Ejemplo n.º 1
0
    def load_norm_ivecs(self):
        """ Load normalization i-vectors, scale and shift files and also pretrained model.

            :returns: i-vectors
            :rtype: numpy.array
        """
        line = None
        with open(self.norm_list, 'r') as f:
            for line in f:
                line = line.rstrip()
                loginfo(
                    '[Diarization.load_norm_ivecs] Loading npy file {} ...'.
                    format(line))
                try:
                    yield np.load('{}.npy'.format(
                        os.path.join(self.ivecs_dir, line))).flatten()
                except IOError:
                    logwarning(
                        '[Diarization.load_norm_ivecs] No pickle file found for {}.'
                        .format(line))
        self.scale = np.load(
            os.path.join(self.ivecs_dir, os.path.dirname(line), 'scale.npy'))
        self.shift = np.load(
            os.path.join(self.ivecs_dir, os.path.dirname(line), 'shift.npy'))
        try:
            with open(
                    os.path.join(self.ivecs_dir, os.path.dirname(line),
                                 'model.pkl')) as f:
                self.model = pickle.load(f)
        except IOError:
            logwarning(
                '[Diarization.load_norm_ivecs] No pretrained model found.')
Ejemplo n.º 2
0
 def dump_rttm(self, scores):
     for ivecset in self.ivecs:
         if ivecset.size() > 0:
             name = ivecset.name
             # dirty trick, will be removed, watch out
             if 'beamformed' in ivecset.name:
                 ivecset.name = re.sub('beamformed/', '', ivecset.name)
             # # # # # # # # # # # # # # # # # # # # #
             reg_name = re.sub('/.*', '', ivecset.name)
             Tools.mkdir_p(os.path.join(self.out_dir,
                                        os.path.dirname(name)))
             with open(os.path.join(self.out_dir, name + '.rttm'),
                       'w') as f:
                 for i, ivec in enumerate(ivecset.ivecs):
                     start, end = ivec.window_start, ivec.window_end
                     idx = np.argmax(scores[name].T[i])
                     f.write(
                         'SPEAKER {} 1 {} {} <NA> <NA> {}_spkr_{} <NA>\n'.
                         format(reg_name, float(start / 1000.0),
                                float((end - start) / 1000.0), reg_name,
                                idx))
         else:
             logwarning(
                 '[Diarization.dump_rttm] No i-vectors to dump in {}.'.
                 format(ivecset.name))
Ejemplo n.º 3
0
 def score(self):
     scores_dict = {}
     for ivecset in self.ivecs:
         name = os.path.normpath(ivecset.name)
         ivecs = ivecset.get_all()
         loginfo('[Diarization.score] Scoring {} ...'.format(name))
         size = ivecset.size()
         if size > 0:
             if ivecset.num_speakers is not None:
                 num_speakers = min(ivecset.num_speakers, size)
                 sklearnkmeans = sklearnKMeans(
                     n_clusters=num_speakers).fit(ivecs)
                 centroids = KMeans(sklearnkmeans.cluster_centers_,
                                    num_speakers, self.plda).fit(ivecs)
             else:
                 num_speakers, centroids = self.get_num_speakers(ivecs)
             if self.norm_list is None:
                 scores_dict[name] = self.plda.score(
                     ivecs, centroids, self.scale, self.shift)
             else:
                 scores_dict[name] = self.s_norm(ivecs, centroids)
         else:
             logwarning(
                 '[Diarization.score] No i-vectors to score in {}.'.format(
                     ivecset.name))
     return scores_dict
Ejemplo n.º 4
0
 def load_ivecs(self):
     with open(self.input_list, 'r') as f:
         for line in f:
             loginfo('[Diarization.load_ivecs] Loading pickle file {} ...'.
                     format(line.rstrip().split()[0]))
             line = line.rstrip()
             try:
                 if len(line.split()) == 1:
                     with open(os.path.join(self.ivecs_dir,
                                            line + '.pkl')) as i:
                         yield pickle.load(i)
                 elif len(line.split()) == 2:
                     file_name = line.split()[0]
                     num_spks = int(line.split()[1])
                     with open(
                             os.path.join(self.ivecs_dir,
                                          file_name + '.pkl')) as i:
                         ivec_set = pickle.load(i)
                         ivec_set.num_speakers = num_spks
                         yield ivec_set
                 else:
                     raise DiarizationException(
                         '[Diarization.load_ivecs] Unexpected number of columns in input list {}.'
                         .format(self.input_list))
             except IOError:
                 logwarning(
                     '[Diarization.load_ivecs] No pickle file found for {}.'
                     .format(line.rstrip().split()[0]))
Ejemplo n.º 5
0
    def get_der(self, ref_file, scores):
        """ Compute Diarization Error Rate from reference and scores.

