Ejemplo n.º 1
0
def detectFace(img_path, threshold):
    img = cv2.imread(img_path)
    caffe_img = img.copy() - 128
    origin_h, origin_w, ch = caffe_img.shape
    scales = tools.calculateScales(img)
    out = []
    for scale in scales:
        hs = int(origin_h * scale)
        ws = int(origin_w * scale)
        scale_img = cv2.resize(caffe_img, (ws, hs))
        scale_img = np.swapaxes(scale_img, 0, 2)
        net_12.blobs['data'].reshape(1, 3, ws, hs)
        net_12.blobs['data'].data[...] = scale_img
        # caffe.set_device(0)
        # caffe.set_mode_gpu()
        caffe.set_mode_cpu()
        out_ = net_12.forward()
        out.append(out_)
    image_num = len(scales)
    rectangles = []
    for i in range(image_num):
        cls_prob = out[i]['prob1'][0][1]
        roi = out[i]['conv4-2'][0]
        out_h, out_w = cls_prob.shape
        out_side = max(out_h, out_w)
        rectangle = tools.detect_face_12net(cls_prob, roi, out_side,
                                            1 / scales[i], origin_w, origin_h,
                                            threshold[0])
        rectangles.extend(rectangle)
    return rectangles
def detectFace(img_path,threshold):
    img = cv2.imread(img_path)
    caffe_img = img.copy()-128
    origin_h,origin_w,ch = caffe_img.shape
    scales = tools.calculateScales(img)
    out = []
    for scale in scales:
        hs = int(origin_h*scale)
        ws = int(origin_w*scale)
        scale_img = cv2.resize(caffe_img,(ws,hs))
        scale_img = np.swapaxes(scale_img, 0, 2)
        net_12.blobs['data'].reshape(1,3,ws,hs)
        net_12.blobs['data'].data[...]=scale_img
	caffe.set_device(0)
	caffe.set_mode_gpu()
	out_ = net_12.forward()
        out.append(out_)
    image_num = len(scales)
    rectangles = []
    for i in range(image_num):    
        cls_prob = out[i]['cls_score'][0][1]
        roi      = out[i]['conv4-2'][0]
        out_h,out_w = cls_prob.shape
        out_side = max(out_h,out_w)
        rectangle = tools.detect_face_12net(cls_prob,roi,out_side,1/scales[i],origin_w,origin_h,threshold[0])
        rectangles.extend(rectangle)
    return rectangles
Ejemplo n.º 3
0
def detectFace(img_path, threshold):
    img = cv2.imread(img_path)
    caffe_img = img.copy() - 128
    origin_h, origin_w, ch = caffe_img.shape
    scales = tools.calculateScales(img)
    out = []
    for scale in scales:
        hs = int(origin_h * scale)
        ws = int(origin_w * scale)
        scale_img = cv2.resize(caffe_img, (ws, hs))
        scale_img = np.swapaxes(scale_img, 0, 2)
        net_12.blobs['data'].reshape(1, 3, ws, hs)
        net_12.blobs['data'].data[...] = scale_img
        caffe.set_device(0)
        caffe.set_mode_gpu()
        out_ = net_12.forward()
        out.append(out_)
    image_num = len(scales)
    rectangles = []
    for i in range(image_num):
        cls_prob = out[i]['prob1'][0][1]
        roi = out[i]['conv4-2'][0]
        out_h, out_w = cls_prob.shape
        out_side = max(out_h, out_w)
        rectangle = tools.detect_face_12net(cls_prob, roi, out_side,
                                            1 / scales[i], origin_w, origin_h,
                                            threshold[0])
        rectangles.extend(rectangle)
    if len(rectangles) == 0:
        return rectangles
    net_24.blobs['data'].reshape(len(rectangles), 3, 24, 24)
    crop_number = 0
    for rectangle in rectangles:
        crop_img = caffe_img[rectangle[1]:rectangle[3],
                             rectangle[0]:rectangle[2]]
        scale_img = cv2.resize(crop_img, (24, 24))
        scale_img = np.swapaxes(scale_img, 0, 2)
        net_24.blobs['data'].data[crop_number] = scale_img
        crop_number += 1
    out = net_24.forward()
    cls_prob = out['prob1']
    roi_prob = out['conv5-2']
    rectangles = tools.filter_face_24net(cls_prob, roi_prob, rectangles,
                                         origin_w, origin_h, threshold[1])
    return rectangles
Ejemplo n.º 4
0
def detectFace(img_path, threshold):
    fs = cv2.FileStorage(img_path, cv2.FileStorage_READ)
    img = fs.getNode('depth').mat()
    fs.release()

