''
    #set up locations
    transformed_dst = os.path.join(dst, 'transformed_points')
    makedir(transformed_dst)

    #make zyx numpy arry
    zyx = dataframe[['z', 'y', 'x']].values

    #adjust for reorientation THEN rescaling, remember full size data needs dimension change releative to resample
    kwargs = load_dictionary(lightsheet_parameter_dictionary)
    vol = [xx for xx in kwargs['volumes'] if xx.ch_type == 'cellch'][0]
    fullsizedimensions = get_fullsizedims_from_kwargs(
        kwargs
    )  #don't get from kwargs['volumes'][0].fullsizedimensions it's bad! use this instead
    zyx = fix_contour_orientation(zyx, verbose=verbose,
                                  **kwargs)  #now in orientation of resample
    zyx = points_resample(
        zyx,
        original_dims=fix_dimension_orientation(fullsizedimensions, **kwargs),
        resample_dims=tifffile.imread(vol.resampled_for_elastix_vol).shape,
        verbose=verbose)[:, :3]

    #make into transformix-friendly text file
    pretransform_text_file = create_text_file_for_elastix(zyx, transformed_dst)

    #copy over elastix files
    transformfiles = modify_transform_files(transformfiles, transformed_dst)
    change_transform_parameter_initial_transform(transformfiles[0],
                                                 'NoInitialTransform')

    #run transformix on points
    points_file = point_transformix(pretransform_text_file, transformfiles[-1],
                                    transformed_dst)

    #convert registered points into structure counts
    converted_points = unpack_pnts(points_file, transformed_dst)

    return converted_points
Ejemplo n.º 8
0
def make_jobs(image_dictionary):
    '''Simple function to create job dct for parallelization
    '''
    jobdct={}
    lslst = ['left_lightsheet', 'right_lightsheet']
    for channel in image_dictionary['channels']:
        for lightsheet in range(image_dictionary['lightsheets']):
            if image_dictionary['lightsheets'] == 2:
                side=['_C00_', '_C01_'][lightsheet]
                dct = copy.deepcopy(image_dictionary)
                dct['zchanneldct']={k:{kk:[xx for xx in vv if side in xx]} for k,v in dct['zchanneldct'].iteritems() for kk,vv in v.iteritems()}
                name = os.path.basename(os.path.dirname((dct['zchanneldct'].values()[0].values()[0][0])))
                out = os.path.join(dst, '{}_{}'.format(name, lslst[lightsheet])); makedir(out)
                jobdct['channel{}_lightsheet{}'.format(channel, lightsheet)] = copy.deepcopy({'job': 'channel{}_lightsheet{}'.format(channel, lightsheet), 'name': name, 'lightsheet': lslst[lightsheet], 'channel': channel, 'dst':dct['dst'], 'dct': copy.deepcopy(dct), 'out':out, 'cores':1})
    return jobdct
Ejemplo n.º 9
0
def inj_and_cells(elastixfld, cellch, injch, AtlasFile, threshold=0.075):
    ###assumes sagittal files
    ###set paths for
    ###generate Allen Atlas background
    allen = os.path.join(elastixfld, 'allenatlas_inj')
    makedir(allen)
    allentiff = tifffile.imread(AtlasFile[:-4] + '.tif')[:, 390:, :]
    allentiffloc = os.path.join(allen, 'allen_for_inj.tif')
    tifffile.imsave(allentiffloc, allentiff)
    depth.colorcode(allentiffloc, allen)
    grayscale = [
        os.path.join(allen, 'proj0.png'),
        os.path.join(allen, 'proj1.png'),
        os.path.join(allen, 'proj2.png')
    ]
    ####parsing out injection site
    ninjfld = os.path.join(elastixfld, 'injection_and_cells')
    makedir(ninjfld)
    injstack = tifffile.imread(injch)[:, 390:, :]  ##assumes sagittal ABA 25um
    ninjstackloc = os.path.join(ninjfld, 'injectionsite.tif')
    #normalize and threshold
    mxx = injstack.max()
    injstack = (injstack - injstack.min()) / (injstack.max() - injstack.min())
    injstack[injstack < threshold] = 0
    injstack = injstack * mxx
    tifffile.imsave(ninjstackloc, injstack.astype('uint16'))
    ####applying depth coding
    depth.colorcode(ninjstackloc, ninjfld)
    ###apply overlay
    color = [
        os.path.join(ninjfld, 'proj0.png'),
        os.path.join(ninjfld, 'proj1.png'),
        os.path.join(ninjfld, 'proj2.png')
    ]
    nametosave = [
        os.path.join(ninjfld, "proj0_overlay.png"),
        os.path.join(ninjfld, "proj1_overlay.png"),
        os.path.join(ninjfld, "proj2_overlay.png")
    ]
    for x in range(3):
        print(grayscale[x], color[x], nametosave[x])
        depth.overlay(grayscale[x], color[x], nametosave[x], alpha=0.95)
    depth.layout(nametosave[1], nametosave[0], nametosave[2], ninjfld)
    print(grayscale)
    print(color)
    print(nametosave)
    writer(elastixfld, "\nFinished inj_and_cells depth coloring overlay")
    return
Ejemplo n.º 10
0
def resize(src, resizefactor, cores):
    """
    src = fullsizedata_fld
    """
    #find files
    fls = listall(src, keyword=".tif")

    #calc resize
    y, x = tifffile.imread(fls[0], multifile=False).shape
    yr = int(y / resizefactor)
    xr = int(x / resizefactor)

    #set up dsts
    [
        makedir(
            os.path.join(os.path.dirname(src), xx[:-4] + "resized_" + xx[-4:]))
        for xx in os.listdir(src) if ".txt" not in xx
    ]

    #parallelize
    iterlst = [copy.deepcopy({"fl": fl, "xr": xr, "yr": yr}) for fl in fls]
    p = mp.Pool(cores)
    p.map(resize_helper, iterlst)
    p.terminate()

    return
def isolate_and_overlay(pth, AtlasFile, svlc, nm_to_sv,*args):
    '''function to segment out allen brain structures and then depth color overlay.
    Inputs:
        pth=pth to allen annoation
        AtlasFile=pth to atlas (grayscale)
        svlc=pth to folder to save
        nm_to_sv=text to identify this structure
        *args=lst of structure ID's (pixel values) to keep
    '''
    im=isolate_structures(pth, *args)
    makedir(svlc)
    svlc2=os.path.join(svlc, nm_to_sv)
    makedir(svlc2)    
    impth=os.path.join(svlc2, str(nm_to_sv)+'.tif')    
    tifffile.imsave(impth, im.astype('uint8'))
    allen_compare(AtlasFile, svlc, impth)
    return
Ejemplo n.º 12
0
def similarity_transform(fx, mv, dst, nm, level='fast', cleanup=True):
    '''function for similarity transform
    
    Inputs
    -------------------
    fx = fixed path (usually Atlas for 'normal' noninverse transforms)
    mv = moving path (usually volume to register for 'normal' noninverse transforms)
    dst = location to save
    nm = 'name of file to save'
    level = 'fast', 'intermediate', 'slow' : links to parameter files of certain complexity
    cleanup = if False do not remove files
    
    Returns
    -------------
    path to file
    path to transform file (if cleanup == False)
    '''
    transform_to_use = {
        'slow':
        '/jukebox/wang/pisano/Python/lightsheet/supp_files/similarity_transform_slow.txt',
        'intermediate':
        '/jukebox/wang/pisano/Python/lightsheet/supp_files/similarity_transform_intermediate.txt',
        'fast':
        '/jukebox/wang/pisano/Python/lightsheet/supp_files/similarity_transform_fast.txt'
    }[level]

    #make dir
    makedir(dst)
    out = os.path.join(dst, 'tmp')
    makedir(out)
    fl, tp = elastix_command_line_call(fx,
                                       mv,
                                       out=out,
                                       parameters=[transform_to_use])

    #move and delete
    if nm[-4:] != '.tif': nm = nm + '.tif'
    dstfl = os.path.join(dst, nm)
    shutil.move(fl, dstfl)
    if cleanup: shutil.rmtree(out)
    print('saved as {}'.format(dstfl))

    if cleanup: return dstfl
    if not cleanup: return dstfl, tp
Ejemplo n.º 13
0
def points_transform(src, dst, transformfile, verbose=False):
    '''Function to apply a tranform given a numpy.
    