            :param ref_file: path to file with diarization reference
            :type ref_file: str
            :param scores: input scores from PLDA model
            :type scores: numpy.array
        """
        ref, hyp = self.init_annotations()
        with open(ref_file, 'r') as f:
            for line in f:
                _, name, _, start, duration, _, _, speaker, _ = line.split()
                ref[name][Segment(float(start),
                                  float(start) + float(duration))] = speaker
        for ivecset in self.ivecs:
            if ivecset.size() > 0:
                name, reg_name = ivecset.name, ivecset.name
                # dirty trick, will be removed, watch out
                if 'beamformed' in name:
                    reg_name = re.sub('beamformed/', '', name)
                # # # # # # # # # # # # # # # # # # # # #
                reg_name = re.sub('/.*', '', reg_name)
                for i, ivec in enumerate(ivecset.ivecs):
                    start, end = ivec.window_start / 1000.0, ivec.window_end / 1000.0
                    hyp[reg_name][Segment(start,
                                          end)] = np.argmax(scores[name].T[i])
            else:
                logwarning(
                    '[Diarization.get_der] No i-vectors to dump in {}.'.format(
                        ivecset.name))
        der = DiarizationErrorRate()
        der.collar = 0.25
        names, values, summ = [], [], 0.0
        for name in ref.keys():
            names.append(name)
            der_num = der(ref[name], hyp[name]) * 100
            values.append(der_num)
            summ += der_num
            loginfo('[Diarization.get_der] {} DER = {}'.format(
                name, '{0:.3f}'.format(der_num)))
        loginfo('[Diarization.get_der] Average DER = {}'.format(
            '{0:.3f}'.format(summ / float(len(ref.keys())))))
        Diarization.plot_der(names, values)
Ejemplo n.º 6
0
    def score(self):
        """ Score i-vectors agains speaker clusters.

            :returns: PLDA scores
            :rtype: numpy.array
        """
        scores_dict = {}
        for ivecset in self.ivecs:
            name = os.path.normpath(ivecset.name)
            ivecs = ivecset.get_all()
            loginfo('[Diarization.score] Scoring {} ...'.format(name))
            size = ivecset.size()
            if size > 0:
                if ivecset.num_speakers is not None:
                    num_speakers = ivecset.num_speakers
                    sklearnkmeans = sklearnKMeans(
                        n_clusters=num_speakers).fit(ivecs)
                    centroids = KMeans(sklearnkmeans.cluster_centers_,
                                       num_speakers, self.plda).fit(ivecs)
                else:
                    if self.norm_ivecs is not None:
                        num_speakers, centroids = self.get_num_speakers(ivecs)
                    else:
                        raise DiarizationException(
                            '[Diarization.score] Can not estimate number of speakers without training set.'
                        )
                if self.norm_list is None:
                    scores_dict[name] = self.plda.score(
                        ivecs, centroids, self.scale, self.shift)
                else:
                    scores_dict[name] = self.s_norm(ivecs, centroids)
            else:
                logwarning(
                    '[Diarization.score] No i-vectors to score in {}.'.format(
                        ivecset.name))
        return scores_dict