    if img is None:
        print("Fail to read XML file: " + depth_path)
        return None

    origin_h, origin_w = img.shape
    scales = tools.calculateScales(img)
    out = []
    for scale in scales:
        hs = int(origin_h * scale)
        ws = int(origin_w * scale)
        net_12.blobs['data'].reshape(1, 1, hs, ws)
        net_12.blobs['data'].data[...] = preprocess(img, (ws, hs))
        out_ = net_12.forward()
        out.append(out_)
    image_num = len(scales)
    rectangles = []
    for i in range(image_num):
        cls_prob = out[i]['prob1'][0][1]
        # print "cls_prob.shape: ", cls_prob.shape
        roi = out[i]['conv4-2'][0]
        out_h, out_w = cls_prob.shape
        # print "out_h: ", out_h
        # print "out_w: ", out_w
        out_side = max(out_h, out_w)
        rectangle = tools.detect_face_12net(cls_prob, roi, out_side,
                                            1 / scales[i], origin_w, origin_h,
                                            threshold)
        rectangles.extend(rectangle)

    rectangles = tools.NMS(rectangles, 0.7, 'iou')

    if len(rectangles) == 0:
        print "rect drop to 0 at 12net"
        return rectangles

    rectangles_new = []
    for rectangle in rectangles:
        rectangles_new.append(rectangular2square(rectangle, img))
    return rectangles_new
Ejemplo n.º 5
0
def detectFace(img_path, threshold):
    # img = cv2.imread(img_path)
    fs = cv2.FileStorage(img_path, cv2.FileStorage_READ)
    img = fs.getNode('depth').mat()
    fs.release()
    origin_h, origin_w= img.shape
    scales = tools.calculateScales(img)
    # scales = [0.1, 0.07]
    out = []
    for scale in scales:
        hs = int(origin_h * scale)
        ws = int(origin_w * scale)
        net_12.blobs['data'].reshape(1, 1, hs, ws)
        net_12.blobs['data'].data[...] = preprocess(img, (ws, hs))
        out_ = net_12.forward()
        out.append(out_)
    image_num = len(scales)
    rectangles = []
    for i in range(image_num):
        cls_prob = out[i]['prob1'][0][1]
        print "cls_prob.shape: ", cls_prob.shape
        roi = out[i]['conv4-2'][0]
        out_h, out_w = cls_prob.shape
        print "out_h: ", out_h
        print "out_w: ", out_w
        out_side = max(out_h, out_w)
        rectangle = tools.detect_face_12net(
            cls_prob, roi, out_side, 1 / scales[i], origin_w, origin_h, threshold[0])
        rectangles.extend(rectangle)

    rectangles = tools.NMS(rectangles, 0.7, 'iou')

    if len(rectangles) == 0:
        print "rect drop to 0 at 12net"
        return rectangles

    doc12 = open('/home/xingduan/YupengHan/inference/saving_docs/12/12doc.txt', 'w')
    for temp_rectangle in rectangles:
        doc12.write('%d %d %d %d %f\n' %(temp_rectangle[0], temp_rectangle[1], temp_rectangle[2], temp_rectangle[3], temp_rectangle[4]))
    