    ***Assumes ZYX and that any orientation changes have already been done.***
    
    src: numpy array or list of np arrays of dims nx3
    dst: folder to save
    '''
    src = np.asarray(src)
    assert src.shape[-1] == 3, 'src must be a nx3 array'

    #create txt file, with elastix header, then populate points
    makedir(dst)
    pnts_fld = os.path.join(dst, 'transformedpoints_pretransformix')
    makedir(pnts_fld)
    transforminput = os.path.join(pnts_fld, 'zyx_transformedpnts.txt')

    #prevent adding to an already made file
    removedir(transforminput)
    writer(pnts_fld, 'index\n{}\n'.format(len(src)), flnm=transforminput)
    if verbose:
        sys.stdout.write(
            '\nwriting centers to transfomix input points text file: {}....'.
            format(transforminput))

    #this step converts from zyx to xyz*****
    stringtowrite = '\n'.join(
        ['\n'.join(['{} {} {}'.format(i[2], i[1], i[0])]) for i in src])
    writer(pnts_fld, stringtowrite, flnm=transforminput)
    if verbose:
        sys.stdout.write('...done writing centers.')
        sys.stdout.flush()

    #elastix for inverse transform
    trnsfrm_out_file = point_transformix(txtflnm=transforminput,
                                         dst=dst,
                                         transformfile=transformfile)
    assert os.path.exists(
        trnsfrm_out_file), 'Error Transform file does not exist: {}'.format(
            trnsfrm_out_file)
    #if verbose: sys.stdout.write('\n***Elastix Inverse Transform File: {}***'.format(transformfile))

    return trnsfrm_out_file
Ejemplo n.º 14
0
def blend_lightsheets_pre_stitching(left, right, dst, cores):

    st = time.time()
    name = os.path.basename(dst)
    ch = dst[-2:]
    sys.stdout.write("\nStarting blending of {}...".format(dst))
    sys.stdout.flush()
    ydim0, xdim0 = sitk.GetArrayFromImage(sitk.ReadImage(left[0])).shape
    ydim1, xdim1 = sitk.GetArrayFromImage(sitk.ReadImage(right[0])).shape
    #checks
    assert ydim0 == ydim1
    assert xdim0 == xdim1
    assert len(left) == len(right)

    makedir(dst)

    iterlst = [{
        "xdim": xdim0,
        "ydim": ydim0,
        "fl0": left[i],
        "channel": ch,
        "fl1": right[i],
        "dst": dst,
        "name": name,
        "zplane": i,
        "stitched": False
    } for i, l in enumerate(left)]

    if cores >= 2:
        p = mp.Pool(cores)
        p.map(blend, iterlst)
        p.terminate()
    else:
        [blend(dct) for dct in iterlst]

    #if cleanup: [shutil.rmtree(xx) for xx in flds]
    sys.stdout.write("\n...finished in {} minutes.\n".format(np.round(
        (time.time() - st) / 60),
                                                             decimals=2))
    sys.stdout.flush()
    return
Ejemplo n.º 15
0
def blend_lightsheets(name, flds, dst, cores):
    '''
    '''
    sys.stdout.write('\nStarting blending of {}...'.format(name)); sys.stdout.flush()
    ydim, xdim =tifffile.imread(listall(flds[0], keyword='.tif')[0]).shape
    alpha=np.tile(scipy.stats.logistic.cdf(np.linspace(-250, 250, num=xdim)), (ydim, 1))
    fls0 = listall(flds[0], keyword='.tif'); fls0.sort()
    fls1 = listall(flds[1], keyword='.tif'); fls1.sort()
    assert set([os.path.basename(xx) for xx in fls0]) == set([os.path.basename(xx) for xx in fls1]), 'uneven number of z planes between L and R lightsheets'
    makedir(os.path.join(dst, name))
    iterlst=[{'alpha':alpha, 'fl0':fl0, 'fl1':fls1[i], 'dst':dst, 'name':name, 'zplane':i} for i,fl0 in enumerate(fls0)]
    if cores>=2:
        p=mp.Pool(cores)
        p.map(blend, iterlst)
        p.terminate()
    else:
        [blend(dct) for dct in iterlst]
    
    [shutil.rmtree(xx) for xx in flds]
    sys.stdout.write('completed.\n'.format(name)); sys.stdout.flush()
    return
Ejemplo n.º 16
0
def generate_transformed_cellcount(dataframe, dst, transformfiles, lightsheet_parameter_dictionary, verbose=False):
    """Function to take a csv file and generate an input to transformix
    
    Inputs
    ----------------
    dataframe = preloaded pandas dataframe
    dst = destination to save files
    transformfiles = list of all elastix transform files used, and in order of the original transform****
    lightsheet_parameter_file = .p file generated from lightsheet package
    """
    #set up locations
    transformed_dst = os.path.join(dst, "transformed_points"); makedir(transformed_dst)
    
    #make zyx numpy arry
    zyx = dataframe[["z","y","x"]].values
    
    #adjust for reorientation THEN rescaling, remember full size data needs dimension change releative to resample
    fullsizedimensions = get_fullsizedimensions(lightsheet_parameter_dictionary)
    kwargs = load_kwargs(lightsheet_parameter_dictionary)
     
    zyx = fix_contour_orientation(zyx, verbose=verbose, **kwargs) #now in orientation of resample
    resampled_dims, resampled_vol = get_resampledvol_n_dimensions(lightsheet_parameter_dictionary)
    
    zyx = points_resample(zyx, original_dims = fix_dimension_orientation(fullsizedimensions, 
            **kwargs), resample_dims = resampled_dims, verbose = verbose)[:, :3]
         
    #make into transformix-friendly text file
    pretransform_text_file = create_text_file_for_elastix(zyx, transformed_dst)
        
    #copy over elastix files
    transformfiles = modify_transform_files(transformfiles, transformed_dst) 
    change_transform_parameter_initial_transform(transformfiles[0], "NoInitialTransform")
   
    #run transformix on points
    points_file = point_transformix(pretransform_text_file, transformfiles[-1], transformed_dst)
    
    #convert registered points into structure counts
    converted_points = unpack_pnts(points_file, transformed_dst)   
    
    return converted_points
Ejemplo n.º 17
0
def generate_transformed_cellcount(points, dst, transformfiles):
    """ makes an input to transformix """
    #set up locations
    transformed_dst = os.path.join(dst, "transformed_points")
    makedir(transformed_dst)

    #make zyx numpy arry
    zyx = np.asarray(points)

    transformfiles = modify_transform_files(transformfiles, transformed_dst)
    change_transform_parameter_initial_transform(transformfiles[0],
                                                 "NoInitialTransform")

    pretransform_text_file = create_text_file_for_elastix(zyx, transformed_dst)

    #run transformix on points
    points_file = point_transformix(pretransform_text_file, transformfiles[-1],
                                    transformed_dst)

