Ejemplo n.º 1
0
    def _on_open(self, ws):
        tick_sizes = {}
        step_sizes = {}

        exchange_info_url = 'https://api.binance.com/api/v1/exchangeInfo'
        exchange_info = json.loads(urlopen(exchange_info_url).read().decode())

        for symbol_info in exchange_info['symbols']:
            symbol = symbol_info['symbol']

            if symbol not in self._symbols:
                continue

            filters = symbol_info['filters']
            ftype = 'filterType'
            tick_size = first(filters,
                              lambda f: f[ftype] == 'PRICE_FILTER')['tickSize']
            step_size = first(filters,
                              lambda f: f[ftype] == 'LOT_SIZE')['stepSize']

            tick_sizes[symbol] = Decimal(tick_size.rstrip('0'))
            step_sizes[symbol] = Decimal(step_size.rstrip('0'))

        for i in range(len(self.pairs)):
            pair = self.pairs[i]
            name = '{}/{}'.format(*map(self._convert_sym, pair))
            symbol = self._symbols[i]
            exchange = exchanges.BinanceExchange.instance()
            ts = tick_sizes[symbol]
            ss = step_sizes[symbol]
            market_ = market.BasicMarket(name, pair, symbol, exchange, ts, ss)
            self.markets.append(market_)
Ejemplo n.º 2
0
    def start(self):
        if not self._pairs:
            print("Warning: Pairs not set for Bitstamp client!")
            return

        bitstamp_info_url = 'https://www.bitstamp.net/api/v2/trading-pairs-info/'
        bitstamp_info = json.loads(urlopen(bitstamp_info_url).read().decode())

        exchange = exchanges.BitstampExchange.instance()

        for pair in self._pairs:
            symbol = ''.join(pair).lower()
            pair_info = first(bitstamp_info,
                              lambda i: i['url_symbol'] == symbol)
            name = pair_info['name']
            tick_size = Decimal('0.1')**Decimal(pair_info['counter_decimals'])
            step_size = Decimal('0.1')**Decimal(pair_info['base_decimals'])

            market_ = market.BasicMarket(name, pair, symbol, exchange,
                                         tick_size, step_size)
            self._markets[symbol] = market_

            self._did_recieve[symbol] = False

        self._pusher.connect()
Ejemplo n.º 3
0
	def on_open(self):
		self.markets = []
		
		disp_names = ['{}/{}'.format(*p) for p in self._pairs]
		product_info = self._cli.get_products()
		for i in range(len(self._pairs)):
			exchange = exchanges.GDAXExchange.instance()
			try:
				pinfo = first(product_info, lambda x: x['id'] == self.products[i])
			except:
				print(product_info)
				exit()
			tick_size = Decimal(pinfo['quote_increment'])
			market_ = market.BasicMarket(disp_names[i], self._pairs[i], 
					  self.products[i], exchange, tick_size, Decimal('0.00000001'))
			self.markets.append(market_)

		self.channels = [
			{
				'name': 'level2',
				'product_ids': self.products
			},
			{
				'name': 'matches',
				'product_ids': self.products
			}
		]
Ejemplo n.º 4
0
 def __init__(self, grammar):
     self.states = []
     production_prim = Production("S_prim -> " + grammar.distinguished)
     show = str(production_prim) + " \n " + str(grammar)
     self.G = Grammar(show, "S_prim")
     self.insert_state(SLR_state([production_prim], 0))
     self.states[0].expand(self.states[0].items, self.G)
     self.goto = {}
     self.queue = Queue()
     self.queue.put(self.states[0])
     self.firsts = first(self.G)
     self.follows = follow(self.G, self.firsts)
     self.move_action()
Ejemplo n.º 5
0
    def _process_events(self):
        i = 0
        while i < len(self._event_buffer):
            msg = self._event_buffer[i] if len(
                self.markets) == 1 else self._event_buffer[i]['data']
            symbol = msg['s']

            market = first(self.markets, lambda m: m.symbol() == symbol)

            first_update = msg['U']
            end_update = msg['u']

            if not self._got_book[symbol]:
                self._reset_book(market)