    # Here might be a problme
    net_24.blobs['data'].reshape(len(rectangles), 1, 24, 24)
    crop_number = 0
    for rectangle in rectangles:
        rectangle = rectangular2square(rectangle, img)
        crop_img = img[int(rectangle[1]):int(
            rectangle[3]), int(rectangle[0]):int(rectangle[2])]
        net_24.blobs['data'].data[crop_number] = preprocess(crop_img, (24, 24))
        crop_number += 1
    # Here might be a problme
    out = net_24.forward()
    cls_prob = out['prob1']
    roi_prob = out['ip_roi']
    rectangles = tools.filter_face_24net(
        cls_prob, roi_prob, rectangles, origin_w, origin_h, threshold[1])
    doc24 = open('/home/xingduan/YupengHan/inference/saving_docs/24/24doc.txt', 'w')
    for temp_rectangle in rectangles:
        doc24.write('%d %d %d %d %f\n' %(temp_rectangle[0], temp_rectangle[1], temp_rectangle[2], temp_rectangle    [3], temp_rectangle[4]))
    if len(rectangles) == 0:
        print "rect drop to 0 at 24net"
        return rectangles
    net_48.blobs['data'].reshape(len(rectangles), 1, 48, 48)
    crop_number = 0
    for rectangle in rectangles:
        rectangle = rectangular2square(rectangle, img)
        crop_img = img[int(rectangle[1]):int(
            rectangle[3]), int(rectangle[0]):int(rectangle[2])]
        net_48.blobs['data'].data[crop_number] = preprocess(crop_img, (48, 48))
        crop_number += 1
    out = net_48.forward()
    cls_prob = out['prob1']
    roi_prob = out['ip_roi']
    rectangles = tools.filter_face_48net(
        cls_prob, roi_prob, rectangles, origin_w, origin_h, threshold[2])

    return rectangles
Ejemplo n.º 6
0
def detectFace(img, threshold):

    caffe_img = (img.copy() - 127.5) / 127.5
    origin_h, origin_w, ch = caffe_img.shape
    scales = tools.calculateScales(img)
    out = []
    t0 = time.time()
    # del scales[:4]

    for scale in scales:
        hs = int(origin_h * scale)
        ws = int(origin_w * scale)
        scale_img = cv2.resize(caffe_img, (ws, hs))
        input = scale_img.reshape(1, *scale_img.shape)
        ouput = Pnet.predict(
            input
        )  # .transpose(0,2,1,3) should add, but seems after process is wrong then.
        out.append(ouput)
    image_num = len(scales)
    rectangles = []
    for i in range(image_num):
        cls_prob = out[i][0][
            0][:, :,
               1]  # i = #scale, first 0 select cls score, second 0 = batchnum, alway=0. 1 one hot repr
        roi = out[i][1][0]
        out_h, out_w = cls_prob.shape
        out_side = max(out_h, out_w)
        # print('calculating img scale #:', i)
        cls_prob = np.swapaxes(cls_prob, 0, 1)
        roi = np.swapaxes(roi, 0, 2)
        rectangle = tools.detect_face_12net(cls_prob, roi, out_side,
                                            1 / scales[i], origin_w, origin_h,
                                            threshold[0])
        rectangles.extend(rectangle)
    rectangles = tools.NMS(rectangles, 0.7, 'iou')

    t1 = time.time()
    print('time for 12 net is: ', t1 - t0)

    if len(rectangles) == 0:
        return rectangles

    crop_number = 0
    out = []
    predict_24_batch = []
    for rectangle in rectangles:
        crop_img = caffe_img[int(rectangle[1]):int(rectangle[3]),
                             int(rectangle[0]):int(rectangle[2])]
        scale_img = cv2.resize(crop_img, (24, 24))
        predict_24_batch.append(scale_img)
        crop_number += 1

    predict_24_batch = np.array(predict_24_batch)

    out = Rnet.predict(predict_24_batch)

    cls_prob = out[
        0]  # first 0 is to select cls, second batch number, always =0
    cls_prob = np.array(cls_prob)  # convert to numpy
    roi_prob = out[
        1]  # first 0 is to select roi, second batch number, always =0
    roi_prob = np.array(roi_prob)
    rectangles = tools.filter_face_24net(cls_prob, roi_prob, rectangles,
                                         origin_w, origin_h, threshold[1])
    t2 = time.time()
    print('time for 24 net is: ', t2 - t1)

