Ejemplo n.º 1
0
def clusterCore(channelData1, covMatrixList1, channelData2, centroids, centroidUList, type):
    newChannelData1 = []
    newChannelData2 = []
    newDimension = np.shape(centroidUList[0])[1]

    if type == "C":
        # 计算信道相关系数矩阵并输出,然后放到一个矩阵中
        allCovMatrix1 = tools.matrixListToMatrix(covMatrixList1)

        # 确定每个数据分别属于哪个簇
        clusterAssment = kmeans.getClusterAssment(allCovMatrix1, centroids)

        # 变换域
        for i in range(np.shape(channelDataAll1)[0]):
            newChannelData1.append(np.dot(channelData1[i], centroidUList[(int)(clusterAssment[i, 0].real)]))
            newChannelData2.append(np.dot(channelData2[i], centroidUList[(int)(clusterAssment[i, 0].real)]))

    if type == "general":
        newChannelData1 = pca.pca_general(channelData1, newDimension)
        newChannelData2 = pca.pca_general(channelData2, newDimension)

    if type == "none":
        newChannelData1 = channelData1
        newChannelData2 = channelData2

    if type == "wt":
        # 变换域
        for i in range(np.shape(channelData1)[0]):
            newChannelData1.append(wt.wt(channelData1[i], newDimension))
            newChannelData2.append(wt.wt(channelData2[i], newDimension))

    return newChannelData1, newChannelData2
Ejemplo n.º 2
0
def elbowCore(channelDataAll, a, k, iRate, schedule):
    n = np.shape(channelDataAll[0])[1]  # 列数
    p = len(channelDataAll)  # 页数
    sub = n >> a
    rates_C = []
    rates_U = []
    rates_S = []

    for g in range(1 << a):
        # 显示进度
        schedule[1] += 1
        tmpSchedule = schedule[1]
        print(u'共' + str(schedule[0]) + u'部分,' + u'第' + str(tmpSchedule) + u'部分开始!')

        channelData = []
        for h in range(p):
            channelDataPage = channelDataAll[h]
            channelData.append(channelDataPage[:, g * sub:(g + 1) * sub])

        covMatrixList = tools.getCovMatrixList(channelData)
        allCovMatrix = tools.matrixListToMatrix(covMatrixList)

        # 对协方差进行聚类
        centroids, clusterAssment = kmeans.KMeansOushi(allCovMatrix, k)
        centroidList = tools.matrixToMatrixList(centroids)

        # 计算原信道信息量、协方差矩阵特征值、变换矩阵
        informations, SigmaList, UList = tools.getInformations(covMatrixList)

        # 分析PCA效果,计算信息量保留程度
        tmpRates = pca.pca(channelData, informations, centroidList, clusterAssment, iRate)[3][0][:, 1]
        rates_C.append(np.mean(tmpRates))

        # 对变换矩阵进行聚类
        allU = tools.matrixListToMatrix_U(UList)
        weights = tools.matrixListToMatrix_U(SigmaList)
        centroids, clusterAssment = kmeans.KMeansOushi_U(allU, k, weights, iRate)
        centroidList = tools.matrixToMatrixList_U(centroids)

        # 分析PCA效果,计算信息量保留程度
        tmpRates = pca.pca_U(channelData, informations, centroidList, clusterAssment, iRate)[3][0][:, 1]
        rates_U.append(np.mean(tmpRates))

        # 不聚类,直接PCA
        tmpRates = pca.pca_S(SigmaList, iRate)[0][:, 1]
        rates_S.append(np.mean(tmpRates))

        # 显示进度
        print(u'共' + str(schedule[0]) + u'部分,' + u'第' + str(tmpSchedule) + u'部分完成,' + u'已完成' + str(schedule[1]) + u'部分,' + u'完成度:' + '%.2f%%' % (schedule[1] / schedule[0] * 100) + u'!')

    rate_C = np.mean(rates_C)
    rate_U = np.mean(rates_U)
    rate_S = np.mean(rates_S)

    return rate_S.real, rate_C.real, rate_U.real
def clusterCore(channelData1, covMatrixList1, channelData2, centroids, centroidUList, type):
    newChannelData1 = []
    newChannelData2 = []
    newDimension = np.shape(centroidUList[0])[1]
    p = np.shape(channelData1)[0]

    if type == "C":
        # 计算信道相关系数矩阵并输出,然后放到一个矩阵中
        allCovMatrix1 = tools.matrixListToMatrix(covMatrixList1)

