Ejemplo n.º 1
0
def SVHN(x, n_classes):
    import tools
    '''
    Args:
        images: 4D tensor [batch_size, img_width, img_height, img_channel]
    Notes:
        In each conv layer, the kernel size is:
        [kernel_size, kernel_size, number of input channels, number of output channels].
        number of input channels are from previuous layer, if previous layer is THE input
        layer, number of input channels should be image's channels.


    '''
    x = tools.conv('conv1', x, 64)
    x = tools.pool('pool1', x)

    x = tools.conv('conv2', x, 64)
    x = tools.pool('pool2', x)

    x = tools.conv('conv3', x, 128)
    x = tools.pool('pool3', x)

    x = tools.FC_layer('fc4', x, out_nodes=64)
    x = tools.drop_out('drop_out', x, keep_prob=0.5)
    x = tools.final_layer('softmax', x, out_nodes=n_classes)
    return x
Ejemplo n.º 2
0
def Encoder_VGG(x, z_dim, n_class, is_pretrain=True, reuse = False):
    if (reuse):
        tf.get_variable_scope().reuse_variables() 
    x = tools.conv('conv1_1', x, 64, kernel_size=[3,3], stride=[1,1,1,1], is_pretrain=is_pretrain)
    x = tools.conv('conv1_2', x, 64, kernel_size=[3,3], stride=[1,1,1,1], is_pretrain=is_pretrain)
    x = tools.pool('pool1', x, kernel=[1,2,2,1], stride=[1,2,2,1], is_max_pool=True)
    
    x = tools.conv('conv2_1', x, 128, kernel_size=[3,3], stride=[1,1,1,1], is_pretrain=is_pretrain)
    x = tools.conv('conv2_2', x, 128, kernel_size=[3,3], stride=[1,1,1,1], is_pretrain=is_pretrain)
    x = tools.pool('pool2', x, kernel=[1,2,2,1], stride=[1,2,2,1], is_max_pool=True)
    
    x = tools.conv('conv3_1', x, 256, kernel_size=[3,3], stride=[1,1,1,1], is_pretrain=is_pretrain)
    x = tools.conv('conv3_2', x, 256, kernel_size=[3,3], stride=[1,1,1,1], is_pretrain=is_pretrain)
    x = tools.conv('conv3_3', x, 256, kernel_size=[3,3], stride=[1,1,1,1], is_pretrain=is_pretrain)
    x = tools.pool('pool3', x, kernel=[1,2,2,1], stride=[1,2,2,1], is_max_pool=True)
    
    x = tools.conv('conv4_1', x, 512, kernel_size=[3,3], stride=[1,1,1,1], is_pretrain=is_pretrain)
    x = tools.conv('conv4_2', x, 512, kernel_size=[3,3], stride=[1,1,1,1], is_pretrain=is_pretrain)
    x = tools.conv('conv4_3', x, 512, kernel_size=[3,3], stride=[1,1,1,1], is_pretrain=is_pretrain)
    x = tools.pool('pool3', x, kernel=[1,2,2,1], stride=[1,2,2,1], is_max_pool=True)

    x = tools.conv('conv5_1', x, 512, kernel_size=[3,3], stride=[1,1,1,1], is_pretrain=is_pretrain)
    x = tools.conv('conv5_2', x, 512, kernel_size=[3,3], stride=[1,1,1,1], is_pretrain=is_pretrain)
    x = tools.conv('conv5_3', x, 512, kernel_size=[3,3], stride=[1,1,1,1], is_pretrain=is_pretrain)
    x = tools.pool('pool3', x, kernel=[1,2,2,1], stride=[1,2,2,1], is_max_pool=True)            

    x = tools.FC_layer('fc6', x, out_nodes=4096)
    x = tools.batch_norm(x)
    z_mu = tools.FC_layer('fc8', x, out_nodes=z_dim)
    z_lv = tools.FC_layer('fc9', x, out_nodes=z_dim)
    y_predict = tools.FC_layer('fc10', z_mu, out_nodes=n_class)
        

    return z_mu, z_lv, y_predict
Ejemplo n.º 3
0
def VGG16_comp(x, num_class):

    x = tools.conv_bn('conv1_1', x, 64, kernel_size=[3,3], stride=[1,1,1,1])
    x = tools.conv_bn('conv1_2', x, 64, kernel_size=[3,3], stride=[1,1,1,1])
    x = tools.pool('pool1', x, kernel=[1,2,2,1], stride=[1,2,2,1], is_max_pool=True)

    x = tools.conv_bn('conv2_1', x, 128, kernel_size=[3,3], stride=[1,1,1,1])
    x = tools.conv_bn('conv2_2', x, 128, kernel_size=[3,3], stride=[1,1,1,1])
    x = tools.pool('pool2', x, kernel=[1,2,2,1], stride=[1,2,2,1], is_max_pool=True)

    x = tools.conv_bn('conv3_1', x, 256, kernel_size=[3,3], stride=[1,1,1,1])
    x = tools.conv_bn('conv3_2', x, 256, kernel_size=[3,3], stride=[1,1,1,1])
    x = tools.conv_bn('conv3_3', x, 256, kernel_size=[3,3], stride=[1,1,1,1])
    x = tools.pool('pool3', x, kernel=[1,2,2,1], stride=[1,2,2,1], is_max_pool=True)

    x = tools.conv_bn('conv4_1', x, 512, kernel_size=[3,3], stride=[1,1,1,1])
    x = tools.conv_bn('conv4_2', x, 512, kernel_size=[3,3], stride=[1,1,1,1])
    x = tools.conv_bn('conv4_3', x, 512, kernel_size=[3,3], stride=[1,1,1,1])
    x = tools.pool('pool3', x, kernel=[1,2,2,1], stride=[1,2,2,1], is_max_pool=True)

    x = tools.conv_bn('conv5_1', x, 1024 , kernel_size=[3,3], stride=[1,1,1,1])
    x = tools.conv_bn('conv5_2', x, 1024 , kernel_size=[3,3], stride=[1,1,1,1])
    x = tools.conv_bn('conv5_3', x, 1024 , kernel_size=[3,3], stride=[1,1,1,1])
    x = tools.pool('pool3', x, kernel=[1,2,2,1], stride=[1,2,2,1], is_max_pool=True)

    x = tools.FC_layer('fc6', x, out_nodes=4096, isActive=True)
    x = tools.FC_layer('fc7', x, out_nodes=2048, isActive=True)
    x = tf.nn.dropout(x,0.7)
    x = tools.FC_layer('fc8', x, out_nodes=num_class)

    return x
Ejemplo n.º 4
0
def VGG16(x, num_class):

    x = tools.conv_bn('conv1_1', x, 64, kernel_size=[3,3], stride=[1,1,1,1])
    x = tools.conv_bn('conv1_2', x, 64, kernel_size=[3,3], stride=[1,1,1,1])
    x = tools.pool('pool1', x, kernel=[1,2,2,1], stride=[1,2,2,1], is_max_pool=True)

    x = tools.conv_bn('conv2_1', x, 128, kernel_size=[3,3], stride=[1,1,1,1])
    x = tools.conv_bn('conv2_2', x, 128, kernel_size=[3,3], stride=[1,1,1,1])
    x = tools.pool('pool2', x, kernel=[1,2,2,1], stride=[1,2,2,1], is_max_pool=True)

    x = tools.conv_bn('conv3_1', x, 256, kernel_size=[3,3], stride=[1,1,1,1])
    x = tools.conv_bn('conv3_2', x, 256, kernel_size=[3,3], stride=[1,1,1,1])
    x = tools.conv_bn('conv3_3', x, 256, kernel_size=[3,3], stride=[1,1,1,1])
    x = tools.pool('pool3', x, kernel=[1,2,2,1], stride=[1,2,2,1], is_max_pool=True)

    x = tools.conv_bn('conv4_1', x, 512, kernel_size=[3,3], stride=[1,1,1,1])
    #x = tools.conv_bn('conv4_2', x, 512, kernel_size=[3,3], stride=[1,1,1,1])
    #x = tools.conv_bn('conv4_3', x, 512, kernel_size=[3,3], stride=[1,1,1,1])
    x = tools.pool('pool3', x, kernel=[1,2,2,1], stride=[1,2,2,1], is_max_pool=True)

