Ejemplo n.º 1
0
def localPointsBeforeTreshold(N):
    def hypoTreshold(a0, a1, b0, b1):
        def value(a, b):
            return -np.sin(a) * np.sin(b) / (np.cos(a) * np.cos(b) - 1)

        return value(a0, b0), value(a0, b1), value(a1, b0), value(a1, b1)

    for i in range(N):
        if i % 100 == 0:
            print(f'{i+1}/{N}')
        a0 = np.random.rand() * np.pi
        a1 = np.random.rand() * np.pi
        b0 = np.random.rand() * np.pi
        b1 = np.random.rand() * np.pi
        P = T.find_P(np.pi / 2, a0, a1, b0, b1)
        if T.TLM(P):
            # treshold = tresholdTheta(a0,a1,b0,b1, 1e-5)
            tresholds = hypoTreshold(a0, a1, b0, b1)
            n = 100
            # Theta = np.linspace(0, treshold,n)
            Theta = np.linspace(0, np.pi / 2, n)
            for theta in Theta:
                for tresh in tresholds:
                    if np.abs(theta - tresh) < 0.03:
                        print("facet")
                P = T.find_P(theta, a0, a1, b0, b1)
                nl = T.is_nonlocalPoint(P)
                print(nl)
            print("next")
Ejemplo n.º 2
0
def hypothesis2(N):
    tlm0flag0 = 0
    tlm0flag1 = 0
    tlm1flag0 = 0
    tlm1flag1 = 0

    for i in range(N):
        if i % 100 == 0:
            print(f'{i+1}/{N}')
        a0 = np.random.rand() * 2 * np.pi
        a1 = np.random.rand() * 2 * np.pi
        b0 = np.random.rand() * 2 * np.pi
        b1 = np.random.rand() * 2 * np.pi
        theta = np.pi / 2
        P = T.find_P(theta, a0, a1, b0, b1)
        tlm = T.TLM(P)
        # print("TLM", tlm)
        flag = optimalTheta(a0, a1, b0, b1)
        # print(tlm, flag, "tutaj")
        if tlm:
            if flag:
                tlm1flag1 += 1
            else:
                tlm1flag0 += 1
        else:
            if flag:
                tlm0flag1 += 1
            else:
                tlm0flag0 += 1
        print(tlm1flag1, tlm1flag0, tlm0flag1, tlm0flag0)
Ejemplo n.º 3
0
def check(theta, a0, a1, b0, b1):
    P = T.find_P(theta, a0, a1, b0, b1)
    Qs = St.satoshiTestComment(P)
    tlm = T.TLM(T.find_P(np.pi / 2, a0, a1, b0, b1))
    wholeSp, thetaNew = St.SPlusCondition(P)
    Qw = newTest(theta, a0, a1, b0, b1)
    # flag = optimalTheta(a0,a1,b0,b1)
    Qn = T.is_exposed(theta, a0, a1, b0, b1, 0.0001)
    print(theta, a0, a1, b0, b1)
    print(Qs, Qw, Qn, "extremal")
    print(tlm, wholeSp)
Ejemplo n.º 4
0
def newTest(theta, a0, a1, b0, b1):
    Pmax = T.find_P(np.pi / 2, a0, a1, b0, b1)
    tlm = T.TLM(Pmax)
    if tlm:
        P = T.find_P(theta, a0, a1, b0, b1)
        wholeSp, thetaNew = St.SPlusCondition(P)
        if np.abs(thetaNew - theta) > acc:
            print("something is wrong with theta")
        if wholeSp:
            return 1
    return 0
Ejemplo n.º 5
0
def notUniquePointsInvestigating(N):
    for i in range(N):
        P = np.round(T.notUniquePoints(), 6)
        correct, realisation, wholeSp = T.twoQubitRepresentationSpecial(P)
        if correct:
            print(P, "point")

            theta, a0, a1, b0, b1 = realisation
            # print(correct, theta, a0/np.pi, a1/np.pi, b0/np.pi, b1/np.pi, wholeSp, np.sin(theta)**2, "tu")
            # print(P[0]/np.cos(theta), P[1]/np.cos(theta), P[2]/np.cos(theta), P[3]/np.cos(theta), "cosinusy prawdziwe")
            print(St.STLM(P, theta), "stlm")
            Ptlm = T.find_P(np.pi / 2, a0, a1, b0, b1)

            print(T.find_P(theta, a0, a1, b0, b1), "Punkt zwrotny")
            print(T.is_nonlocalPoint(P), "is nonlocal?")
            print(T.TLM(Ptlm), "Tlm")
            print(T.is_exposed(theta, a0, a1, b0, b1, 0.001), "exposed")
Ejemplo n.º 6
0
def tresholdTheta(a0, a1, b0, b1, acc):
    l = 0
    r = np.pi / 2
    P0 = T.find_P(r, a0, a1, b0, b1)
    if not T.TLM(P0):
        return np.pi / 2
    while r - l > acc:
        theta = (r + l) / 2