        # 确定每个数据分别属于哪个簇
        clusterAssment = kmeans.getClusterAssment(allCovMatrix1, centroids)

        # 变换域
        for i in range(p):
            newChannelData1.append(np.dot(channelData1[i], centroidUList[(int)(clusterAssment[i, 0].real)]))
            newChannelData2.append(np.dot(channelData2[i], centroidUList[(int)(clusterAssment[i, 0].real)]))

    if type == "U":
        informations, SigmaList, UList = tools.getInformations(covMatrixList1)
        allU = tools.matrixListToMatrix_U(UList)
        weights = tools.matrixListToMatrix_U(SigmaList)

        # 确定每个数据分别属于哪个簇
        clusterAssment = kmeans.getClusterAssment_U(allU, weights, centroids, newDimension)

        # 变换域
        for i in range(p):
            newChannelData1.append(np.dot(channelData1[i], centroidUList[(int)(clusterAssment[i, 0].real)]))
            newChannelData2.append(np.dot(channelData2[i], centroidUList[(int)(clusterAssment[i, 0].real)]))

    if type == "S":
        covMatrixList2 = tools.getCovMatrixList(channelData2)
        UList1 = tools.getInformations(covMatrixList1)[2]
        UList2 = tools.getInformations(covMatrixList2)[2]
        iRate = np.shape(centroidUList[0])[1]

        # 变换域
        for i in range(p):
            newChannelData1.append(np.dot(channelData1[i], UList1[i][:, 0:iRate]))
            newChannelData2.append(np.dot(channelData2[i], UList2[i][:, 0:iRate]))

    # 输出处理后的信道数据
    # path = u'/Users/jinruimeng/Downloads/keyan/'
    # nowTime = time.strftime("%Y-%m-%d.%H.%M.%S", time.localtime(time.time()))
    # pathSuffix = type + "_" + slice + "_" + nowTime
    #
    # outNewChannel1ListPath = path + "clusterAddNoise_outNewChannel1List_" + pathSuffix
    # outNewChannel2ListPath = path + "clusterAddNoise_outNewChannel2List_" + pathSuffix
    # readAndWriteDataSet.write(newChannelData1, outNewChannel1ListPath, ".xlsx")
    # readAndWriteDataSet.write(newChannelData2, outNewChannel2ListPath, ".xlsx")

    return newChannelData1, newChannelData2
Ejemplo n.º 4
0
def readCentroids(path, iRate, type, a):
    allCentroids = []
    allCentroidUList = []
    for g in range(1, (1 << a) + 1):
        # 读取聚类中心
        centroidListPath = path + u'getCentroids_outCentroidList_' + type + u'_' + str(
            g) + u'_'
        # 合并多个文件
        centroidList_g = []
        UList_g = []
        for root, dirs, files in os.walk(path, topdown=True):
            for file in files:
                file = os.path.join(root, file)
                if centroidListPath in file:
                    centroidListTmp = excelToMatrixList(file)
                    for centroid in centroidListTmp:
                        centroidList_g.append(centroid)
            break

        # 计算聚类中心的变换矩阵
        if u'C' == type:
            for i in range(len(centroidList_g)):
                U, Sigma, VT = np.linalg.svd(centroidList_g[i])
                sum = np.sum(Sigma)
                curSum = 0
                if iRate <= 1:
                    index = 0
                    for j in range(len(Sigma)):
                        curSum += Sigma[j]
                        if iRate - (curSum / sum) > 0:
                            index += 1
                        else:
                            break
                else:
                    index = iRate - 1
                U2 = np.transpose(VT[0:index + 1, :])
                UList_g.append(U2)
            allCentroids.append(tools.matrixListToMatrix(centroidList_g))
            allCentroidUList.append(UList_g)

        if u'U' == type:
            for i in range(len(centroidList_g)):
                U2 = centroidList_g[i][:, 0:iRate]
                for j in range(np.shape(U2)[1]):
                    # 噪声功率归一
                    U2[:, j] = U2[:, j] / np.linalg.norm((U2[:, j]))
                UList_g.append(U2)
            allCentroids.append(tools.matrixListToMatrix_U(centroidList_g))
            allCentroidUList.append(UList_g)

    return allCentroids, allCentroidUList
Ejemplo n.º 5
0
def clusterCore(channelData1, covMatrixList1, channelData2, centroids,
                centroidUList, type):
    newChannelData1 = []
    newChannelData2 = []
    newDimension = np.shape(centroidUList[0])[1]
    p = np.shape(channelData1)[0]

    if type == "C":
        # 计算信道相关系数矩阵并输出,然后放到一个矩阵中
        allCovMatrix1 = tools.matrixListToMatrix(covMatrixList1)