    #x = tools.conv_bn('conv5_1', x, 512, kernel_size=[3,3], stride=[1,1,1,1])
    #x = tools.conv_bn('conv5_2', x, 512, kernel_size=[3,3], stride=[1,1,1,1])
    #x = tools.conv_bn('conv5_3', x, 512, kernel_size=[3,3], stride=[1,1,1,1])
    #x = tools.pool('pool3', x, kernel=[1,2,2,1], stride=[1,2,2,1], is_max_pool=True)
    x = tools.conv_1x1('act_1x1' ,x,256,isActive=True)
    x = tools.conv_1x1('down_1x1',x,128,isActive=False)
    x = tools.GAP('GAP',x,is_max_pool=False)
    x = tools.FC_layer('fc6', x, out_nodes=64, isActive=True)
    #x = tools.batch_norm(x,'fc6')
    #x = tools.batch_norm(x,'fc7')
    x = tf.nn.dropout(x,0.5)
    x = tools.FC_layer('fc7', x, out_nodes=num_class)

    return x
Ejemplo n.º 5
0
def VGG16(x, n_classes, is_pretrain=True):
    
    x = tools.conv('conv1_1', x, 64, kernel_size=[3,3], stride=[1,1,1,1], is_pretrain=is_pretrain)
    x = tools.conv('conv1_2', x, 64, kernel_size=[3,3], stride=[1,1,1,1], is_pretrain=is_pretrain)
    x = tools.pool('pool1', x, kernel=[1,2,2,1], stride=[1,2,2,1], is_max_pool=True)
    
    x = tools.conv('conv2_1', x, 128, kernel_size=[3,3], stride=[1,1,1,1], is_pretrain=is_pretrain)
    x = tools.conv('conv2_2', x, 128, kernel_size=[3,3], stride=[1,1,1,1], is_pretrain=is_pretrain)
    x = tools.pool('pool2', x, kernel=[1,2,2,1], stride=[1,2,2,1], is_max_pool=True)
    
    x = tools.conv('conv3_1', x, 256, kernel_size=[3,3], stride=[1,1,1,1], is_pretrain=is_pretrain)
    x = tools.conv('conv3_2', x, 256, kernel_size=[3,3], stride=[1,1,1,1], is_pretrain=is_pretrain)
    x = tools.conv('conv3_3', x, 256, kernel_size=[3,3], stride=[1,1,1,1], is_pretrain=is_pretrain)
    x = tools.pool('pool3', x, kernel=[1,2,2,1], stride=[1,2,2,1], is_max_pool=True)
    
    x = tools.conv('conv4_1', x, 512, kernel_size=[3,3], stride=[1,1,1,1], is_pretrain=is_pretrain)
    x = tools.conv('conv4_2', x, 512, kernel_size=[3,3], stride=[1,1,1,1], is_pretrain=is_pretrain)
    x = tools.conv('conv4_3', x, 512, kernel_size=[3,3], stride=[1,1,1,1], is_pretrain=is_pretrain)
    x = tools.pool('pool3', x, kernel=[1,2,2,1], stride=[1,2,2,1], is_max_pool=True)

    x = tools.conv('conv5_1', x, 512, kernel_size=[3,3], stride=[1,1,1,1], is_pretrain=is_pretrain)
    x = tools.conv('conv5_2', x, 512, kernel_size=[3,3], stride=[1,1,1,1], is_pretrain=is_pretrain)
    x = tools.conv('conv5_3', x, 512, kernel_size=[3,3], stride=[1,1,1,1], is_pretrain=is_pretrain)
    x = tools.pool('pool3', x, kernel=[1,2,2,1], stride=[1,2,2,1], is_max_pool=True)            

    x = tools.FC_layer('fc6', x, out_nodes=4096)
    x = tools.batch_norm(x)
    x = tools.FC_layer('fc7', x, out_nodes=4096)
    x = tools.batch_norm(x)
    x = tools.FC_layer('fc8', x, out_nodes=n_classes)

    return x
Ejemplo n.º 6
0
    def lenet5(self):

        with tf.name_scope('LeNet5'):

            self.conv1 = tools.conv('conv1',
                                    self.input,
                                    32,
                                    kernel_size=[5, 5],
                                    stride=[1, 1, 1, 1],
                                    is_trainable=self.is_trainable)
            self.pool1 = tools.pool('pool1',
                                    self.conv1,
                                    kernel=[1, 2, 2, 1],
                                    stride=[1, 2, 2, 1],
                                    is_max_pool=True)

            self.conv2 = tools.conv('conv2',
                                    self.pool1,
                                    64,
                                    kernel_size=[5, 5],
                                    stride=[1, 1, 1, 1],
                                    is_trainable=self.is_trainable)
            self.pool2 = tools.pool('pool2',
                                    self.conv2,
                                    kernel=[1, 2, 2, 1],
                                    stride=[1, 2, 2, 1],
                                    is_max_pool=True)

            self.fc1 = tools.fc_layer('fc1', self.pool2, out_nodes=512)
            self.dropout1 = tools.dropout('dropout1', self.fc1, self.keep_prob)

            self.logits = tools.fc_layer('fc2',
                                         self.dropout1,
                                         use_relu=False,
                                         out_nodes=self.n_classes)
Ejemplo n.º 7
0
def VGG16(x, n_classes, is_pretrain=True):
    
    x = tools.conv('conv1_1', x, 64, kernel_size=[3,3], stride=[1,1,1,1], is_pretrain=is_pretrain)
    x = tools.conv('conv1_2', x, 64, kernel_size=[3,3], stride=[1,1,1,1], is_pretrain=is_pretrain)
    x = tools.pool('pool1', x, kernel=[1,2,2,1], stride=[1,2,2,1], is_max_pool=True)
    
    x = tools.conv('conv2_1', x, 128, kernel_size=[3,3], stride=[1,1,1,1], is_pretrain=is_pretrain)
    x = tools.conv('conv2_2', x, 128, kernel_size=[3,3], stride=[1,1,1,1], is_pretrain=is_pretrain)
    x = tools.pool('pool2', x, kernel=[1,2,2,1], stride=[1,2,2,1], is_max_pool=True)
    
    x = tools.conv('conv3_1', x, 256, kernel_size=[3,3], stride=[1,1,1,1], is_pretrain=is_pretrain)
    x = tools.conv('conv3_2', x, 256, kernel_size=[3,3], stride=[1,1,1,1], is_pretrain=is_pretrain)
    x = tools.conv('conv3_3', x, 256, kernel_size=[3,3], stride=[1,1,1,1], is_pretrain=is_pretrain)
    x = tools.pool('pool3', x, kernel=[1,2,2,1], stride=[1,2,2,1], is_max_pool=True)
    
    x = tools.conv('conv4_1', x, 512, kernel_size=[3,3], stride=[1,1,1,1], is_pretrain=is_pretrain)
    x = tools.conv('conv4_2', x, 512, kernel_size=[3,3], stride=[1,1,1,1], is_pretrain=is_pretrain)
    x = tools.conv('conv4_3', x, 512, kernel_size=[3,3], stride=[1,1,1,1], is_pretrain=is_pretrain)
    x = tools.pool('pool3', x, kernel=[1,2,2,1], stride=[1,2,2,1], is_max_pool=True)

    x = tools.conv('conv5_1', x, 512, kernel_size=[3,3], stride=[1,1,1,1], is_pretrain=is_pretrain)
    x = tools.conv('conv5_2', x, 512, kernel_size=[3,3], stride=[1,1,1,1], is_pretrain=is_pretrain)
    x = tools.conv('conv5_3', x, 512, kernel_size=[3,3], stride=[1,1,1,1], is_pretrain=is_pretrain)
    x = tools.pool('pool3', x, kernel=[1,2,2,1], stride=[1,2,2,1], is_max_pool=True)            

    x = tools.FC_layer('fc6', x, out_nodes=4096)
    #x = tools.batch_norm(x)
    x = tools.FC_layer('fc7', x, out_nodes=4096)
    #x = tools.batch_norm(x)
    x = tools.FC_layer('fc8', x, out_nodes=n_classes)

    return x
Ejemplo n.º 8
0
def VGG16N(x, n_classes, is_pretrain=True):
    
    with tf.name_scope('VGG16'):

        x = tools.conv('conv1_1', x, 64, kernel_size=[3,3], stride=[1,1,1,1], is_pretrain=is_pretrain)   
        x = tools.conv('conv1_2', x, 64, kernel_size=[3,3], stride=[1,1,1,1], is_pretrain=is_pretrain)
        with tf.name_scope('pool1'):    
            x = tools.pool('pool1', x, kernel=[1,2,2,1], stride=[1,2,2,1], is_max_pool=True)
            
        x = tools.conv('conv2_1', x, 128, kernel_size=[3,3], stride=[1,1,1,1], is_pretrain=is_pretrain)    
        x = tools.conv('conv2_2', x, 128, kernel_size=[3,3], stride=[1,1,1,1], is_pretrain=is_pretrain)
        with tf.name_scope('pool2'):    
            x = tools.pool('pool2', x, kernel=[1,2,2,1], stride=[1,2,2,1], is_max_pool=True)
         
            

        x = tools.conv('conv3_1', x, 256, kernel_size=[3,3], stride=[1,1,1,1], is_pretrain=is_pretrain)
        x = tools.conv('conv3_2', x, 256, kernel_size=[3,3], stride=[1,1,1,1], is_pretrain=is_pretrain)
        x = tools.conv('conv3_3', x, 256, kernel_size=[3,3], stride=[1,1,1,1], is_pretrain=is_pretrain)
        with tf.name_scope('pool3'):
            x = tools.pool('pool3', x, kernel=[1,2,2,1], stride=[1,2,2,1], is_max_pool=True)
            

        x = tools.conv('conv4_1', x, 512, kernel_size=[3,3], stride=[1,1,1,1], is_pretrain=is_pretrain)
        x = tools.conv('conv4_2', x, 512, kernel_size=[3,3], stride=[1,1,1,1], is_pretrain=is_pretrain)
        x = tools.conv('conv4_3', x, 512, kernel_size=[3,3], stride=[1,1,1,1], is_pretrain=is_pretrain)
        with tf.name_scope('pool4'):
            x = tools.pool('pool4', x, kernel=[1,2,2,1], stride=[1,2,2,1], is_max_pool=True)
        

        x = tools.conv('conv5_1', x, 512, kernel_size=[3,3], stride=[1,1,1,1], is_pretrain=is_pretrain)
        x = tools.conv('conv5_2', x, 512, kernel_size=[3,3], stride=[1,1,1,1], is_pretrain=is_pretrain)
        x = tools.conv('conv5_3', x, 512, kernel_size=[3,3], stride=[1,1,1,1], is_pretrain=is_pretrain)
        with tf.name_scope('pool5'):
            x = tools.pool('pool5', x, kernel=[1,2,2,1], stride=[1,2,2,1], is_max_pool=True)            
        