        Q = newTest(theta, a0, a1, b0, b1)
        # print(l,r,Q)

        if Q:
            r = theta
        else:
            l = theta
    return (r + l) / 2
Ejemplo n.º 7
0
def notUniquePoint():
    # P = [0.4445537842667646, 0.24544802147218514, 0.734354006208671, 0.734354006208671, 0.542908951128687, 0.542908951128687, 0.3966948365612542, 0.3966948365612542]
    P5 = [0.024973, 0.058992, 0.5, 0.5, 0.07546, 0.07546, 0.092469, 0.092469]
    P4 = [
        0.25, 0.125, -0.262176, -0.0930301, -0.731555, -0.689269, -0.698783,
        0.654382
    ]
    P2 = [
        0.5, 0.5, -np.sqrt(2 / 5), 0, -np.sqrt(5 / 2) / 2,
        -np.sqrt(5 / 2) / 2 + 1 / np.sqrt(10), -np.sqrt(5 / 2) / 2,
        np.sqrt(5 / 2) / 2 - 1 / np.sqrt(10)
    ]
    P3 = [
        1 / 4, 1 / 2, -np.sqrt(7 / 3) / 3, 1 / np.sqrt(21),
        -37 / (12 * np.sqrt(21)), -37 / (12 * np.sqrt(21)) + 1 / 4 *
        (np.sqrt(7 / 3) / 3 + 1 / np.sqrt(21)),
        -np.sqrt(7 / 3) / 12 - 37 / (12 * np.sqrt(21)),
        -np.sqrt(7 / 3) / 12 + 43 / (12 * np.sqrt(21))
    ]
    b = np.random.rand()
    a1 = np.random.rand()
    a0 = np.random.rand()
    b = 0.5
    a0 = 0.25
    a1 = 0.5
    A0B0 = (a0 + a1 + a0 * b**2 - a1 * b**2) / (2 * b)
    A0B1 = A0B0
    A1B0 = A0B0 - b * (a0 - a1)
    A1B1 = A0B0 - b * (a0 - a1)
    P = [a0, a1, b, b, A0B0, A0B1, A1B0, A1B1]
    # if A0B0 < 1:
    print(P, "punkt")
    correct, realisation, wholeSp = T.twoQubitRepresentation(P)
    theta, a0, a1, b0, b1 = realisation
    # print(correct, theta, a0/np.pi, a1/np.pi, b0/np.pi, b1/np.pi, wholeSp, np.sin(theta)**2, "tu")
    # print(P[0]/np.cos(theta), P[1]/np.cos(theta), P[2]/np.cos(theta), P[3]/np.cos(theta), "cosinusy prawdziwe")
    print(St.STLM(P, theta), "stlm")
    Ptlm = T.find_P(np.pi / 2, a0, a1, b0, b1)

    print(T.find_P(theta, a0, a1, b0, b1), "Punkt zwrotny")

    print(T.TLM(Ptlm), "Tlm")
    print(T.is_exposed(theta, a0, a1, b0, b1, 0.001), "exposed")
Ejemplo n.º 8
0
def tlmVSstlm(N):
    for i in range(N):
        if i % 100 == 0:
            print(f'{i+1}/{N}')
        a0 = np.random.rand() * 2 * np.pi
        a1 = np.random.rand() * 2 * np.pi
        b0 = np.random.rand() * 2 * np.pi
        b1 = np.random.rand() * 2 * np.pi
        theta = np.random.rand() * np.pi / 2
        P1 = T.find_P(np.pi / 2, a0, a1, b0, b1)
        P2 = T.find_P(theta, a0, a1, b0, b1)
        tlm = T.TLM(P1)
        stlm = St.STLM(P2, theta)
        wholeSp, theta = St.SPlusCondition(P2)
        # print(tlm, stlm)
        if stlm and (not tlm):
            print(tlm, stlm)
        if stlm and (not tlm) and wholeSp:
            print(tlm, stlm, wholeSp)
            print("aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa")
Ejemplo n.º 9
0
def functionalBehaviour(N):
    for i in range(N):
        print(f'{i+1}/{N}')
        a0 = np.random.rand() * 2 * np.pi
        a1 = np.random.rand() * 2 * np.pi
        b0 = np.random.rand() * 2 * np.pi
        b1 = np.random.rand() * 2 * np.pi
        F1 = []
        Tet = []
        MAXI = []
        tlm = T.TLM(T.find_P(np.pi / 2, a0, a1, b0, b1))
        print(tlm)