        # 确定每个数据分别属于哪个簇
        clusterAssment = kmeans.getClusterAssment(allCovMatrix1, centroids)

        # 变换域
        for i in range(p):
            newChannelData1.append(
                np.dot(channelData1[i],
                       centroidUList[(int)(clusterAssment[i, 0].real)]))
            newChannelData2.append(
                np.dot(channelData2[i],
                       centroidUList[(int)(clusterAssment[i, 0].real)]))

    if type == "U":
        informations, SigmaList, UList = tools.getInformations(covMatrixList1)
        allU = tools.matrixListToMatrix_U(UList)
        weights = tools.matrixListToMatrix_U(SigmaList)

        # 确定每个数据分别属于哪个簇
        clusterAssment = kmeans.getClusterAssment_U(allU, weights, centroids,
                                                    newDimension)

        # 变换域
        for i in range(p):
            newChannelData1.append(
                np.dot(channelData1[i],
                       centroidUList[(int)(clusterAssment[i, 0].real)]))
            newChannelData2.append(
                np.dot(channelData2[i],
                       centroidUList[(int)(clusterAssment[i, 0].real)]))

    if type == "general":
        newChannelData1 = pca.pca_general(channelData1, newDimension)
        newChannelData2 = pca.pca_general(channelData2, newDimension)

    if type == "none":
        newChannelData1 = channelData1
        newChannelData2 = channelData2

    allNewCorr = []
    for i in range(p):
        for j in range(newDimension):
            cowCor = np.corrcoef(newChannelData1[i][:, j],
                                 newChannelData2[i][:, j])
            if i == 0:
                allNewCorr.append(cowCor[0, 1])
            else:
                allNewCorr[j] += cowCor[0, 1]

    for i in range(newDimension):
        allNewCorr[i] = abs(allNewCorr[i] / (np.shape(channelData1)[0]))

    path = u'/Users/jinruimeng/Downloads/keyan/'
    nowTime = time.strftime("%Y-%m-%d.%H.%M.%S", time.localtime(time.time()))
    pathSuffix = type + u'_' + nowTime

    newChannelData1Path = path + "clusterAddNoise_newChannelData1_" + pathSuffix
    newChannelData2Path = path + "clusterAddNoise_newChannelData2_" + pathSuffix
    readAndWriteDataSet.write(newChannelData1, newChannelData1Path, ".xlsx")
    readAndWriteDataSet.write(newChannelData2, newChannelData2Path, ".xlsx")

    return allNewCorr
Ejemplo n.º 6
0
def getCentroidsCore(path,
                     suffix,
                     channelData,
                     covMatrixList,
                     informations,
                     SigmaList,
                     UList,
                     g,
                     k,
                     iRate,
                     type="C"):
    nowTime = time.strftime("%Y-%m-%d.%H.%M.%S", time.localtime(time.time()))
    pathSuffix = type + "_" + str(g) + "_" + nowTime

    outOldCovMatrixListPath = path + "getCentroids_outOldCovMatrixList_" + pathSuffix
    outCentroidListPath = path + "getCentroids_outCentroidList_" + pathSuffix
    outClusterAssmentPath = path + "getCentroids_outClusterAssment_" + pathSuffix
    outNewChannelDataPath = path + "getCentroids_outNewChannelData_" + pathSuffix
    outNewCovMatrixListPath = path + "getCentroids_outNewCovMatrixList_" + pathSuffix
    ratesPath = path + "getCentroids_rates_" + pathSuffix
    UTsPath = path + "getCentroids_UTs_" + pathSuffix

    clusterAssmentList = []
    newChannelData = []
    newCovMatrixList = []
    UTs = []
    rates = []

    centroidList = []

    if type == u'C':
        allCovMatrix = tools.matrixListToMatrix(covMatrixList)

        # 对协方差进行聚类
        centroids, clusterAssment = kmeans.KMeansOushi(allCovMatrix, k)
        clusterAssmentList.append(clusterAssment)
        centroidList = tools.matrixToMatrixList(centroids)