        
        x = tools.FC_layer('fc6', x, out_nodes=4096)        
        with tf.name_scope('batch_norm1'):
            x = tools.batch_norm(x)
        feature = tools.FC_layer('fc7', x, out_nodes=4096)

        with tf.name_scope('batch_norm2'):
            x = tools.batch_norm(feature)
        x = tools.FC_layer('fc8', x, out_nodes=n_classes)
    
        return x,feature



#%%







            
def VGG16N(x, n_classes, is_pretrain=True):
# is_pretrain=false : no tranining, use parameter from vgg16.npy
# is_pretrain=true: trainning new parameter
    
    with tf.name_scope('VGG16'):

        x = tools.conv('conv1_1', x, 64, kernel_size=[3,3], stride=[1,1,1,1], is_pretrain=False)   
        x = tools.conv('conv1_2', x, 64, kernel_size=[3,3], stride=[1,1,1,1], is_pretrain=False)
#        x = tf.nn.dropout(x, 0.5) 
        with tf.name_scope('pool1'):    
            x = tools.pool('pool1', x, kernel=[1,2,2,1], stride=[1,2,2,1], is_max_pool=True)
            
            
        x = tools.conv('conv2_1', x, 128, kernel_size=[3,3], stride=[1,1,1,1], is_pretrain=False)    
        x = tools.conv('conv2_2', x, 128, kernel_size=[3,3], stride=[1,1,1,1], is_pretrain=False)
#        x = tf.nn.dropout(x, 0.5) 
        with tf.name_scope('pool2'):    
            x = tools.pool('pool2', x, kernel=[1,2,2,1], stride=[1,2,2,1], is_max_pool=True)
            
            

        x = tools.conv('conv3_1', x, 256, kernel_size=[3,3], stride=[1,1,1,1], is_pretrain=False)
        x = tools.conv('conv3_2', x, 256, kernel_size=[3,3], stride=[1,1,1,1], is_pretrain=False)
        x = tools.conv('conv3_3', x, 256, kernel_size=[3,3], stride=[1,1,1,1], is_pretrain=False)
       # x = tf.nn.dropout(x, 0.5) 
        with tf.name_scope('pool3'):
            x = tools.pool('pool3', x, kernel=[1,2,2,1], stride=[1,2,2,1], is_max_pool=True)
            

        x = tools.conv('conv4_1', x, 512, kernel_size=[3,3], stride=[1,1,1,1], is_pretrain=True)
        x = tools.conv('conv4_2', x, 512, kernel_size=[3,3], stride=[1,1,1,1], is_pretrain=True)
        x = tools.conv('conv4_3', x, 512, kernel_size=[3,3], stride=[1,1,1,1], is_pretrain=True)
       # x = tf.nn.dropout(x, 0.5) 
        with tf.name_scope('pool4'):
            x = tools.pool('pool4', x, kernel=[1,2,2,1], stride=[1,2,2,1], is_max_pool=True)
            

        x = tools.conv('conv5_1', x, 512, kernel_size=[3,3], stride=[1,1,1,1], is_pretrain=True)
        x = tools.conv('conv5_2', x, 512, kernel_size=[3,3], stride=[1,1,1,1], is_pretrain=True)
        x = tools.conv('conv5_3', x, 512, kernel_size=[3,3], stride=[1,1,1,1], is_pretrain=True)
        x = tf.nn.dropout(x, 0.5) 
        with tf.name_scope('pool5'):
            x = tools.pool('pool5', x, kernel=[1,2,2,1], stride=[1,2,2,1], is_max_pool=True)            
        
        
        x = tools.FC_layer('fc6', x, out_nodes=4096)   
        x = tf.nn.dropout(x, 0.5) 
        #with tf.name_scope('batch_norm1'):
#        x = tools.batch_norm(x)           
        x = tools.FC_layer('fc7', x, out_nodes=4096)        
        #with tf.name_scope('batch_norm2'):
        x = tf.nn.dropout(x,0.5) 
#        x = tools.batch_norm(x) 
                   
        x = tools.FC_layer('fc8', x, out_nodes=n_classes)
    
        return x
Ejemplo n.º 10
0
def VGG16(x, isSty, is_pretrain=False):
    x = x - np.array([ 123.68 ,  116.779,  103.939])
    every_layer_output = {}
    
    x = tools.conv('conv1_1', x, 64, kernel_size=[3,3], stride=[1,1,1,1], is_pretrain=is_pretrain)
    
    x = tools.conv('conv1_2', x, 64, kernel_size=[3,3], stride=[1,1,1,1], is_pretrain=is_pretrain)
    every_layer_output['conv1_2'] = x #conv1_2
    x = tools.pool('pool1', x, kernel=[1,2,2,1], stride=[1,2,2,1], is_max_pool=True)
    
    x = tools.conv('conv2_1', x, 128, kernel_size=[3,3], stride=[1,1,1,1], is_pretrain=is_pretrain)
    
    x = tools.conv('conv2_2', x, 128, kernel_size=[3,3], stride=[1,1,1,1], is_pretrain=is_pretrain)
    every_layer_output['conv2_2'] = x #conv2_2
    
    if isSty:
        x = tools.pool('pool2', x, kernel=[1,2,2,1], stride=[1,2,2,1], is_max_pool=True)
        
        x = tools.conv('conv3_1', x, 256, kernel_size=[3,3], stride=[1,1,1,1], is_pretrain=is_pretrain)
        
        x = tools.conv('conv3_2', x, 256, kernel_size=[3,3], stride=[1,1,1,1], is_pretrain=is_pretrain)
        x = tools.conv('conv3_3', x, 256, kernel_size=[3,3], stride=[1,1,1,1], is_pretrain=is_pretrain)
        every_layer_output['conv3_3'] = x #conv3_3
    
        
        x = tools.pool('pool3', x, kernel=[1,2,2,1], stride=[1,2,2,1], is_max_pool=True)
        
        x = tools.conv('conv4_1', x, 512, kernel_size=[3,3], stride=[1,1,1,1], is_pretrain=is_pretrain)
        
        x = tools.conv('conv4_2', x, 512, kernel_size=[3,3], stride=[1,1,1,1], is_pretrain=is_pretrain)
        
        x = tools.conv('conv4_3', x, 512, kernel_size=[3,3], stride=[1,1,1,1], is_pretrain=is_pretrain)
        every_layer_output['conv4_3'] = x #conv4_3

#    x = tools.pool('pool3', x, kernel=[1,2,2,1], stride=[1,2,2,1], is_max_pool=True)
#
#    x = tools.conv('conv5_1', x, 512, kernel_size=[3,3], stride=[1,1,1,1], is_pretrain=is_pretrain)
    
#    x = tools.conv('conv5_2', x, 512, kernel_size=[3,3], stride=[1,1,1,1], is_pretrain=is_pretrain)
#    x = tools.conv('conv5_3', x, 512, kernel_size=[3,3], stride=[1,1,1,1], is_pretrain=is_pretrain)
#    x = tools.pool('pool3', x, kernel=[1,2,2,1], stride=[1,2,2,1], is_max_pool=True)            
#
#    x = tools.FC_layer('fc6', x, out_nodes=4096)
#    #x = tools.batch_norm(x)
#    x = tools.FC_layer('fc7', x, out_nodes=4096)
#    #x = tools.batch_norm(x)
#    x = tools.FC_layer('fc8', x, out_nodes=n_classes)

    return every_layer_output
Ejemplo n.º 11
0
def Network(x, n_classes, dropout):
    global is_training
    x = tf.reshape(x, [-1, 28, 28, 1])
    x = tools.conv('conv1', x, 32, kernel_size=[5, 5], is_pretrain=is_pretrain)
    x = tools.pool('pool1', x, is_max_pool=True)
    x = tools.conv('conv2', x, 64, is_pretrain=is_pretrain)
    x = tools.pool('pool2', x, is_max_pool=True)

    fc_x = tools.FC_layer('FC1', x, 1024)

    fc_x = tf.layers.dropout(fc_x, rate=dropout, training=is_training)

    out = tools.FC_layer('FC2', fc_x, n_classes)

    return out
Ejemplo n.º 12
0
def Model_finetune(layer, n_classes, is_pretrain=True):
    # '''
    # Model_finetune: that uses varies tools.py function to setup CNN and returns the logits
    # Arg: layer(tensor), n_classes(int), is_pretrain(Booleen)
    # layer: list of images that are decoded in tensor
    # n_classes: batch size for the training
    # is_pretrain: number of classification for output
    # Return: layer(logits)
    # '''
    with tf.name_scope('Model_finetune'):
        # first conv + pool
        layer = tools.conv('conv1_1', layer, 64, kernel_size=[7,7], stride=[1,1,1,1], is_pretrain=is_pretrain)   
        with tf.name_scope('pool1'):    
            layer = tools.pool('pool1', layer, kernel=[1,2,2,1], stride=[1,2,2,1], is_max_pool=True)
        # second conv + pool
        layer = tools.conv('conv2_1', layer, 128, kernel_size=[7,7], stride=[1,1,1,1], is_pretrain=is_pretrain)    
        with tf.name_scope('pool2'):    
            layer = tools.pool('pool2', layer, kernel=[1,2,2,1], stride=[1,2,2,1], is_max_pool=True)
                    
        # thrid conv + pool
        layer = tools.conv('conv3_1', layer, 256, kernel_size=[7,7], stride=[1,1,1,1], is_pretrain=is_pretrain)
        with tf.name_scope('pool3'):
            layer = tools.pool('pool3', layer, kernel=[1,2,2,1], stride=[1,2,2,1], is_max_pool=True)
            