        if tlm:
            thetag = T.getThetaFromSinSquared(
                T.hypoTreshold(a0, a1, b0, b1)**2)
            n = 500
            Theta = np.linspace(thetag, np.pi / 2, n)

            for theta in Theta:
                # a0 = 3/4*np.pi
                # a1 = np.pi/4
                # b0 = np.pi/2
                # b1 = np.pi
                P = T.find_P(theta, a0, a1, b0, b1)
                wholeSp, thetaNew = St.SPlusCondition(P)
                # if wholeSp:
                # f1,m1 = T.Best_func(theta, a0, a1, b0, b1)
                f2, m2 = T.Best_func_restricted(theta, a0, a1, b0, b1)
                # print(m1-m2,"hmm")
                # print(f1)
                # print(f2)
                MAXI.append(m2)
                Tet.append(theta)
                F1.append(f2)
            # plt.plot(Tet,F1)
            plt.plot(Tet, MAXI)
            plt.show()
Ejemplo n.º 10
0
def nonnegativitySingularity(N):
    for i in range(1):
        a0 = 0
        a1 = np.random.rand() * 2 * np.pi
        b0 = 0
        b1 = np.random.rand() * 2 * np.pi

        P = T.find_P(np.pi / 2, a0, a1, b0, b1)
        # print(P)
        tlm = T.TLM(P)
        # Sp, Sm = St.SPlusTemp(P)
        # print(Sp)
        # print(Sm)
        # theta = np.random.rand()*np.pi/2
        # thetaB = np.arcsin(T.hypoTreshold(a0,a1,b0,b1))
        # print(thetaB)
        thetaGr = np.arcsin(T.hypoTresholdImproved(a0, a1, b0, b1))

        print(thetaGr)
        Theta = np.linspace(0, np.pi / 2, N)
        for theta in Theta:
            # print(theta)
            # if i%100 == 0:
            #     print(i)
            P = T.find_P(theta, a0, a1, b0, b1)
            stlm = St.STLM(P, theta)

            c1, thetan = St.SPlusCondition(P)
            if theta >= thetaGr:
                c2 = 1
            else:
                c2 = 0
            # sat = St.satoshiTest(P)
            # ex = T.is_exposed(theta,a0,a1,b0,b1, 0.001)
            if c1 and (not stlm):
                stlm2 = St.STLMComment(P, theta)
            print(tlm, stlm, c1, c2)
Ejemplo n.º 11
0
def plotExposed(D):
    acc = 1e-4
    x0 = 0
    x_end = np.pi / 2
    y0 = 0
    y_end = 1
    Y = np.linspace(y0, y_end, D)
    X = np.linspace(x0, x_end, D)
    Map = np.zeros((D, D))
    for y, CosA in enumerate(Y):
        for x, theta in enumerate(X):

            a0 = 0
            b0 = 0
            a1 = np.arccos(CosA)
            b1 = -np.arccos(CosA) + 2 * np.pi
            P = T.find_P(theta, a0, a1, b0, b1)

            P2 = symmetricPoint2(theta, CosA)
            # print(np.round(P-P2,7))
            # exp1 = T.is_exposed(theta, a0, a1, b0, b1, acc)
            exp2 = T.is_exposed_hypo(theta, a0, a1, b0, b1)
            exp3 = St.satoshiTest(P)
            nonloc = T.is_nonlocalPoint(P)
            print(exp2)
            stlm = St.STLM(P, theta)
            Ptlm = T.find_P(np.pi / 2, a0, a1, b0, b1)
            tlm = T.TLM(Ptlm)
            print(stlm, tlm)
            Map[x][D - y - 1] = exp2
    plt.imshow(Map.T, extent=[x0, x_end, y0, y_end])
    plt.colorbar()
    plt.xlabel("theta")
    plt.ylabel("cos(a)")
    plt.savefig("symmetric.png")
    plt.show()