    #convert registered points into structure counts
    converted_points = unpack_pnts(points_file, transformed_dst)

    return converted_points
Ejemplo n.º 18
0
def generate_cropped_atlas(**kwargs):
    '''Wrapper to call crop_atlas and save in appropriate place
    
    Inputs
    -------------------
    kwargs used: 
        ouputdirectory
        AtlasFile
        maskatlas
        
    Returns:
    -------------------
    path to newly saved cropped atlas
    '''
    #make folder to store masked atlas
    fld = os.path.join(kwargs['outputdirectory'], 'croppedatlas')
    makedir(fld)
    
    #generate masked_atlas
    cropped_atlas = crop_atlas(**kwargs)
    
    #save masked_atlas
    cropped_atlas_pth = os.path.join(fld, 'cropped_atlas.tif')
    tifffile.imsave(cropped_atlas_pth, cropped_atlas)
    
    return cropped_atlas_pth
    

    
    
    
    
    
    
    
    
Ejemplo n.º 19
0
 ch = "Ex_642_Em_2"
 #for array job parallelization
 print(os.environ["SLURM_ARRAY_TASK_ID"])
 jobid = int(os.environ["SLURM_ARRAY_TASK_ID"])
 # jobid=0
 #set brain name
 brain = os.path.join(src, brains[jobid])
 start = time.time()
 #need to change this config depending on processing pipeline
 cellvol = fast_scandir(os.path.join(brain,ch,"stitched"))[-1] 
 #link to parameters
 a2r0 = os.path.join(brain, "elastix_inverse_transform/TransformParameters.0.txt")
 a2r1 = os.path.join(brain, "elastix_inverse_transform/TransformParameters.1.txt")
 #set destination directory
 braindst = os.path.join(scratch_dir, os.path.basename(brain))
 makedir(braindst)
 aldst = os.path.join(braindst, "transformed_annotations"); makedir(aldst)
 #transformix
 # transformfiles = modify_transform_files(transformfiles=[a2r0, a2r1, r2s0, r2s1], dst = aldst)
 transformfiles = modify_transform_files(transformfiles=[a2r0, a2r1], dst = aldst)
 [change_interpolation_order(xx,0) for xx in transformfiles]
 #change the parameter in the transform files that outputs 16bit images instead
 for fl in transformfiles:# Read in the file
     with open(fl, "r") as file:
         filedata = file.read()
     # Replace the target string
     filedata = filedata.replace('(ResultImagePixelType "short")', '(ResultImagePixelType "float")')
     # Write the file out again
     with open(fl, "w") as file:
       file.write(filedata)
 #run transformix  
    filtered = gfilt(clh**power, filter_kernel)
    #tif.imsave("/home/wanglab/Desktop/filtered_z200-300.tif", filtered[200:300].astype("float32"))
    #
    #plt.figure()
    #plt.imshow(filtered[300], "gist_yarg")

    thresholded = filtered > filtered.mean() + thresh * filtered.std()
    labelled, nlab = label(thresholded)

    #plt.figure()
    sizes = [np.sum(labelled == i) for i in range(1, nlab + 1)]
    vals = [i + 1 for i in np.argsort(sizes)[::-1]]
    arr = np.in1d(labelled, vals).reshape(labelled.shape)

    seg_dst = os.path.join(dst, "rawdata_segmentations")
    makedir(seg_dst)
    tif.imsave(
        os.path.join(seg_dst, "%s.tif" % os.path.basename(brain)),
        np.in1d(labelled, vals).reshape(labelled.shape).astype("uint16"))

    im = tif.imread(imgs[0])
    arr_fullsz = np.zeros((len(imgs), im.shape[0], im.shape[1]))
    print(arr_fullsz.shape)
    print(arr.shape)

    #################################################################################################################################################################
    arr_fullsz[:, 1700:, :] = arr

    #plt.imshow(arr_fullsz[300])

    zf, yf, xf = 1, (1 / 3), (1 / 3)
    #this isn't a perfect Quality control and you can expect some pixel shifts
    #qc_overlay_transform_type = 'affine_only_reg_to_sig';#both for reg+atlas, and only affine for sig and reg. This is what clearmap does
    #qc_overlay_transform_type = 'all' #both for auto+atlas and for sig+auto
    qc_overlay_transform_type = 'single'
    #don't consider reg with sig at all

    #%%
    ###############################
    #run, don't touch below
    ###############################
    df = pd.read_csv(path_to_csv_file)
    for i, row in df.iterrows():

        #set up destination
        dst = os.path.join(row['dst'], dst_suffix)
        makedir(dst)

        #lightsheet package output folder
        fld = row['fld']

        #path to mat file
        cell_centers_path = os.path.join(row['prefix_path_to_mat_file'],
                                         mat_file_suffix)

        print(
            '\n\n_________________\nFolder: {}\nDestination: {}\nMatfile: {}\n'
            .format(fld, dst, cell_centers_path))

        #loads
        kwargs = load_kwargs(fld)
        regvol = [xx for xx in kwargs['volumes'] if xx.ch_type == 'regch'][0]
    np.sum(xx[4:7]),
    np.sum(xx[7:10]), xx[10], xx[11], xx[12],
    np.sum(xx[13:16])
] for xx in expr_all_as_frac_of_inj])
primary_pool = np.array([np.argmax(e) for e in frac_of_inj_pool])
#get n's after pooling
primary_lob_n = np.array([
    len(np.where(primary_pool == i)[0]) for i in range(max(primary_pool) + 1)
])
#normalization  of inj site
frac_of_inj_pool_norm = np.asarray(
    [brain / brain.sum() for brain in frac_of_inj_pool])

lr_brains = list(lr_dist.keys())
atl_dst = os.path.join(dst, "pma_to_aba")
makedir(atl_dst)
id_table = pd.read_excel(df_pth)
#%%
#------------------------------------------------------------------------------------------------------------------------------
#NOTE THAT ONLY HAVE TO DO THIS ONCE!!!! DO NOT NEED TO DO AGAIN UNLESS DOUBLE CHECKIHG
#transform points to allen atlas space

#get brains that we actually need to get cell counts from
src = "/jukebox/wang/pisano/tracing_output/antero_4x_analysis/201903_antero_pooled_cell_counts_thalamus/transformed_points"
post_transformed = [
    os.path.join(
        src,
        os.path.join(xx, "transformed_points/posttransformed_zyx_voxels.npy"))
    for xx in lr_brains
]
transformfiles = [
Ejemplo n.º 23
0
def pool_injections_for_analysis(**kwargs):
    
    inputlist = kwargs['inputlist']
    dst = kwargs['dst']; makedir(dst)
    injscale = kwargs['injectionscale'] if 'injectionscale' in kwargs else 1
    imagescale = kwargs['imagescale'] if 'imagescale' in kwargs else 1
    axes = kwargs['reorientation'] if 'reorientation' in kwargs else ('0','1','2')
    cmap = kwargs['colormap'] if 'colormap' in kwargs else 'plasma'
    id_table = kwargs['id_table'] if 'id_table' in kwargs else '/jukebox/temp_wang/pisano/Python/lightsheet/supp_files/allen_id_table.xlsx'
    save_tif = kwargs['save_tif'] if 'save_tif' in kwargs else False
    num_sites_to_keep = kwargs['num_sites_to_keep'] if 'num_sites_to_keep' in kwargs else 1
    nonzeros = []
    ann = sitk.GetArrayFromImage(sitk.ReadImage(kwargs['annotation']))
    if kwargs['crop']: ann = eval('ann{}'.format(kwargs['crop']))   
    allen_id_table=pd.read_excel(id_table)
    
    for i in range(len(inputlist)):
        impth = inputlist[i]
        animal = os.path.basename(os.path.dirname(os.path.dirname(os.path.dirname(impth))))
        
        print('\n\n_______\n{}'.format(animal))
        
        print('  loading:\n     {}'.format(animal))
        im = tifffile.imread(impth)
            
        if kwargs['crop']: im = eval('im{}'.format(kwargs['crop']))#; print im.shape
        
        #reorient to coronal?
        