            if symbol not in self._last_update:
                i += 1
            elif end_update <= self._last_update[symbol]:
                del self._event_buffer[i]
            elif first_update > self._last_update[symbol] + 1:
                print("Skipped on {}: {}!".format('Binance',
                                                  market.disp_name()))
                print(self._last_update[symbol])
                exit()
            else:
                bids = msg['b']
                asks = msg['a']

                tick_size = market.tick_size()
                step_size = market.step_size()

                for bid in bids:
                    price = Decimal(bid[0]).quantize(tick_size)
                    size = Decimal(bid[1]).quantize(step_size)

                    market.update_bid(price, size)

                for ask in asks:
                    price = Decimal(ask[0]).quantize(tick_size)
                    size = Decimal(ask[1]).quantize(step_size)

                    market.update_ask(price, size)

                del self._event_buffer[i]
                self._last_update[symbol] = end_update
Ejemplo n.º 6
0
	def on_message(self, msg):
		msg_type = msg['type']

		if msg_type == 'subscriptions':
			return

		if 'product_id' not in msg:
			print("Bad MSG:", msg)
		product = msg['product_id']

		market = first(self.markets, lambda m: m.symbol() == product)

		if msg_type == 'snapshot':
			print("Got GDAX", product, "snapshot:", len(json.dumps(msg)), "bytes")
			qinc = market.tick_size()
			ssize = market.step_size()
			bids = { Decimal(p).quantize(qinc): Decimal(s).quantize(ssize) for (p, s) in msg['bids'] }
			asks = { Decimal(p).quantize(qinc): Decimal(s).quantize(ssize) for (p, s) in msg['asks'] }
			market.reset_book(bids, asks)
		elif msg_type == 'last_match' or msg_type == 'match':
			qinc = market.tick_size()
			price = Decimal(msg['price']).quantize(qinc)
			market.match(price)
		elif msg_type == 'l2update':
			changes = msg['changes']
			qinc = market.tick_size()
			ssize = market.step_size()

			for change in changes:
				side = change[0]
				price = Decimal(change[1]).quantize(qinc)
				size = Decimal(change[2]).quantize(ssize)

				if side == 'buy':
					market.update_bid(price, size)
				else:
					market.update_ask(price, size)
Ejemplo n.º 7
0
new_t = time.perf_counter()
elapsed_str = Decimal(new_t - old_t).quantize(Decimal('0.001'))
print("Arbitrages found: {}.".format(len(arb_paths)), "Time: {}s".format(elapsed_str))

arb_paths = [path for path in arb_paths if path.base_asset != KRW]

if verbose:
	print("#################################################")
	print("ARBITRAGE PATHS:")
	for path in arb_paths:
		print(path)
	print("#################################################")

time.sleep(15)

gdax_btc_market = first(gdax_cli.markets, lambda m: m.pair() == (BTC, USD))
bithumb_btc_market = first(bithumb_cli.markets, lambda m: m.pair() == (BTC, KRW))
krw_usd_rate = fixer.get_rate('KRW', 'USD', fixer_key)
print("Using USD/KRW rate:", str(1 / krw_usd_rate)[:7])

def get_best_path(paths, asset_amounts):
	best_roi = Decimal('0')
	best_path = None

	for path in arb_paths:
		start_amount = asset_amounts[path.base_asset]
		path_res = market_path.run_path(path, start_amount)

		if path_res[1]:
			continue
Ejemplo n.º 8
0
from tools import table_decorator, ObjectStorage, first
from dataset import Dataset, DatasetFactory
from sklearn.linear_model import LinearRegression
import pandas as pd

algorithms = [LinearRegression(n_jobs=-1)]


def classifiers():
    return list(map(lambda alg: Classifier(alg), algorithms))


def confidence_table(rows):
    content = pd.DataFrame(list(map(lambda row: (row[0], row[1] * 100), rows)),
                           columns=['Algorithm', 'Confidence (%)'])
    return table_decorator("Results", content)


data_frame = DataSources().google_actions()
data_set = DatasetFactory().create_from(data_frame)
classifiers = classifiers()

train_info = map(lambda clr: [
    clr.name(),
    clr.train(data_set),
], classifiers)
print(confidence_table(train_info))

ObjectStorage().save(first(classifiers))
print("...trained data saved!")