        # fourth conv + pool
        layer = tools.conv('conv4_1', layer, 512, kernel_size=[7,7], stride=[1,1,1,1], is_pretrain=is_pretrain)
        with tf.name_scope('pool4'):
            layer = tools.pool('pool4', layer, kernel=[1,2,2,1], stride=[1,2,2,1], is_max_pool=True)
        
        # fifth conv + pool
        layer = tools.conv('conv5_1', layer, 512, kernel_size=[7,7], stride=[1,1,1,1], is_pretrain=is_pretrain)
        with tf.name_scope('pool5'):
            layer = tools.pool('pool5', layer, kernel=[1,2,2,1], stride=[1,2,2,1], is_max_pool=True)            
        
        # 3 fully connected layers, last one is softmax
        layer = tools.FC_layer('fc6', layer, out_nodes=2048)        
        with tf.name_scope('batch_norm1'):
            layer = tools.batch_norm(layer)           
        layer = tools.FC_layer('fc7', layer, out_nodes=2048)        
        with tf.name_scope('batch_norm2'):
            layer = tools.batch_norm(layer)            
        layer = tools.FC_layer('fc8', layer, out_nodes=n_classes)
    
        return layer
Ejemplo n.º 13
0
def VGG16N_CNN(x, n_classes, is_pretrain=True):
    with tf.name_scope('VGG16'):
        x = tools.conv('conv1_1', x, 64, kernel_size=[3, 3], stride=[1, 1, 1, 1], is_pretrain=is_pretrain)
        x = tools.conv('conv1_2', x, 64, kernel_size=[3, 3], stride=[1, 1, 1, 1], is_pretrain=is_pretrain)
        with tf.name_scope('pool1'):
            x = tools.pool('pool1', x, kernel=[1, 2, 2, 1], stride=[1, 2, 2, 1], is_max_pool=True)

        x = tools.conv('conv2_1', x, 128, kernel_size=[3, 3], stride=[1, 1, 1, 1], is_pretrain=is_pretrain)
        x = tools.conv('conv2_2', x, 128, kernel_size=[3, 3], stride=[1, 1, 1, 1], is_pretrain=is_pretrain)
        with tf.name_scope('pool2'):
            x = tools.pool('pool2', x, kernel=[1, 2, 2, 1], stride=[1, 2, 2, 1], is_max_pool=True)

        x = tools.conv('conv3_1', x, 256, kernel_size=[3, 3], stride=[1, 1, 1, 1], is_pretrain=is_pretrain)
        x = tools.conv('conv3_2', x, 256, kernel_size=[3, 3], stride=[1, 1, 1, 1], is_pretrain=is_pretrain)
        x = tools.conv('conv3_3', x, 256, kernel_size=[3, 3], stride=[1, 1, 1, 1], is_pretrain=is_pretrain)
        with tf.name_scope('pool3'):
            x = tools.pool('pool3', x, kernel=[1, 2, 2, 1], stride=[1, 2, 2, 1], is_max_pool=True)

        x = tools.conv('conv4_1', x, 512, kernel_size=[3, 3], stride=[1, 1, 1, 1], is_pretrain=is_pretrain)
        x = tools.conv('conv4_2', x, 512, kernel_size=[3, 3], stride=[1, 1, 1, 1], is_pretrain=is_pretrain)
        x = tools.conv('conv4_3', x, 512, kernel_size=[3, 3], stride=[1, 1, 1, 1], is_pretrain=is_pretrain)
        with tf.name_scope('pool4'):
            x = tools.pool('pool4', x, kernel=[1, 2, 2, 1], stride=[1, 2, 2, 1], is_max_pool=True)

        x = tools.conv('conv5_1', x, 512, kernel_size=[3, 3], stride=[1, 1, 1, 1], is_pretrain=is_pretrain)
        x = tools.conv('conv5_2', x, 512, kernel_size=[3, 3], stride=[1, 1, 1, 1], is_pretrain=is_pretrain)
        x = tools.conv('conv5_3', x, 512, kernel_size=[3, 3], stride=[1, 1, 1, 1], is_pretrain=is_pretrain)
        with tf.name_scope('pool5'):
            cnn_x = tools.pool('pool5', x, kernel=[1, 2, 2, 1], stride=[1, 2, 2, 1], is_max_pool=True)

        shape = cnn_x.get_shape()
        size = shape[1].value * shape[2].value * shape[3].value
        cnn_x = tf.reshape(cnn_x, [-1, size])  # flatten into 1D

        # x = tools.FC_layer('fc6', cnn_x, out_nodes=4096)
        # # with tf.name_scope('batch_norm1'):
        # # x = tools.batch_norm(x)
        # x = tools.FC_layer('fc7', cnn_x, out_nodes=4096)
        # # with tf.name_scope('batch_norm2'):
        # # x = tools.batch_norm(x)
        # x = tools.FC_layer('fc8', cnn_x, out_nodes=n_classes)

        return cnn_x
Ejemplo n.º 14
0
def VGG16(x, n_class, is_pretrain=True):

    # using the name scope, the tensorboard maybe look better
    with tf.name_scope('VGG16'):

        x = tools.conv('conv1_1', x, 64, kernel_size=[3, 3], stride=[1, 1, 1, 1], is_pretrain=is_pretrain)
        x = tools.conv('conv1_2', x, 64, kernel_size=[3, 3], stride=[1, 1, 1, 1], is_pretrain=is_pretrain)
        with tf.name_scope('pool1'):
            x = tools.pool('pool1', x, ksize=[1, 2, 2, 1], stride=[1, 2, 2, 1], is_max_pool=True)

        x = tools.conv('conv2_1', x, 128, kernel_size=[3, 3], stride=[1, 1, 1, 1], is_pretrain=is_pretrain)
        x = tools.conv('conv2_2', x, 128, kernel_size=[3, 3], stride=[1, 1, 1, 1], is_pretrain=is_pretrain)
        with tf.name_scope('pool2'):
            x = tools.pool('pool2', x, ksize=[1, 2, 2, 1], stride=[1, 2, 2, 1], is_max_pool=True)

        x = tools.conv('conv3_1', x, 256, kernel_size=[3, 3], stride=[1, 1, 1, 1], is_pretrain=is_pretrain)
        x = tools.conv('conv3_2', x, 256, kernel_size=[3, 3], stride=[1, 1, 1, 1], is_pretrain=is_pretrain)
        x = tools.conv('conv3_3', x, 256, kernel_size=[3, 3], stride=[1, 1, 1, 1], is_pretrain=is_pretrain)
        with tf.name_scope('pool3'):
            x = tools.pool('pool3', x, ksize=[1, 2, 2, 1], stride=[1, 2, 2, 1], is_max_pool=True)

        x = tools.conv('conv4_1', x, 512, kernel_size=[3, 3], stride=[1, 2, 2, 1], is_pretrain=is_pretrain)
        x = tools.conv('conv4_2', x, 512, kernel_size=[3, 3], stride=[1, 2, 2, 1], is_pretrain=is_pretrain)
        x = tools.conv('conv4_3', x, 512, kernel_size=[3, 3], stride=[1, 2, 2, 1], is_pretrain=is_pretrain)
        with tf.name_scope('pool4'):
            x = tools.pool('pool4', x, ksize=[1, 2, 2, 1], stride=[1, 2, 2, 1], is_max_pool=True)

        x = tools.conv('conv5_1', x, 512, kernel_size=[3, 3], stride=[1, 2, 2, 1], is_pretrain=is_pretrain)
        x = tools.conv('conv5_2', x, 512, kernel_size=[3, 3], stride=[1, 2, 2, 1], is_pretrain=is_pretrain)
        x = tools.conv('conv5_3', x, 512, kernel_size=[3, 3], stride=[1, 2, 2, 1], is_pretrain=is_pretrain)
        with tf.name_scope('pool5'):
            x = tools.pool('pool5', x, ksize=[1, 2, 2, 1], stride=[1, 2, 2, 1], is_max_pool=True)

        x = tools.FC_layer('fc6', x, out_nodes=4096)
        with tf.name_scope('batch_norma1'):
            x = tools.batch_norm(x)     # batch norm can avoid overfit, more efficient than dropout
        x = tools.FC_layer('fc7', x, out_nodes=4096)
        with tf.name_scope('batch_norm2'):
            x = tools.batch_norm(x)
        x = tools.FC_layer('fc8', x, out_nodes=n_class)

        return x
Ejemplo n.º 15
0
def Network(x, n_classes, dropout, reuse, is_training):
    with tf.variable_scope('ConvNet', reuse=reuse):
        x = x['images']
        x = tf.reshape(x, [-1, 28, 28, 1])
        x = tools.conv('conv1',
                       x,
                       32,
                       kernel_size=[5, 5],
                       is_pretrain=is_pretrain)
        x = tools.pool('pool1', x, is_max_pool=True)
        x = tools.conv('conv2', x, 64, is_pretrain=is_pretrain)
        x = tools.pool('pool2', x, is_max_pool=True)

        fc_x = tools.FC_layer('FC1', x, 1024)

        fc_x = tf.layers.dropout(fc_x, rate=dropout, training=is_training)

        out = tools.FC_layer('FC2', fc_x, n_classes)

    return out
def VGG16_no_fc(x, keep_prob=0.5, is_pretrain=True):
    with tf.name_scope('VGG16'):
        x = tools.conv('conv1_1', x, 64, kernel_size=[3, 3], stride=[1, 1, 1, 1], is_pretrain=is_pretrain)
        x = tools.conv('conv1_2', x, 64, kernel_size=[3, 3], stride=[1, 1, 1, 1], is_pretrain=is_pretrain)
        with tf.name_scope('pool1'):
            x = tools.pool('pool1', x, kernel=[1, 2, 2, 1], stride=[1, 2, 2, 1], is_max_pool=True)