        #segment
        arr = find_site(im, thresh=kwargs['threshold'], filter_kernel=kwargs['filter_kernel'], num_sites_to_keep=num_sites_to_keep)*injscale
        if save_tif: tifffile.imsave(os.path.join(dst,'{}'.format(os.path.dirname(impth))+'_inj.tif'), arr.astype('float32'))
        
        #optional 'save_individual'
        if kwargs['save_individual']:
            im = im*imagescale
            a=np.concatenate((np.max(im, axis=0), np.max(arr.astype('uint16'), axis=0)), axis=1)
            b=np.concatenate((np.fliplr(np.rot90(np.max(fix_orientation(im, axes=axes), axis=0),k=3)), np.fliplr(np.rot90(np.max(fix_orientation(arr.astype('uint16'), axes=axes), axis=0),k=3))), axis=1)
            plt.figure()
            plt.imshow(np.concatenate((b,a), axis=0), cmap=cmap, alpha=1);  plt.axis('off')
            plt.savefig(os.path.join(dst,'{}'.format(animal)+'.pdf'), dpi=300, transparent=True)
            plt.close()

        #cell counts to csv
        print('   finding nonzero pixels for voxel counts...')      
        nz = np.nonzero(arr)
        nonzeros.append(zip(*nz)) #<-for pooled image
        pos = transformed_pnts_to_allen_helper_func(np.asarray(zip(*[nz[2], nz[1], nz[0]])), ann)
        tdf = count_structure_lister(allen_id_table, *pos)
        if i == 0: 
            df = tdf.copy()
            countcol = 'count' if 'count' in df.columns else 'cell_count'
            df.drop([countcol], axis=1, inplace=True)
        df[animal] = tdf[countcol]
        
    df.to_csv(os.path.join(dst,'voxel_counts.csv'))
    print('\n\nCSV file of cell counts, saved as {}\n\n\n'.format(os.path.join(dst,'voxel_counts.csv')))  
            
    #condense nonzero pixels
    nzs = [str(x) for xx in nonzeros for x in xx] #this list has duplicates if two brains had the same voxel w label
    c = Counter(nzs)
    array = np.zeros(im.shape)
    print('Collecting nonzero pixels for pooled image...')
    tick = 0
    #generating pooled array where voxel value = total number of brains with that voxel as positive
    for k,v in c.iteritems():
        k = [int(xx) for xx in k.replace('(','').replace(')','').split(',')]
        array[k[0], k[1], k[2]] = int(v)
        tick+=1
        if tick % 50000 == 0: print('   {}'.format(tick))
        
    #load atlas and generate final figure
    print('Generating final figure...')      
    atlas = tifffile.imread(kwargs['atlas'])
    arr = fix_orientation(array, axes=axes)
    #cropping
    #if 'crop_atlas' not in kwargs:
    if kwargs['crop']: atlas = eval('atlas{}'.format(kwargs['crop']))
    atlas = fix_orientation(atlas, axes=axes)
    
    my_cmap = eval('plt.cm.{}(np.arange(plt.cm.RdBu.N))'.format(cmap))
    my_cmap[:1,:4] = 0.0  
    my_cmap = mpl.colors.ListedColormap(my_cmap)
    my_cmap.set_under('w')
    plt.figure()
    plt.imshow(np.max(atlas, axis=0), cmap='gray')
    plt.imshow(np.max(arr, axis=0), alpha=0.99, cmap=my_cmap); plt.colorbar(); plt.axis('off')
    dpi = int(kwargs['dpi']) if 'dpi' in kwargs else 300
    plt.savefig(os.path.join(dst,'heatmap.pdf'), dpi=dpi, transparent=True);
    plt.close()
    
    print('Saved as {}'.format(os.path.join(dst,'heatmap.pdf')))  
        
    return df
Ejemplo n.º 24
0
def overlay_qc(args):  
    #unpacking this way for multiprocessing
    fld, folder_suffix, output_folder, verbose, doubletransform, make_volumes = args
    try:
        #get 3dunet cell dataframe csv file
        input_csv = listdirfull(os.path.join(fld, folder_suffix), ".csv")
        assert len(input_csv) == 1, "multiple csv files"
        dataframe = pd.read_csv(input_csv[0])
        
        #location to save out
        dst = os.path.join(output_folder, os.path.basename(fld)); makedir(dst)
    
        #EXAMPLE USING LIGHTSHEET - assumes marking centers in the "raw" full sized cell channel. This will transform those 
        #centers into "atlas" space (in this case the moving image)
        #in this case the "inverse transform has the atlas as the moving image in the first step, 
        #and the autofluorescence channel as the moving image in the second step 
        #NOTE - it seems that the registration of cell to auto is failing on occasion....thus get new files...
        ################################
        cell_inverse_folder = listdirfull(os.path.join(fld, "elastix_inverse_transform"), "cellch")[0]
        a2r = listall(cell_inverse_folder, "atlas2reg_TransformParameters"); a2r.sort()
        r2s = listall(cell_inverse_folder, "reg2sig_TransformParameters"); r2s.sort() #possibly remove

        #IMPORTANT. the idea is to apply cfos->auto->atlas
        transformfiles = r2s + a2r if doubletransform else a2r #might get rid of r2s
    
        lightsheet_parameter_dictionary = os.path.join(fld, "param_dict.p")
            
        converted_points = generate_transformed_cellcount(dataframe, dst, transformfiles, 
                                                          lightsheet_parameter_dictionary, verbose=verbose)
    
        #load and convert to single voxel loc
        zyx = np.asarray([str((int(xx[0]), int(xx[1]), int(xx[2]))) for xx in np.nan_to_num(np.load(converted_points))])
        from collections import Counter
        zyx_cnt = Counter(zyx)
        
        #check...
        if make_volumes:
            #manually call transformix
            kwargs = load_dictionary(lightsheet_parameter_dictionary)
            vol = [xx for xx in kwargs["volumes"] if xx.ch_type == "cellch"][0].resampled_for_elastix_vol
            transformed_vol = os.path.join(dst, "transformed_volume"); makedir(transformed_vol)
            if not doubletransform:
                transformfiles = [os.path.join(fld, "elastix/TransformParameters.0.txt"), os.path.join(fld, 
                                  "elastix/TransformParameters.1.txt")]
                transformfiles = modify_transform_files(transformfiles, transformed_vol) #copy over elastix files
                transformix_command_line_call(vol, transformed_vol, transformfiles[-1])
            else:
                v=[xx for xx in kwargs["volumes"] if xx.ch_type == "cellch"][0]
                #sig to reg
                tps = [listall(os.path.dirname(v.ch_to_reg_to_atlas), "/TransformParameters.0")[0], 
                       listall(os.path.dirname(v.ch_to_reg_to_atlas), "/TransformParameters.1")[0]]
                #reg to atlas
                transformfiles = tps+[os.path.join(fld, "elastix/TransformParameters.0.txt"), 
                                      os.path.join(fld, "elastix/TransformParameters.1.txt")]
                transformfiles = modify_transform_files(transformfiles, transformed_vol) #copy over elastix files
                transformix_command_line_call(vol, transformed_vol, transformfiles[-1])
            