    if len(rectangles) == 0:
        return rectangles

    crop_number = 0
    predict_batch = []
    for rectangle in rectangles:
        # print('calculating net 48 crop_number:', crop_number)
        crop_img = caffe_img[int(rectangle[1]):int(rectangle[3]),
                             int(rectangle[0]):int(rectangle[2])]
        scale_img = cv2.resize(crop_img, (48, 48))
        predict_batch.append(scale_img)
        crop_number += 1

    predict_batch = np.array(predict_batch)

    output = Onet.predict(predict_batch)
    cls_prob = output[0]
    roi_prob = output[1]
    pts_prob = output[2]  # index
    # rectangles = tools.filter_face_48net_newdef(cls_prob, roi_prob, pts_prob, rectangles, origin_w, origin_h,
    #                                             threshold[2])
    rectangles = tools.filter_face_48net(cls_prob, roi_prob, pts_prob,
                                         rectangles, origin_w, origin_h,
                                         threshold[2])
    t3 = time.time()
    print('time for 48 net is: ', t3 - t2)

    return rectangles
Ejemplo n.º 7
0
def detectFace(img, threshold):
    caffe_img = (img.copy() - 127.5) / 127.5
    origin_h, origin_w, ch = caffe_img.shape
    scales = calculateScales(img)
    out = []
    for scale in scales:
        hs = int(origin_h * scale)
        ws = int(origin_w * scale)
        scale_img = cv2.resize(caffe_img, (ws, hs))
        input = scale_img.reshape(1, *scale_img.shape)
        ouput = Pnet.predict(input)
        out.append(ouput)
    image_num = len(scales)
    rectangles = []
    for i in range(image_num):
        cls_prob = out[i][0][0][:, :, 1]
        roi = out[i][1][0]
        out_h, out_w = cls_prob.shape
        out_side = max(out_h, out_w)
        cls_prob = np.swapaxes(cls_prob, 0, 1)
        roi = np.swapaxes(roi, 0, 2)
        rectangle = detect_face_12net(cls_prob, roi, out_side, 1 / scales[i],
                                      origin_w, origin_h, threshold[0])
        rectangles.extend(rectangle)
    rectangles = NMS(rectangles, 0.7, 'iou')

    if len(rectangles) == 0:
        return rectangles

    crop_number = 0
    out = []
    predict_24_batch = []
    for rectangle in rectangles:
        crop_img = caffe_img[int(rectangle[1]):int(rectangle[3]),
                             int(rectangle[0]):int(rectangle[2])]
        scale_img = cv2.resize(crop_img, (24, 24))
        predict_24_batch.append(scale_img)
        crop_number += 1

    predict_24_batch = np.array(predict_24_batch)
    out = Rnet.predict(predict_24_batch)

    cls_prob = out[
        0]  # first 0 is to select cls, second batch number, always =0
    cls_prob = np.array(cls_prob)  # convert to numpy
    roi_prob = out[
        1]  # first 0 is to select roi, second batch number, always =0
    roi_prob = np.array(roi_prob)
    rectangles = filter_face_24net(cls_prob, roi_prob, rectangles, origin_w,
                                   origin_h, threshold[1])

    if len(rectangles) == 0:
        return rectangles

    crop_number = 0
    predict_batch = []
    for rectangle in rectangles:
        crop_img = caffe_img[int(rectangle[1]):int(rectangle[3]),
                             int(rectangle[0]):int(rectangle[2])]
        scale_img = cv2.resize(crop_img, (48, 48))
        predict_batch.append(scale_img)
        crop_number += 1

    predict_batch = np.array(predict_batch)
    output = Onet.predict(predict_batch)
    cls_prob = output[0]
    roi_prob = output[1]
    pts_prob = output[2]
    rectangles = filter_face_48net(cls_prob, roi_prob, pts_prob, rectangles,
                                   origin_w, origin_h, threshold[2])
    return rectangles