        x = tools.conv('conv2_1', x, 128, kernel_size=[3, 3], stride=[1, 1, 1, 1], is_pretrain=is_pretrain)
        x = tools.conv('conv2_2', x, 128, kernel_size=[3, 3], stride=[1, 1, 1, 1], is_pretrain=is_pretrain)
        with tf.name_scope('pool2'):
            x = tools.pool('pool2', x, kernel=[1, 2, 2, 1], stride=[1, 2, 2, 1], is_max_pool=True)

        x = tools.conv('conv3_1', x, 256, kernel_size=[3, 3], stride=[1, 1, 1, 1], is_pretrain=is_pretrain)
        x = tools.conv('conv3_2', x, 256, kernel_size=[3, 3], stride=[1, 1, 1, 1], is_pretrain=is_pretrain)
        x = tools.conv('conv3_3', x, 256, kernel_size=[3, 3], stride=[1, 1, 1, 1], is_pretrain=is_pretrain)
        with tf.name_scope('pool3'):
            x = tools.pool('pool3', x, kernel=[1, 2, 2, 1], stride=[1, 2, 2, 1], is_max_pool=True)

        x = tools.conv('conv4_1', x, 512, kernel_size=[3, 3], stride=[1, 1, 1, 1], is_pretrain=is_pretrain)
        x = tools.conv('conv4_2', x, 512, kernel_size=[3, 3], stride=[1, 1, 1, 1], is_pretrain=is_pretrain)
        x = tools.conv('conv4_3', x, 512, kernel_size=[3, 3], stride=[1, 1, 1, 1], is_pretrain=is_pretrain)
        with tf.name_scope('pool4'):
            x = tools.pool('pool4', x, kernel=[1, 2, 2, 1], stride=[1, 2, 2, 1], is_max_pool=True)

        x = tools.conv('conv5_1', x, 512, kernel_size=[3, 3], stride=[1, 1, 1, 1], is_pretrain=is_pretrain)
        x = tools.conv('conv5_2', x, 512, kernel_size=[3, 3], stride=[1, 1, 1, 1], is_pretrain=is_pretrain)
        x = tools.conv('conv5_3', x, 512, kernel_size=[3, 3], stride=[1, 1, 1, 1], is_pretrain=is_pretrain)
        with tf.name_scope('pool5'):
            x = tools.pool('pool5', x, kernel=[1, 2, 2, 1], stride=[1, 2, 2, 1], is_max_pool=True)


        y = tools.FC_layer('fc6', x, out_nodes=2048, keep_prob=keep_prob)
        # with tf.name_scope('batch_norm1'):
        # x = tools.batch_norm(x)
        y = tools.FC_layer('fc7', x, out_nodes=512, keep_prob=keep_prob)
        # with tf.name_scope('batch_norm2'):
        # x = tools.batch_norm(x)
        y = tools.FC_layer('fc8', x, out_nodes=2, keep_prob=keep_prob)

        return x
Ejemplo n.º 17
0
    def LeNet5(self):

        with tf.name_scope('LeNet5'):

            self.conv1 = tools.conv('conv1',
                                    self.input,
                                    16,
                                    kernel_size=[3, 3],
                                    stride=[1, 1, 1, 1],
                                    is_pretrain=self.is_pretrain)
            self.pool1 = tools.pool('pool1',
                                    self.conv1,
                                    kernel=[1, 3, 3, 1],
                                    stride=[1, 2, 2, 1],
                                    is_max_pool=True,
                                    is_norm=True)

            self.conv2 = tools.conv('conv2',
                                    self.pool1,
                                    16,
                                    kernel_size=[3, 3],
                                    stride=[1, 1, 1, 1],
                                    is_pretrain=self.is_pretrain)
            self.pool2 = tools.pool('pool2',
                                    self.conv2,
                                    kernel=[1, 3, 3, 1],
                                    stride=[1, 2, 2, 1],
                                    is_max_pool=True,
                                    is_norm=True)

            self.fc1 = tools.FC_layer('local3', self.pool2, out_nodes=128)
            self.norm1 = tools.batch_norm('batch_norm1', self.fc1)

            self.fc2 = tools.FC_layer('local4', self.norm1, out_nodes=128)
            self.norm2 = tools.batch_norm('batch_norm2', self.fc2)

            self.fc3 = tools.FC_layer('softmax_linear',
                                      self.norm2,
                                      out_nodes=self.n_classes,
                                      use_relu=False)
Ejemplo n.º 18
0
def AlexNet(x, n_classes, is_pretrain=True):

    with tf.name_scope('AlexNet'):

        x = tools.conv('conv1',
                       x,
                       16,
                       kernel_size=[3, 3],
                       stride=[1, 1, 1, 1],
                       is_pretrain=is_pretrain)
        x = tools.pool('pool1',
                       x,
                       kernel=[1, 3, 3, 1],
                       stride=[1, 2, 2, 1],
                       is_max_pool=True,
                       is_norm=True)

        x = tools.conv('conv2',
                       x,
                       16,
                       kernel_size=[3, 3],
                       stride=[1, 1, 1, 1],
                       is_pretrain=is_pretrain)
        x = tools.pool('pool2',
                       x,
                       kernel=[1, 3, 3, 1],
                       stride=[1, 2, 2, 1],
                       is_max_pool=True,
                       is_norm=True)

        x = tools.FC_layer('local3', x, out_nodes=128)
        x = tools.batch_norm('batch_norm1', x)

        x = tools.FC_layer('local4', x, out_nodes=128)
        x = tools.batch_norm('batch_norm2', x)

        x = tools.FC_layer('softmax_linear', x, out_nodes=n_classes)

        return x
Ejemplo n.º 19
0
def AlexNet(x, n_class):


    x = tools.conv_layer('conv1', x, filter_size=11, strides=4, in_channels=3, out_channels=96, activation=True)

    x = tools.pool('pool1', x, p_ksize=3, p_strides=2, is_max_pool=True)

    x = tools.conv_layer('conv2', x, filter_size=5, strides=1, in_channels=96, out_channels=256, activation=True)

    x = tools.pool('pool2', x, p_ksize=3, p_strides=2, is_max_pool=True)

    x = tools.conv_layer('conv3', x, filter_size=3, strides=1, in_channels=256, out_channels=384, activation=True)

    x = tools.conv_layer('conv4', x, filter_size=3, strides=1, in_channels=384, out_channels=384, activation=True)

    x = tools.conv_layer('conv5', x, filter_size=3, strides=1, in_channels=384, out_channels=256, activation=True)

    x = tools.pool('pool3', x, p_ksize=3, p_strides=2, is_max_pool=True)

    x = tools.FC_layer('FC1', x, out_nodes=4096, if_relu=True)
    x = tools.FC_layer('FC2', x, out_nodes=4096, if_relu=True)

    x = tools.FC_layer('FC3', x, out_nodes=n_class, if_relu=None)
    return x
Ejemplo n.º 20
0
def mnist_net(x, prob):
    with tf.variable_scope('mnist_net'):

        x = tf.reshape(x, shape=[-1, 28, 28, 1])

        # first convolution layer
        x = tools.conv('conv_layer_1',
                       x,
                       32,
                       kernel_size=[5, 5],
                       stride=[1, 1, 1, 1])
        with tf.name_scope('max_pool_1'):
            x = tools.pool('max_pool_1',
                           x,
                           kernel=[1, 2, 2, 1],
                           stride=[1, 2, 2, 1])

        # second convolution layer
        x = tools.conv('conv_layer_2',
                       x,
                       64,
                       kernel_size=[5, 5],
                       stride=[1, 1, 1, 1])
        with tf.name_scope('max_pool_2'):
            x = tools.pool('max_pool_2',
                           x,
                           kernel=[1, 2, 2, 1],
                           stride=[1, 2, 2, 1])

        # fully convolution layers
        x = tools.FC_layer('fc_layer_1', x, 1024)
        x = tf.nn.relu(x)
        x = tools.drop(x, prob)
        x = tools.FC_layer('fc_layer_2', x, 10)

        return x
Ejemplo n.º 21
0
def VGG19(x, n_classes, is_pretrain=True):

    x = tools.conv('conv1_1',
                   x,
                   64,
                   kernel_size=[3, 3],
                   stride=[1, 1, 1, 1],
                   is_pretrain=is_pretrain)
    x = tools.conv('conv1_2',
                   x,
                   64,
                   kernel_size=[3, 3],
                   stride=[1, 1, 1, 1],
                   is_pretrain=is_pretrain)
    x = tools.pool('pool1', x, kernel=[1, 2, 2, 1], stride=[1, 2, 2, 1])

    x = tools.conv('conv2_1',
                   x,
                   128,
                   kernel_size=[3, 3],
                   stride=[1, 1, 1, 1],
                   is_pretrain=is_pretrain)
    x = tools.conv('conv2_2',
                   x,
                   128,
                   kernel_size=[3, 3],
                   stride=[1, 1, 1, 1],
                   is_pretrain=is_pretrain)
    x = tools.pool('pool2', x, kernel=[1, 2, 2, 1], stride=[1, 2, 2, 1])