            #cell_registered channel
            cell_reg = tifffile.imread(os.path.join(transformed_vol, "result.tif"))
            tifffile.imsave(os.path.join(transformed_vol, "result.tif"), cell_reg, compress=1)
            cell_cnn = np.zeros_like(cell_reg)
            tarr = []; badlist=[]
            for zyx,v in zyx_cnt.items():
                z,y,x = [int(xx) for xx in zyx.replace("(","",).replace(")","").split(",")]
                tarr.append([z,y,x])
                try:
                    cell_cnn[z,y,x] = v*100
                except:
                    badlist.append([z,y,x])
                    
            #apply x y dilation
            r = 2
            selem = ball(r)[int(r/2)]
            cell_cnn = cell_cnn.astype("uint8")
            cell_cnn = np.asarray([cv2.dilate(cell_cnn[i], selem, iterations = 1) for i in range(cell_cnn.shape[0])])
            
            tarr=np.asarray(tarr)
            if len(badlist)>0: 
                print("{} errors in mapping with cell_cnn shape {}, each max dim {}, \npossibly due to a registration overshoot \
                      or not using double transform\n\n{}".format(len(badlist), cell_cnn.shape, np.max(tarr,0), badlist))
            merged = np.stack([cell_cnn, cell_reg, np.zeros_like(cell_reg)], -1)
            tifffile.imsave(os.path.join(transformed_vol, "merged.tif"), merged)#, compress=1)
            #out = np.concatenate([cell_cnn, cell_reg, ], 0)
        
        #####check at the resampled for elastix phase before transform...this mapping looks good...
        if make_volumes:
            #make zyx numpy arry
            zyx = dataframe[["z","y","x"]].values
            kwargs = load_dictionary(lightsheet_parameter_dictionary)
            vol = [xx for xx in kwargs["volumes"] if xx.ch_type =="cellch"][0]
            fullsizedimensions = get_fullsizedims_from_kwargs(kwargs) #don"t get from kwargs["volumes"][0].fullsizedimensions it"s bad! use this instead
            zyx = fix_contour_orientation(zyx, verbose=verbose, **kwargs) #now in orientation of resample
            zyx = points_resample(zyx, original_dims = fix_dimension_orientation(fullsizedimensions, **kwargs), 
                                  resample_dims = tifffile.imread(vol.resampled_for_elastix_vol).shape, verbose = verbose)[:, :3]
            
            #cell channel
            cell_ch = tifffile.imread(vol.resampled_for_elastix_vol)
            cell_cnn = np.zeros_like(cell_ch)
            tarr = []; badlist=[]
            for _zyx in zyx:
                z,y,x = [int(xx) for xx in _zyx]
                tarr.append([z,y,x])
                try:
                    cell_cnn[z,y,x] = 100
                except:
                    badlist.append([z,y,x])
            tarr=np.asarray(tarr)        
            merged = np.stack([cell_cnn, cell_ch, np.zeros_like(cell_ch)], -1)
            tifffile.imsave(os.path.join(transformed_vol, "resampled_merged.tif"), merged)#, compress=1)
            
    except Exception as e:
        print(e)
        with open(error_file, "a") as err_fl:
            err_fl.write("\n\n{} {}\n\n".format(fld, e))
Ejemplo n.º 25
0
            
    except Exception as e:
        print(e)
        with open(error_file, "a") as err_fl:
            err_fl.write("\n\n{} {}\n\n".format(fld, e))
                

if __name__ == "__main__":
    #goal is to transform cooridnates, voxelize based on number of cells and overlay with reigstered cell signal channel...
    #set paths and make folders
    dst = "/jukebox/wang/zahra/h129_qc"
    input_folder = "/jukebox/wang/pisano/tracing_output/antero_4x/"
    folder_suffix = "3dunet_output/pooled_cell_measures"
    
    #thalamus
    output_folder = os.path.join(dst, "rtn_thal_transformed_points"); makedir(output_folder)
    qc_folder =  os.path.join(dst, "rtn_thal_qc"); makedir(qc_folder)
    error_file = os.path.join(qc_folder, "errors.txt")
    