        # 分析PCA效果
        # newChannelData, newCovMatrixList, UTs, rates = pca.pca(channelData, informations, centroidList, clusterAssment, iRate)

    if type == u'U':
        allU = tools.matrixListToMatrix_U(UList)
        weights = tools.matrixListToMatrix_U(SigmaList)

        # 对协方差进行聚类
        centroids, clusterAssment = kmeans.KMeansOushi_U(
            allU, k, weights, iRate)
        clusterAssmentList.append(clusterAssment)
        centroidList = tools.matrixToMatrixList_U(centroids)

        # 分析PCA效果
        # newChannelData, newCovMatrixList, UTs, rates = pca.pca_U(channelData, informations, centroidList, clusterAssment, iRate)

    # 输出结果
    # 输出聚类结果
    # readAndWriteDataSet.write(clusterAssmentList, outClusterAssmentPath, suffix)
    # 协方差矩阵太大了,先不输出
    # readAndWriteDataSet.write(covMatrixList, outOldCovMatrixListPath, suffix)
    # 聚类中心太大了,先不输出
    readAndWriteDataSet.write(centroidList, outCentroidListPath, suffix)
Ejemplo n.º 7
0
def cluster(schedule, path, suffix, channelData, g, iRate):
    if iRate > np.shape(channelData)[1]:
        print(u'降维后维度不能大于样本原有的维度!')
        return
    if iRate <= 0:
        print(u'降维后维度不能小于1!')
        return

    schedule[1] += 1
    tmpSchedule = schedule[1]
    print(u'共' + str(schedule[0]) + u'部分,' + u'第' + str(tmpSchedule) +
          u'部分开始!')

    pathSuffix = "C" + "_" + str(g) + "_"
    centroidListPath = path + "getCentroids_outCentroidList_" + pathSuffix

    nowTime = time.strftime("%Y-%m-%d.%H.%M.%S", time.localtime(time.time()))
    pathSuffix = pathSuffix + str(nowTime)

    outOldCovMatrixListPath = path + "cluster_outOldCovMatrixList_" + pathSuffix
    outClusterAssmentPath = path + "cluster_outClusterAssment_" + pathSuffix
    outNewChannelDataPath = path + "cluster_outNewChannelData_" + pathSuffix
    outNewCovMatrixsPath = path + "cluster_outNewCovMatrixList_" + pathSuffix
    ratesPath = path + "cluster_rates_" + pathSuffix
    UTsPath = path + "cluster_UTs_" + pathSuffix

    # 读入聚类中心信息
    # 合并多个文件
    centroidList = []
    for root, dirs, files in os.walk(path, topdown=True):
        for file in files:
            file = os.path.join(root, file)
            if centroidListPath in file:
                centroidListTmp = readAndWriteDataSet.excelToMatrixList(file)
                for centroid in centroidListTmp:
                    centroidList.append(centroid)
        break
    centroids = tools.matrixListToMatrix(centroidList)

    # 计算信道相关系数矩阵并输出,然后放到一个矩阵中
    covMatrixList = tools.getCovMatrixList(channelData)
    allCovMatrix = tools.matrixListToMatrix(covMatrixList)

    # 确定每个数据分别属于哪个簇
    clusterAssment = kmeans.getClusterAssment(allCovMatrix, centroids)
    clusterAssmentList = []
    clusterAssmentList.append(clusterAssment)

    # 分析PCA效果
    newChannelData, newCovMatrixList, UTs, rates = pca.pca(
        channelData, covMatrixList, centroidList, clusterAssment, iRate)

    # 输出结果
    # 输出聚类结果
    readAndWriteDataSet.write(clusterAssmentList, outClusterAssmentPath,
                              suffix)
    # 协方差矩阵太大了,先不输出
    # readAndWriteDataSet.write(covMatrixList, outOldCovMatrixListPath, suffix)
    # 输出PCA结果
    readAndWriteDataSet.write(newChannelData, outNewChannelDataPath, suffix)
    readAndWriteDataSet.write(newCovMatrixList, outNewCovMatrixsPath, suffix)
    readAndWriteDataSet.write(UTs, UTsPath, suffix)
    readAndWriteDataSet.write(rates, ratesPath, suffix)

    # 显示进度
    print(u'共' + str(schedule[0]) + u'部分,' + u'第' + str(tmpSchedule) +
          u'部分完成,' + u'已完成' + str(schedule[1]) + u'部分,' + u'完成度:' + '%.2f%%' %
          (schedule[1] / schedule[0] * 100) + u'!')