    x = tools.conv('conv3_1',
                   x,
                   256,
                   kernel_size=[3, 3],
                   stride=[1, 1, 1, 1],
                   is_pretrain=is_pretrain)
    x = tools.conv('conv3_2',
                   x,
                   256,
                   kernel_size=[3, 3],
                   stride=[1, 1, 1, 1],
                   is_pretrain=is_pretrain)
    x = tools.conv('conv3_3',
                   x,
                   256,
                   kernel_size=[3, 3],
                   stride=[1, 1, 1, 1],
                   is_pretrain=is_pretrain)
    x = tools.conv('conv3_4',
                   x,
                   256,
                   kernel_size=[3, 3],
                   stride=[1, 1, 1, 1],
                   is_pretrain=is_pretrain)
    x = tools.pool('pool3', x, kernel=[1, 2, 2, 1], stride=[1, 2, 2, 1])

    x = tools.conv('conv4_1',
                   x,
                   512,
                   kernel_size=[3, 3],
                   stride=[1, 1, 1, 1],
                   is_pretrain=is_pretrain)
    x = tools.conv('conv4_2',
                   x,
                   512,
                   kernel_size=[3, 3],
                   stride=[1, 1, 1, 1],
                   is_pretrain=is_pretrain)
    x = tools.conv('conv4_3',
                   x,
                   512,
                   kernel_size=[3, 3],
                   stride=[1, 1, 1, 1],
                   is_pretrain=is_pretrain)
    x = tools.conv('conv4_4',
                   x,
                   512,
                   kernel_size=[3, 3],
                   stride=[1, 1, 1, 1],
                   is_pretrain=is_pretrain)
    x = tools.pool('pool4', x, kernel=[1, 2, 2, 1], stride=[1, 2, 2, 1])

    x = tools.conv('conv5_1',
                   x,
                   512,
                   kernel_size=[3, 3],
                   stride=[1, 1, 1, 1],
                   is_pretrain=is_pretrain)
    x = tools.conv('conv5_2',
                   x,
                   512,
                   kernel_size=[3, 3],
                   stride=[1, 1, 1, 1],
                   is_pretrain=is_pretrain)
    x = tools.conv('conv5_3',
                   x,
                   512,
                   kernel_size=[3, 3],
                   stride=[1, 1, 1, 1],
                   is_pretrain=is_pretrain)
    x = tools.conv('conv5_4',
                   x,
                   512,
                   kernel_size=[3, 3],
                   stride=[1, 1, 1, 1],
                   is_pretrain=is_pretrain)
    x = tools.pool('pool5', x, kernel=[1, 2, 2, 1], stride=[1, 2, 2, 1])

    x = tools.FC_layer('fc6', x, out_nodes=4096)
    x = tf.nn.dropout(x, keep_prob=0.5)
    x = tools.FC_layer('fc7', x, out_nodes=4096)
    x = tf.nn.dropout(x, keep_prob=0.5)
    x = tools.FC_layer('fc8', x, out_nodes=n_classes)

    return x
Ejemplo n.º 22
0
def VGG16N(x, n_classes, keep_prob,is_pretrain=True):
    
    with tf.name_scope('VGG16'):

        x = tools.conv('conv1_1', x, 64, kernel_size=[3,3], stride=[1,1,1,1], is_pretrain=is_pretrain)   
        x = tools.conv('conv1_2', x, 64, kernel_size=[3,3], stride=[1,1,1,1], is_pretrain=is_pretrain)
#        with tf.name_scope('batch_norm1'):
#            x = tools.batch_norm(x)
        with tf.name_scope('pool1'):    
            x = tools.pool('pool1', x, kernel=[1,2,2,1], stride=[1,2,2,1], is_max_pool=True)
        
           
        
        x = tools.conv('conv2_1', x, 128, kernel_size=[3,3], stride=[1,1,1,1], is_pretrain=is_pretrain)    
        x = tools.conv('conv2_2', x, 128, kernel_size=[3,3], stride=[1,1,1,1], is_pretrain=is_pretrain)
#        with tf.name_scope('batch_norm2'):
#            x = tools.batch_norm(x) 
        with tf.name_scope('pool2'):    
            x = tools.pool('pool2', x, kernel=[1,2,2,1], stride=[1,2,2,1], is_max_pool=True)
         
             

        x = tools.conv('conv3_1', x, 256, kernel_size=[3,3], stride=[1,1,1,1], is_pretrain=is_pretrain)
        x = tools.conv('conv3_2', x, 256, kernel_size=[3,3], stride=[1,1,1,1], is_pretrain=is_pretrain)
        x = tools.conv('conv3_3', x, 256, kernel_size=[3,3], stride=[1,1,1,1], is_pretrain=is_pretrain)
#        with tf.name_scope('batch_norm3'):
#            x = tools.batch_norm(x) 
        with tf.name_scope('pool3'):
            x = tools.pool('pool3', x, kernel=[1,2,2,1], stride=[1,2,2,1], is_max_pool=True)
        
             

        x = tools.conv('conv4_1', x, 512, kernel_size=[3,3], stride=[1,1,1,1], is_pretrain=is_pretrain)
        x = tools.conv('conv4_2', x, 512, kernel_size=[3,3], stride=[1,1,1,1], is_pretrain=is_pretrain)
        x = tools.conv('conv4_3', x, 512, kernel_size=[3,3], stride=[1,1,1,1], is_pretrain=is_pretrain)
#        with tf.name_scope('batch_norm4'):
#            x = tools.batch_norm(x) 
        with tf.name_scope('pool4'):
            x = tools.pool('pool4', x, kernel=[1,2,2,1], stride=[1,2,2,1], is_max_pool=True)
        
         

        x = tools.conv('conv5_1', x, 512, kernel_size=[3,3], stride=[1,1,1,1], is_pretrain=is_pretrain)
        x = tools.conv('conv5_2', x, 512, kernel_size=[3,3], stride=[1,1,1,1], is_pretrain=is_pretrain)
        x = tools.conv('conv5_3', x, 512, kernel_size=[3,3], stride=[1,1,1,1], is_pretrain=is_pretrain)
#        with tf.name_scope('batch_norm5'):
#            x = tools.batch_norm(x)  
        with tf.name_scope('pool5'):
            x = tools.pool('pool5', x, kernel=[1,2,2,1], stride=[1,2,2,1], is_max_pool=True)            
        
       
        
        x = tools.FC_layer('fc6', x, out_nodes=4096) 
        
#        with tf.name_scope('batch_norm6'):
#            x = tools.batch_norm(x) 
        #dropouut    
        x=tf.nn.dropout(x, keep_prob)  
        
        x = tools.FC_layer('fc7', x, out_nodes=4096)  
        
#        with tf.name_scope('batch_norm7'):
#            x = tools.batch_norm(x)
        #dropout    
        x=tf.nn.dropout(x, keep_prob) 
        
        fc_output=x            
        x = tools.softmax_layer('fc8', x, out_nodes=n_classes)
    
        return x,fc_output



#%%







            
Ejemplo n.º 23
0
    def convlayers(self):
        self.parameters = []

        # zero-mean input
        with tf.name_scope('preprocess') as scope:
            mean = tf.constant([123.68, 116.779, 103.939],
                               dtype=tf.float32,
                               shape=[1, 1, 1, 3],
                               name='img_mean')
            images = self.imgs - mean
        # images = self.imgs
        # conv1_1
        # do_conv(name, input_tensor, out_channel, ksize, stride=[1, 1, 1, 1], is_pretrain=True):
        self.conv1_1 = do_conv('conv1_1',
                               images,
                               64, [3, 3],
                               is_pretrain=self.trainable['conv1_1'],
                               regularizer=self.regularizer)
        self.conv1_2 = do_conv('conv1_2',
                               self.conv1_1,
                               64, [3, 3],
                               is_pretrain=self.trainable['conv1_2'],
                               regularizer=self.regularizer)

        self.pooling1 = pool('pooling1', self.conv1_2, is_max_pool=True)

        self.conv2_1 = do_conv('conv2_1',
                               self.pooling1,
                               128, [3, 3],
                               is_pretrain=self.trainable['conv2_1'],
                               regularizer=self.regularizer)
        self.conv2_2 = do_conv('conv2_2',
                               self.conv2_1,
                               128, [3, 3],
                               is_pretrain=self.trainable['conv2_2'],
                               regularizer=self.regularizer)

        self.pooling2 = pool('pooling2', self.conv2_2, is_max_pool=True)

        self.conv3_1 = do_conv('conv3_1',
                               self.pooling2,
                               256, [3, 3],
                               is_pretrain=self.trainable['conv3_1'],
                               regularizer=self.regularizer)
        self.conv3_2 = do_conv('conv3_2',
                               self.conv3_1,
                               256, [3, 3],
                               is_pretrain=self.trainable['conv3_2'],
                               regularizer=self.regularizer)
        self.conv3_3 = do_conv('conv3_3',
                               self.conv3_2,
                               256, [3, 3],
                               is_pretrain=self.trainable['conv3_3'],
                               regularizer=self.regularizer)

        self.pooling3 = pool('pooing3', self.conv3_3, is_max_pool=True)

        self.conv4_1 = do_conv('conv4_1',
                               self.pooling3,
                               512, [3, 3],
                               is_pretrain=self.trainable['conv4_1'],
                               regularizer=self.regularizer)
        self.conv4_2 = do_conv('conv4_2',
                               self.conv4_1,
                               512, [3, 3],
                               is_pretrain=self.trainable['conv4_2'],
                               regularizer=self.regularizer)
        self.conv4_3 = do_conv('conv4_3',
                               self.conv4_2,
                               512, [3, 3],
                               is_pretrain=self.trainable['conv4_3'],
                               regularizer=self.regularizer)

        self.pooling4 = pool('pooling4', self.conv4_3, is_max_pool=True)