    #inputs
    brains = ["20160622_db_bl6_crii_52hr_01", "20160622_db_bl6_unk_01", "20160801_db_cri_02_1200rlow_52hr", "20160801_db_l7_cri_01_mid_64hr",
              "20160822_tp_bl6_crii_250r_01", "20160822_tp_bl6_crii_1250r_05", "20160822_tp_bl6_crii_1500r_06", "20160823_tp_bl6_cri_250r_01",
              "20160823_tp_bl6_cri_500r_02", "20160912_tp_bl6_lob7_750r_04", "20160916_tp_lob6_ml_01", "20160916_tp_lob6_ml_04", "20160916_tp_lob7_250r_05",
              "20160920_tp_bl6_lob7_250r_02", "20160920_tp_bl6_lob7_500r_03", "20160920_tp_bl6_lob7_ml_01", "20161129_db_bl6_lob6b_ml50r_53hr",
              "20161201_db_bl6_lob6b_500r_53d5hr", "20161203_tp_bl6_crii_250r_08", "20161203_tp_bl6_crii_750r_09",
              "20161203_tp_bl6_lob7_500r_05", "20161203_tp_bl6_lob7_1000r_06", "20161203_tp_bl6_lob7_1500r_07",
              "20161203_tp_bl6_lob7_ml_04", "20161205_tp_bl6_sim_250r_02", "20161205_tp_bl6_sim_750r_03",
              "20161205_tp_bl6_sim_1250r_04", "20161205_tp_bl6_sim_1750r_05","20161207_db_bl6_lob6a_500r_53hr", 
              "20161207_db_bl6_lob6a_850r_53hr", "20161208_db_bl6_cri_50r_pv_53hr","20170115_tp_bl6_lob6b_500r_05",
              "20170115_tp_bl6_lob6b_1000r_06","20170116_tp_bl6_lob6b_lpv_07","20170130_tp_bl6_sim_rlat_05",
              "20170207_db_bl6_crii_1300r_02", "20170207_db_bl6_crii_rlat_03","20170212_tp_bl6_lob8_ml_05",
Ejemplo n.º 26
0
def ovly_3d(ch, svlc, tplst, valid_plns, outdr, vol_to_process, resizefactor,
            contour_class_lst, multiplane, ovly, core, cores):
    '''function to apply independent colors to contours that have been detected on multiple planes, and save images. 
    This has been parallelized and calculates a range based on the number of cores.
    '''
    ####assign random color to each group of contours, the break up groups, and sort by plane
    #use this for looking at multi contours only
    if multiplane != False:
        multilist = [x for x in tplst if len(x.plns) > 1]
        tplst = multilist
    contour_color_lst = []
    for contours in tplst:
        color = (random.randint(50, 255), random.randint(50, 255),
                 random.randint(50, 255))
        for plns in contours.plns.itervalues():
            contour_color_lst.append([plns, color])  ###break apart list
    #sort by z
    try:  #sort by z
        contour_color_lst.sort()
    except ValueError:  #done to suppress error
        pass
    ############################################load find full size files############################################
    makedir(svlc)
    dr = vol_to_process.full_sizedatafld_vol
    #dr='/home/wanglab/wang/pisano/tracing_output/H129_EGFP_NLS_vc22_01_lob5_intensityrescale/full_sizedatafld/ch01'
    fl = [f for f in os.listdir(dr) if '.tif' in f]
    reg = re.compile(r'(.*C+)(?P<ch>[0-9]{1,2})(.*Z+)(?P<z>[0-9]{1,4})(.tif)'
                     )  ###regex used since code changes file format
    matches = map(reg.match, fl)
    ##find index of z,y,x,ch in matches
    z_indx = matches[0].span('z')
    ####make dictionary where each pln is a key, values are all point that should be drawn
    zdct = {}
    for i in range(len(contour_color_lst)):
        pln = contour_color_lst[i]  ##check
        try:
            zdct[str(pln[0][0]).zfill(4)].append(pln)
        except KeyError:
            zdct[str(pln[0][0]).zfill(4)] = []
            zdct[str(pln[0][0]).zfill(4)].append(pln)
    ############parse jobs:
    chnkrng = chunkit(core, cores, zdct)
    ########### apply points to each pln
    if ovly == True:  ###ovly 3d contours onto data
        flpth = ''.join(matches[0].groups())
        y, x = tifffile.imread(os.path.join(dr, flpth)).shape
        dsf = resizefactor
        for i in range(chnkrng[0], chnkrng[1]):
            try:
                pln = zdct.keys()[i]
                cntrs = zdct[zdct.keys()[i]]
                ovly_helper(flpth, z_indx, dr, svlc, x, y, dsf, pln, cntrs)
                del cntrs, pln
                gc.collect()
            except:
                pass
        ###make zpln range and make empty planes on the zplns where no contours are found
        try:
            plnlst = [int(plns) for plns in zdct.iterkeys()]
            plnrng = range(min(plnlst),
                           max(plnlst) + 1)
            nocontour_plns = set(plnrng).difference(set(plnlst))
            ############parse jobs:
            chnkrng = chunkit(core, cores, nocontour_plns)
            print(
                '\n\ncontours not found on planes: {}\nmaking empty images for those planes...'
                .format(nocontour_plns))
            for i in range(chnkrng[0], chnkrng[1]):
                pln = list(nocontour_plns)[i]
                blnk_ovly_helper(flpth, z_indx, dr, svlc, x, y, dsf, pln)
                del pln
                gc.collect()
            return
        except ValueError:  #no contours found
            print('No contour found in ch{}, not making color stack...'.format(
                ch))
            return
    elif ovly == False:  ###make downsized 3d contours
        flpth = ''.join(matches[0].groups())
        y, x = tifffile.imread(os.path.join(dr, flpth)).shape
        dsf = resizefactor
        for i in range(chnkrng[0], chnkrng[1]):
            try:
                pln = zdct.keys()[i]
                cntrs = zdct[zdct.keys()[i]]
                no_ovly_helper(flpth, z_indx, dr, svlc, x, y, dsf, pln, cntrs)
                del cntrs, pln
                gc.collect()
            except:
                pass
        ###make zpln range and make empty planes on the zplns where no contours are found
        try:
            plnlst = [int(plns) for plns in zdct.iterkeys()]
            plnrng = range(min(plnlst),
                           max(plnlst) + 1)
            nocontour_plns = set(plnrng).difference(set(plnlst))
            if len(nocontour_plns) != 0:
                print(
                    '\n\ncontours not found on planes: {}\nmaking empty images for those planes...'
                    .format(nocontour_plns))
                ############parse jobs:
            chnkrng = chunkit(core, cores, nocontour_plns)
            for i in range(chnkrng[0], chnkrng[1]):
                try:
                    pln = list(nocontour_plns)[i]
                    blnk_helper(flpth, z_indx, dr, svlc, x, y, dsf, pln)
                    del pln
                    gc.collect()
                except IndexError:
                    pass
            return
        except ValueError:  #no contours found
            print('No contour found in ch{}, not making color stack...'.format(
                ch))
            return
Ejemplo n.º 27
0
def identify_structures_w_contours(jobid,
                                   cores=5,
                                   make_color_images=False,
                                   overlay_on_original_data=False,
                                   consider_only_multipln_contours=False,
                                   **kwargs):
    '''function to take 3d detected contours and apply elastix transform
    '''
    #######################inputs and setup#################################################
    ###inputs
    kwargs = load_kwargs(**kwargs)
    outdr = kwargs['outputdirectory']
    vols = kwargs['volumes']
    reg_vol = [xx for xx in vols if xx.ch_type == 'regch'][0]

    ###get rid of extra jobs
    if jobid >= len([xx for xx in vols if xx.ch_type != 'regch'
                     ]):  ###used to end jobs if too many are called
        print('jobid({}) >= volumes {}'.format(
            jobid, len([xx for xx in vols if xx.ch_type != 'regch'])))
        return

    ###volumes to process: each job represents a different contour volume
    vol_to_process = [xx for xx in vols if xx.ch_type != 'regch'][jobid]
    ch = vol_to_process.channel
    print(vol_to_process.ch_type)

    #find appropriate folders for contours
    if vol_to_process.ch_type == 'cellch':
        detect3dfld = reg_vol.celldetect3dfld
        coordinatesfld = reg_vol.cellcoordinatesfld
    elif vol_to_process.ch_type == 'injch':
        detect3dfld = reg_vol.injdetect3dfld
        coordinatesfld = reg_vol.injcoordinatesfld

    #set scale and atlas
    xscl, yscl, zscl = reg_vol.xyz_scale  ###micron/pixel
    zmx, ymx, xmx = reg_vol.fullsizedimensions
    AtlasFile = reg_vol.atlasfile
    print('Using {} CORES'.format(cores))
    try:
        p
    except NameError:
        p = mp.Pool(cores)
    resizefactor = kwargs['resizefactor']
    brainname = reg_vol.brainname

    ############################################################################################################
    #######################use regex to sort np files by ch and then by zpln####################################
    ############################################################################################################
    fl = [f for f in os.listdir(detect3dfld)
          if '.p' in f and 'ch' in f]  #sorted for raw files
    reg = re.compile(r'(.*h+)(?P<ch>\d{2})(.*)(.p)')
    matches = map(reg.match, fl)

    ##load .np files
    sys.stdout.write(
        '\njobid({}), loading ch{} .p files to extract contour_class objects....'
        .format(jobid, ch))
    contour_class_lst = []
    for fl in [
            os.path.join(detect3dfld, ''.join(xx.groups())) for xx in matches
            if xx.group('ch')[-2:] in ch
    ]:
        tmpkwargs = {}
        pckl = open(fl, 'rb')
        tmpkwargs.update(pickle.load(pckl))
        pckl.close()
        if consider_only_multipln_contours == False:
            tmplst = tmpkwargs['single']
            [tmplst.append(xx) for xx in tmpkwargs['multi']]
        elif consider_only_multipln_contours == True:
            tmplst = tmpkwargs['multi']
        [contour_class_lst.append(xx) for xx in tmplst]
    sys.stdout.write('\ndone loading contour_class objects.\n')

    #check for successful loading
    if len(contour_class_lst) == 0:
        print('Length of contours in ch{} was {}, ending process...'.format(
            jobid, len(contour_class_lst)))
        try:
            p.terminate()
        except:
            1
        return

    ############################################################################################################
    ##############################make color files##############################################################
    ############################################################################################################
    if make_color_images == True:
        sys.stdout.write('\nmaking 3d planes...')
        sys.stdout.flush()
        valid_plns = range(0, zmx + 1)
        svlc = os.path.join(outdr, 'ch{}_3dcontours'.format(ch))
        removedir(svlc)
        if overlay_on_original_data == False:
            ovly = False
        elif overlay_on_original_data == True:
            ovly = True
        iterlst = []
        [
            iterlst.append(
                (ch, svlc, contour_class_lst, valid_plns, outdr,
                 vol_to_process, resizefactor, contour_class_lst,
                 consider_only_multipln_contours, ovly, core, cores))
            for core in range(cores)
        ]
        p.starmap(ovly_3d, iterlst)
        lst = os.listdir(svlc)
        lst1 = [os.path.join(svlc, xx) for xx in lst]
        lst1.sort()
        del lst
        del iterlst
        ###load ims and return dct of keys=str(zpln), values=np.array
        sys.stdout.write(
            '\n3d planes made, saved in {},\nnow compressing into single tifffile'
            .format(svlc))
        imstack = tifffile.imread(lst1)
        del lst1
        if len(imstack.shape) > 3:
            imstack = np.squeeze(imstack)
        try:  ###check for orientation differences, i.e. from horiztonal scan to sagittal for atlas registration
            imstack = np.swapaxes(imstack, *kwargs['swapaxes'])
        except:
            pass
        tiffstackpth = os.path.join(
            outdr, '3D_contours_ch{}_{}'.format(ch, brainname))
        tifffile.imsave(tiffstackpth, imstack.astype('uint16'))
        del imstack
        gc.collect()
        shutil.rmtree(svlc)
        sys.stdout.write('\ncolor image stack made for ch{}'.format(ch))
    else:
        sys.stdout.write('\nmake_color_images=False, not creating images')
    ############################################################################################################
    ######################apply point transform and make transformix input file#################################
    ############################################################################################################
    ###find centers and add 1's to make nx4 array for affine matrix multiplication to account for downsizing
    ###everything is in PIXELS
    contourarr = np.empty((len(contour_class_lst), 3))
    for i in range(len(contour_class_lst)):
        contourarr[i, ...] = contour_class_lst[
            i].center  ###full sized dimensions: if 3x3 tiles z(~2000),y(7680),x(6480) before any rotation
    try:
        contourarr = swap_cols(
            contourarr, *kwargs['swapaxes']
        )  ###change columns to account for orientation changes between brain and atlas: if horizontal to sagittal==>x,y,z relative to horizontal; zyx relative to sagittal
        z, y, x = swap_cols(np.array([
            vol_to_process.fullsizedimensions
        ]), *kwargs['swapaxes'])[
            0]  ##convert full size cooridnates into sagittal atlas coordinates
        sys.stdout.write('\nSwapping Axes')
    except:  ###if no swapaxes then just take normal z,y,x dimensions in original scan orientation
        z, y, x = vol_to_process.fullsizedimensions
        sys.stdout.write('\nNo Swapping of Axes')
    d1, d2 = contourarr.shape
    nx4centers = np.ones((d1, d2 + 1))
    nx4centers[:, :-1] = contourarr
    ###find resampled elastix file dim

    print(os.listdir(outdr))
    print([xx.channel for xx in vols if xx.ch_type == 'regch'])
    with tifffile.TiffFile([
            os.path.join(outdr, f) for f in os.listdir(outdr)
            if 'resampledforelastix' in f and 'ch{}'.format(
                [xx.channel for xx in vols if xx.ch_type == 'regch'][0]) in f
    ][0]) as tif:
        zr = len(tif.pages)
        yr, xr = tif.pages[0].shape
        tif.close()
    ####create transformmatrix
    trnsfrmmatrix = np.identity(4) * (
        zr / z, yr / y, xr / x, 1)  ###downscale to "resampledforelastix size"
    sys.stdout.write('trnsfrmmatrix:\n{}\n'.format(trnsfrmmatrix))
    #nx4 * 4x4 to give transform
    trnsfmdpnts = nx4centers.dot(trnsfrmmatrix)  ##z,y,x
    sys.stdout.write('first three transformed pnts:\n{}\n'.format(
        trnsfmdpnts[0:3]))
    #create txt file, with elastix header, then populate points
    txtflnm = '{}_zyx_transformedpnts_ch{}.txt'.format(brainname, ch)
    pnts_fld = os.path.join(outdr, 'transformedpoints_pretransformix')
    makedir(pnts_fld)
    transforminput = os.path.join(pnts_fld, txtflnm)
    removedir(transforminput)  ###prevent adding to an already made file
    writer(pnts_fld, 'index\n{}\n'.format(len(trnsfmdpnts)), flnm=txtflnm)
    sys.stdout.write(
        '\nwriting centers to transfomix input points text file: {}....'.
        format(transforminput))
    stringtowrite = '\n'.join([
        '\n'.join(['{} {} {}'.format(i[2], i[1], i[0])]) for i in trnsfmdpnts
    ])  ####this step converts from zyx to xyz*****
    writer(pnts_fld, stringtowrite, flnm=txtflnm)
    #[writer(pnts_fld, '{} {} {}\n'.format(i[2],i[1],i[0]), flnm=txtflnm, verbose=False) for i in trnsfmdpnts] ####this step converts from zyx to xyz*****
    sys.stdout.write('...done writing centers.')
    sys.stdout.flush()
    del trnsfmdpnts, trnsfrmmatrix, nx4centers, contourarr
    gc.collect()
    ############################################################################################################
    ####################################elastix for inverse transform###########################################
    ############################################################################################################
    transformfile = make_inverse_transform(vol_to_process, cores, **kwargs)
    assert os.path.exists(transformfile)
    sys.stdout.write(
        '\n***Elastix Inverse Transform File: {}***'.format(transformfile))
    ############################################################################################################
    ####################################transformix#############################################################
    ############################################################################################################
    if make_color_images != False:
        #apply transform to 3d_tiffstack:
        transformimageinput = tiffstackpth
        elastixpth = os.path.join(outdr, 'elastix')
        trnsfrm_outpath = os.path.join(
            elastixpth, '3D_contours_ch{}_{}'.format(ch, brainname))
        makedir(trnsfrm_outpath)
        writer(trnsfrm_outpath, '\nProcessing ch{} 3D...'.format(ch))
        #transformfiles=[os.path.join(elastixpth, xx) for xx in os.listdir(os.path.join(outdr, 'elastix')) if "TransformParameters" in xx]; mxx=max([xx[-5] for xx in transformfiles])
        #transformfile=os.path.join(elastixpth, 'TransformParameters.{}.txt'.format(mxx))
        trnsfrm_out_file = os.path.join(trnsfrm_outpath,
                                        'result.tif')  #output of transformix
        transformimageinput_resized = transformimageinput[:-4] + '_resampledforelastix.tif'
        print('Resizing {}'.format(transformimageinput_resized))
        resample_par(cores,
                     transformimageinput,
                     AtlasFile,
                     svlocname=transformimageinput_resized,
                     singletifffile=True,
                     resamplefactor=1.7)
        sp.call([
            'transformix', '-in', transformimageinput_resized, '-out',
            trnsfrm_outpath, '-tp', transformfile
        ])
        writer(trnsfrm_outpath,
               '\n   Transformix File Generated: {}'.format(trnsfrm_out_file))
        writer(
            trnsfrm_outpath, '\n   Passing colorcode: {} file as {}'.format(
                ch, os.path.join(trnsfrm_outpath, 'depthcoded.png')))
        ###depth coded image of transformix result; not functional yet
        #depth.colorcode(trnsfrm_out_file, trnsfrm_outpath)
        #getvoxels(trnsfrm_out_file, os.path.join(trnsfrm_outpath, 'zyx_voxels_{}.npy'.format(ch)))
        #allen_compare(AtlasFile, svlc, trnsfrm_outpath)
        ##if successful delete contour cooridnates and maybe contourdetect3d flds
    ############################################################