        self.conv5_1 = do_conv('conv5_1',
                               self.pooling4,
                               512, [3, 3],
                               is_pretrain=self.trainable['conv5_1'],
                               regularizer=self.regularizer)
        self.conv5_2 = do_conv('conv5_2',
                               self.conv5_1,
                               512, [3, 3],
                               is_pretrain=self.trainable['conv5_2'],
                               regularizer=self.regularizer)
        self.conv5_3 = do_conv('conv5_3',
                               self.conv5_2,
                               512, [3, 3],
                               is_pretrain=self.trainable['conv5_3'],
                               regularizer=self.regularizer)

        self.pooling5 = pool('pooling5', self.conv5_3, is_max_pool=True)

        self.convs_output = self.pooling5
Ejemplo n.º 24
0
def VGG16N(x, n_classes, IS_PRETRAIN):
    import tools

    x = tools.conv('conv1_1',
                   x,
                   64,
                   kernel_size=[3, 3],
                   stride=[1, 1, 1, 1],
                   is_pretrain=IS_PRETRAIN[0])
    x = tools.conv('conv1_2',
                   x,
                   64,
                   kernel_size=[3, 3],
                   stride=[1, 1, 1, 1],
                   is_pretrain=IS_PRETRAIN[1])
    x = tools.pool('pool1',
                   x,
                   kernel=[1, 2, 2, 1],
                   stride=[1, 2, 2, 1],
                   is_max_pool=True)

    x = tools.conv('conv2_1',
                   x,
                   128,
                   kernel_size=[3, 3],
                   stride=[1, 1, 1, 1],
                   is_pretrain=IS_PRETRAIN[2])
    x = tools.conv('conv2_2',
                   x,
                   128,
                   kernel_size=[3, 3],
                   stride=[1, 1, 1, 1],
                   is_pretrain=IS_PRETRAIN[3])
    x = tools.pool('pool2',
                   x,
                   kernel=[1, 2, 2, 1],
                   stride=[1, 2, 2, 1],
                   is_max_pool=True)

    x = tools.conv('conv3_1',
                   x,
                   256,
                   kernel_size=[3, 3],
                   stride=[1, 1, 1, 1],
                   is_pretrain=IS_PRETRAIN[4])
    x = tools.conv('conv3_2',
                   x,
                   256,
                   kernel_size=[3, 3],
                   stride=[1, 1, 1, 1],
                   is_pretrain=IS_PRETRAIN[5])
    x = tools.conv('conv3_3',
                   x,
                   256,
                   kernel_size=[3, 3],
                   stride=[1, 1, 1, 1],
                   is_pretrain=IS_PRETRAIN[6])
    x = tools.pool('pool3',
                   x,
                   kernel=[1, 2, 2, 1],
                   stride=[1, 2, 2, 1],
                   is_max_pool=True)

    x = tools.conv('conv4_1',
                   x,
                   512,
                   kernel_size=[3, 3],
                   stride=[1, 1, 1, 1],
                   is_pretrain=IS_PRETRAIN[7])
    x = tools.conv('conv4_2',
                   x,
                   512,
                   kernel_size=[3, 3],
                   stride=[1, 1, 1, 1],
                   is_pretrain=IS_PRETRAIN[8])
    x = tools.conv('conv4_3',
                   x,
                   512,
                   kernel_size=[3, 3],
                   stride=[1, 1, 1, 1],
                   is_pretrain=IS_PRETRAIN[9])
    x = tools.pool('pool3',
                   x,
                   kernel=[1, 2, 2, 1],
                   stride=[1, 2, 2, 1],
                   is_max_pool=True)

    x = tools.conv('conv5_1',
                   x,
                   512,
                   kernel_size=[3, 3],
                   stride=[1, 1, 1, 1],
                   is_pretrain=IS_PRETRAIN[10])
    x = tools.conv('conv5_2',
                   x,
                   512,
                   kernel_size=[3, 3],
                   stride=[1, 1, 1, 1],
                   is_pretrain=IS_PRETRAIN[11])
    x = tools.conv('conv5_3',
                   x,
                   512,
                   kernel_size=[3, 3],
                   stride=[1, 1, 1, 1],
                   is_pretrain=IS_PRETRAIN[12])
    x = tools.pool('pool3',
                   x,
                   kernel=[1, 2, 2, 1],
                   stride=[1, 2, 2, 1],
                   is_max_pool=True)

    x = tools.FC_layer('fc6', x, out_nodes=4096, is_pretrain=IS_PRETRAIN[13])
    x = tools.batch_norm(x)
    x = tools.FC_layer('fc7', x, out_nodes=4096, is_pretrain=IS_PRETRAIN[14])
    x = tools.batch_norm(x)
    x = tools.final_layer('fc8', x, out_nodes=n_classes)
    return x
Ejemplo n.º 25
0
def VGG16N(x, n_classes, is_pretrain=True):

    with tf.name_scope('VGG16'):

        x = tools.conv('conv1_1',
                       x,
                       8,
                       kernel_size=[3, 3],
                       stride=[1, 1, 1, 1],
                       is_pretrain=is_pretrain)
        x = tools.conv('conv1_2',
                       x,
                       8,
                       kernel_size=[3, 3],
                       stride=[1, 1, 1, 1],
                       is_pretrain=is_pretrain)
        with tf.name_scope('pool1'):
            x = tools.pool('pool1',
                           x,
                           kernel=[1, 2, 2, 1],
                           stride=[1, 2, 2, 1],
                           is_max_pool=True)

        x = tools.conv('conv2_1',
                       x,
                       16,
                       kernel_size=[3, 3],
                       stride=[1, 1, 1, 1],
                       is_pretrain=is_pretrain)
        x = tools.conv('conv2_2',
                       x,
                       16,
                       kernel_size=[3, 3],
                       stride=[1, 1, 1, 1],
                       is_pretrain=is_pretrain)
        with tf.name_scope('pool2'):
            x = tools.pool('pool2',
                           x,
                           kernel=[1, 2, 2, 1],
                           stride=[1, 2, 2, 1],
                           is_max_pool=True)

        x = tools.conv('conv3_1',
                       x,
                       32,
                       kernel_size=[3, 3],
                       stride=[1, 1, 1, 1],
                       is_pretrain=is_pretrain)
        x = tools.conv('conv3_2',
                       x,
                       32,
                       kernel_size=[3, 3],
                       stride=[1, 1, 1, 1],
                       is_pretrain=is_pretrain)
        x = tools.conv('conv3_3',
                       x,
                       32,
                       kernel_size=[3, 3],
                       stride=[1, 1, 1, 1],
                       is_pretrain=is_pretrain)
        with tf.name_scope('pool3'):
            x = tools.pool('pool3',
                           x,
                           kernel=[1, 2, 2, 1],
                           stride=[1, 2, 2, 1],
                           is_max_pool=True)

        x = tools.conv('conv4_1',
                       x,
                       64,
                       kernel_size=[3, 3],
                       stride=[1, 1, 1, 1],
                       is_pretrain=is_pretrain)
        x = tools.conv('conv4_2',
                       x,
                       64,
                       kernel_size=[3, 3],
                       stride=[1, 1, 1, 1],
                       is_pretrain=is_pretrain)
        x = tools.conv('conv4_3',
                       x,
                       64,
                       kernel_size=[3, 3],
                       stride=[1, 1, 1, 1],
                       is_pretrain=is_pretrain)
        with tf.name_scope('pool4'):
            x = tools.pool('pool4',
                           x,
                           kernel=[1, 2, 2, 1],
                           stride=[1, 2, 2, 1],
                           is_max_pool=True)

        x = tools.conv('conv5_1',
                       x,
                       64,
                       kernel_size=[3, 3],
                       stride=[1, 1, 1, 1],
                       is_pretrain=is_pretrain)
        x = tools.conv('conv5_2',
                       x,
                       64,
                       kernel_size=[3, 3],
                       stride=[1, 1, 1, 1],
                       is_pretrain=is_pretrain)
        x = tools.conv('conv5_3',
                       x,
                       64,
                       kernel_size=[3, 3],
                       stride=[1, 1, 1, 1],
                       is_pretrain=is_pretrain)
        with tf.name_scope('pool5'):
            x = tools.pool('pool5',
                           x,
                           kernel=[1, 2, 2, 1],
                           stride=[1, 2, 2, 1],
                           is_max_pool=True)

        x = tools.FC_layer('fc6', x, out_nodes=512)
        x = tf.nn.dropout(x, 0.5)
        #with tf.name_scope('batch_norm1'):
        #x = tools.batch_norm(x)
        x = tools.FC_layer('fc7', x, out_nodes=512)
        x = tf.nn.dropout(x, 0.5)
        #with tf.name_scope('batch_norm2'):
        #x = tools.batch_norm(x)
        x = tools.FC_layer('fc8', x, out_nodes=512)
        x = tf.nn.dropout(x, 0.5)

        x = tools.FC_layer('fc9', x, out_nodes=24)

        return x


#%%
Ejemplo n.º 26
0
def VGG16_DP(x, n_classes, is_pretrain=True, flag=0):
    with tf.name_scope('VGG16'):
        x = tools.conv('conv1_1',
                       x,
                       64,
                       kernel_size=[3, 3],
                       stride=[1, 1, 1, 1],
                       is_pretrain=is_pretrain)
        x = tools.conv('conv1_2',
                       x,
                       64,
                       kernel_size=[3, 3],
                       stride=[1, 1, 1, 1],
                       is_pretrain=is_pretrain)
        with tf.name_scope('pool1'):
            x = tools.pool('pool1',
                           x,
                           kernel=[1, 2, 2, 1],
                           stride=[1, 2, 2, 1],
                           is_max_pool=True)