    ##############apply transform to points#####################
    elastixpth = os.path.join(outdr, 'elastix_inverse_transform')
    trnsfrm_outpath = os.path.join(elastixpth, 'ch{}_3dpoints'.format(ch))
    makedir(trnsfrm_outpath)
    writer(trnsfrm_outpath,
           '\n***********Starting Transformix for: {}***********'.format(ch))
    sys.stdout.flush()
    #transformfiles=[os.path.join(elastixpth, xx) for xx in os.listdir(os.path.join(outdr, 'elastix')) if "TransformParameters" in xx]; mxx=max([xx[-5] for xx in transformfiles])
    #transformfile=os.path.join(elastixpth, 'TransformParameters.{}.txt'.format(mxx))
    trnsfrm_out_file = os.path.join(
        trnsfrm_outpath, 'outputpoints.txt')  #MIGHT NEED TO CHANGE THIS
    sp.call([
        'transformix', '-def', transforminput, '-out', trnsfrm_outpath, '-tp',
        transformfile
    ])
    #sp.call(['transformix', '-def', 'all', '-out', trnsfrm_outpath, '-tp', transformfile]) ##displacement field
    writer(trnsfrm_outpath,
           '\n   Transformix File Generated: {}'.format(trnsfrm_out_file))
    ####################################################################################
    ##############generate list and image overlaid onto allen atlas#####################
    ####################################################################################
    name = 'job{}_{}'.format(jobid, vol_to_process.ch_type)
    transformed_pnts_to_allen(trnsfrm_out_file, ch, cores, name=name, **kwargs)
    writer(outdr, '*************STEP 5*************\n Finished')
    print('end of script')
    try:
        p.terminate()
    except:
        1
    return
Ejemplo n.º 28
0
from tools.utils.io import listdirfull, makedir, load_memmap_arr, load_np, listall, load_kwargs
from skimage.external import tifffile
import skimage
from tools.utils.directorydeterminer import directorydeterminer
from scipy.ndimage.interpolation import zoom
from tools.registration.transform_cell_counts import generate_transformed_cellcount, get_fullsizedims_from_kwargs, points_resample
from tools.registration.transform_list_of_points import modify_transform_files
from tools.imageprocessing.orientation import fix_contour_orientation, fix_dimension_orientation
import matplotlib.gridspec as gridspec
from tools.conv_net.functions.dilation import dilate_with_element
from skimage.morphology import ball

if __name__ == '__main__':

    #set up
    dst = '/home/wanglab/wang/pisano/tracing_output/qc/antero_no_jg'; makedir(dst)
    lst = [xx for xx in listdirfull('/home/wanglab/wang/pisano/tracing_output/antero_4x') if 'jg' not in os.path.basename(xx)]
    
    dst = '/home/wanglab/wang/pisano/tracing_output/qc/antero_only_jg'; makedir(dst)
    lst = [xx for xx in listdirfull('/home/wanglab/wang/pisano/tracing_output/antero_4x') if 'jg' in os.path.basename(xx)]
    
    cnn_transform_type = 'affine_only_reg_to_sig';#both for regwatlas, and only affine for sig adn reg #'all', 'single': don't consider reg with sig at all
    volume_transform_type = 'single';#both for regwatlas, and only affine for sig adn reg #'all', 'single': don't consider reg with sig at all
    verbose = True
    generate_registered_overlay = False #this looks bad
    generate_downsized_overlay = True #this looks better
    #fld = '/home/wanglab/wang/pisano/tracing_output/antero_4x/20170130_tp_bl6_sim_1750r_03'    
    #loop
    for fld in lst:
        try:
            print fld
    brain = os.path.join(src, brains[jobid])

    start = time.time()

    #accessing parameter dictionary
    cellvol = "/jukebox/wang/pisano/tracing_output/bl6_ts/20150804_tp_bl6_ts04/full_sizedatafld/20150804_tp_bl6_ts04_488w_647_z3um_250msec_1hfds_ch01"

    a2r0 = "/jukebox/scratch/zmd/save/contra_ipsi_projection_studies_20191125/20150804_tp_bl6_ts04/elastix_inverse_transform/TransformParameters.0.txt"
    a2r1 = "/jukebox/scratch/zmd/save/contra_ipsi_projection_studies_20191125/20150804_tp_bl6_ts04/elastix_inverse_transform/TransformParameters.1.txt"
    # r2s0 = "/jukebox/wang/pisano/tracing_output/bl6_ts/20150804_tp_bl6_ts04/elastix_inverse_transform/cellch_20150804_tp_bl6_ts04_555_z3um_70msec_3hfds/20150804_tp_bl6_ts04_555_z3um_70msec_3hfds_resized_ch00_resampledforelastix_atlas2reg2sig/reg2sig_TransformParameters.0.txt"
    # r2s1 = "/jukebox/LightSheetTransfer/tp/20200701_12_55_28_20170207_db_bl6_crii_rpv_01/elastix_inverse_transform/TransformParameters.1.txt"

    #set destination directory
    braindst = os.path.join(scratch_dir, os.path.basename(brain))

    makedir(braindst)

    aldst = os.path.join(braindst, "transformed_annotations")
    makedir(aldst)

    #transformix
    # transformfiles = modify_transform_files(transformfiles=[a2r0, a2r1, r2s0], dst = aldst)
    transformfiles = modify_transform_files(transformfiles=[a2r0, a2r1],
                                            dst=aldst)
    [change_interpolation_order(xx, 0) for xx in transformfiles]

    #change the parameter in the transform files that outputs 16bit images instead
    for fl in transformfiles:  # Read in the file
        with open(fl, "r") as file:
            filedata = file.read()
        # Replace the target string
Ejemplo n.º 30
0
secondary = np.array([np.argsort(e)[-2] for e in expr_all_as_frac_of_inj])

#pooled injections
ak_pool = np.array(["Lob. I-III, IV-V", "Lob. VIa, VIb, VII", "Lob. VIII, IX, X",
                 "Simplex", "Crus I", "Crus II", "PM, CP"])
frac_of_inj_pool = np.array([[np.sum(xx[:4]),np.sum(xx[4:7]),np.sum(xx[7:10]), xx[10], xx[11], xx[12], np.sum(xx[13:16])] 
                                for xx in expr_all_as_frac_of_inj])
primary_pool = np.array([np.argmax(e) for e in frac_of_inj_pool])
#get n's after pooling
primary_lob_n = np.array([len(np.where(primary_pool == i)[0]) for i in range(max(primary_pool)+1)])
#normalization  of inj site
frac_of_inj_pool_norm = np.asarray([brain/brain.sum() for brain in frac_of_inj_pool])

#%%
lr_brains = list(lr_dist.keys())
atl_dst = os.path.join(dst, "pma_to_aba"); makedir(atl_dst)
id_table = pd.read_excel(df_pth)

#------------------------------------------------------------------------------------------------------------------------------
#NOTE THAT ONLY HAVE TO DO THIS ONCE!!!! DO NOT NEED TO DO AGAIN UNLESS DOUBLE CHECKIHG
#transform points to allen atlas space

#get brains that we actually need to get cell counts from
src = "/jukebox/wang/pisano/tracing_output/antero_4x_analysis/201903_antero_pooled_cell_counts_thalamus/transformed_points"
post_transformed = [os.path.join(src, os.path.join(xx, "transformed_points/posttransformed_zyx_voxels.npy")) for xx in lr_brains]
transformfiles = ["/jukebox/wang/zahra/aba_to_pma/TransformParameters.0.txt",
                  "/jukebox/wang/zahra/aba_to_pma/TransformParameters.1.txt"]

#collect 
# for fl in post_transformed:
#     arr = np.load(fl)