        x = tools.conv('conv2_1',
                       x,
                       128,
                       kernel_size=[3, 3],
                       stride=[1, 1, 1, 1],
                       is_pretrain=is_pretrain)
        x = tools.conv('conv2_2',
                       x,
                       128,
                       kernel_size=[3, 3],
                       stride=[1, 1, 1, 1],
                       is_pretrain=is_pretrain)
        with tf.name_scope('pool2'):
            x = tools.pool('pool2',
                           x,
                           kernel=[1, 2, 2, 1],
                           stride=[1, 2, 2, 1],
                           is_max_pool=True)

        x = tools.conv('conv3_1',
                       x,
                       256,
                       kernel_size=[3, 3],
                       stride=[1, 1, 1, 1],
                       is_pretrain=is_pretrain)
        x = tools.conv('conv3_2',
                       x,
                       256,
                       kernel_size=[3, 3],
                       stride=[1, 1, 1, 1],
                       is_pretrain=is_pretrain)
        x = tools.conv('conv3_3',
                       x,
                       256,
                       kernel_size=[3, 3],
                       stride=[1, 1, 1, 1],
                       is_pretrain=is_pretrain)
        with tf.name_scope('pool3'):
            x = tools.pool('pool3',
                           x,
                           kernel=[1, 2, 2, 1],
                           stride=[1, 2, 2, 1],
                           is_max_pool=True)

        x = tools.conv('conv4_1',
                       x,
                       512,
                       kernel_size=[3, 3],
                       stride=[1, 1, 1, 1],
                       is_pretrain=is_pretrain)
        x = tools.conv('conv4_2',
                       x,
                       512,
                       kernel_size=[3, 3],
                       stride=[1, 1, 1, 1],
                       is_pretrain=is_pretrain)
        x = tools.conv('conv4_3',
                       x,
                       512,
                       kernel_size=[3, 3],
                       stride=[1, 1, 1, 1],
                       is_pretrain=is_pretrain)
        with tf.name_scope('pool4'):
            x = tools.pool('pool4',
                           x,
                           kernel=[1, 2, 2, 1],
                           stride=[1, 2, 2, 1],
                           is_max_pool=True)

        x = tools.conv('conv5_1',
                       x,
                       512,
                       kernel_size=[3, 3],
                       stride=[1, 1, 1, 1],
                       is_pretrain=is_pretrain)
        x = tools.conv('conv5_2',
                       x,
                       512,
                       kernel_size=[3, 3],
                       stride=[1, 1, 1, 1],
                       is_pretrain=is_pretrain)
        x = tools.conv('conv5_3',
                       x,
                       512,
                       kernel_size=[3, 3],
                       stride=[1, 1, 1, 1],
                       is_pretrain=is_pretrain)
        with tf.name_scope('pool5'):
            x = tools.pool('pool5',
                           x,
                           kernel=[1, 2, 2, 1],
                           stride=[1, 2, 2, 1],
                           is_max_pool=True)

        x = tools.FC_layer('fc6', x, out_nodes=4096)
        with tf.name_scope('dropout1'):
            if flag == 0:
                dropout1 = tf.nn.dropout(x, 0.5)
            else:
                dropout1 = tf.nn.dropout(x, 1)
        x = tf.nn.relu(dropout1)
        x = tools.FC_layer('fc7', x, out_nodes=4096)
        with tf.name_scope('dropout2'):
            if flag == 0:
                dropout2 = tf.nn.dropout(x, 0.5)
            else:
                dropout2 = tf.nn.dropout(x, 1)
        x = tf.nn.relu(dropout2)
        x = tools.last_FC('fc8', x, out_nodes=n_classes)
        return x
Ejemplo n.º 27
0
def VGG16PlanInferencet(x, keep_prob, n_classes=12, is_pretrain=True):
    x = tools.conv('conv1_1',
                   x,
                   64,
                   kernel_size=[3, 3],
                   stride=[1, 1, 1, 1],
                   is_pretrain=is_pretrain)
    x = tools.conv('conv1_2',
                   x,
                   64,
                   kernel_size=[3, 3],
                   stride=[1, 1, 1, 1],
                   is_pretrain=is_pretrain)
    x = tools.pool('pool1',
                   x,
                   kernel=[1, 2, 2, 1],
                   stride=[1, 2, 2, 1],
                   is_max_pool=True)

    x = tools.conv('conv2_1',
                   x,
                   128,
                   kernel_size=[3, 3],
                   stride=[1, 1, 1, 1],
                   is_pretrain=is_pretrain)
    x = tools.conv('conv2_2',
                   x,
                   128,
                   kernel_size=[3, 3],
                   stride=[1, 1, 1, 1],
                   is_pretrain=is_pretrain)
    x = tools.pool('pool2',
                   x,
                   kernel=[1, 2, 2, 1],
                   stride=[1, 2, 2, 1],
                   is_max_pool=True)

    x = tools.conv('conv3_1',
                   x,
                   256,
                   kernel_size=[3, 3],
                   stride=[1, 1, 1, 1],
                   is_pretrain=is_pretrain)
    x = tools.conv('conv3_2',
                   x,
                   256,
                   kernel_size=[3, 3],
                   stride=[1, 1, 1, 1],
                   is_pretrain=is_pretrain)
    x = tools.conv('conv3_3',
                   x,
                   256,
                   kernel_size=[3, 3],
                   stride=[1, 1, 1, 1],
                   is_pretrain=is_pretrain)
    x = tools.pool('pool3',
                   x,
                   kernel=[1, 2, 2, 1],
                   stride=[1, 2, 2, 1],
                   is_max_pool=True)

    x = tools.conv('conv4_1',
                   x,
                   512,
                   kernel_size=[3, 3],
                   stride=[1, 1, 1, 1],
                   is_pretrain=is_pretrain)
    x = tools.conv('conv4_2',
                   x,
                   512,
                   kernel_size=[3, 3],
                   stride=[1, 1, 1, 1],
                   is_pretrain=is_pretrain)
    x = tools.conv('conv4_3',
                   x,
                   512,
                   kernel_size=[3, 3],
                   stride=[1, 1, 1, 1],
                   is_pretrain=is_pretrain)
    x = tools.pool('pool3',
                   x,
                   kernel=[1, 2, 2, 1],
                   stride=[1, 2, 2, 1],
                   is_max_pool=True)

    x = tools.conv('conv5_1',
                   x,
                   512,
                   kernel_size=[3, 3],
                   stride=[1, 1, 1, 1],
                   is_pretrain=is_pretrain)
    x = tools.conv('conv5_2',
                   x,
                   512,
                   kernel_size=[3, 3],
                   stride=[1, 1, 1, 1],
                   is_pretrain=is_pretrain)
    x = tools.conv('conv5_3',
                   x,
                   512,
                   kernel_size=[3, 3],
                   stride=[1, 1, 1, 1],
                   is_pretrain=is_pretrain)
    x = tools.pool('pool3',
                   x,
                   kernel=[1, 2, 2, 1],
                   stride=[1, 2, 2, 1],
                   is_max_pool=True)

    x = tools.FC_layer('fc6', x, out_nodes=4096)
    x = tools.batch_norm(x)
    x = tools.FC_layer('fc7', x, out_nodes=4096)
    x = tools.batch_norm(x)
    x_drop = tf.nn.dropout(x, keep_prob)
    x = tools.FC_layer('fc8', x_drop, out_nodes=n_classes)

    return x
Ejemplo n.º 28
0
    def VGG16(self):

        with tf.name_scope('VGG16'):

            self.conv1_1 = tools.conv('conv1_1',
                                      self.input,
                                      64,
                                      kernel_size=[3, 3],
                                      stride=[1, 1, 1, 1],
                                      is_pretrain=self.is_pretrain)
            self.conv1_2 = tools.conv('conv1_2',
                                      self.conv1_1,
                                      64,
                                      kernel_size=[3, 3],
                                      stride=[1, 1, 1, 1],
                                      is_pretrain=self.is_pretrain)
            self.pool1 = tools.pool('pool1',
                                    self.conv1_2,
                                    kernel=[1, 2, 2, 1],
                                    stride=[1, 2, 2, 1],
                                    is_max_pool=True)

            self.conv2_1 = tools.conv('conv2_1',
                                      self.pool1,
                                      128,
                                      kernel_size=[3, 3],
                                      stride=[1, 1, 1, 1],
                                      is_pretrain=self.is_pretrain)
            self.conv2_2 = tools.conv('conv2_2',
                                      self.conv2_1,
                                      128,
                                      kernel_size=[3, 3],
                                      stride=[1, 1, 1, 1],
                                      is_pretrain=self.is_pretrain)
            self.pool2 = tools.pool('pool2',
                                    self.conv2_2,
                                    kernel=[1, 2, 2, 1],
                                    stride=[1, 2, 2, 1],
                                    is_max_pool=True)

            self.conv3_1 = tools.conv('conv3_1',
                                      self.pool2,
                                      256,
                                      kernel_size=[3, 3],
                                      stride=[1, 1, 1, 1],
                                      is_pretrain=self.is_pretrain)
            self.conv3_2 = tools.conv('conv3_2',
                                      self.conv3_1,
                                      256,
                                      kernel_size=[3, 3],
                                      stride=[1, 1, 1, 1],
                                      is_pretrain=self.is_pretrain)
            self.conv3_3 = tools.conv('conv3_3',
                                      self.conv3_2,
                                      256,
                                      kernel_size=[3, 3],
                                      stride=[1, 1, 1, 1],
                                      is_pretrain=self.is_pretrain)
            self.pool3 = tools.pool('pool3',
                                    self.conv3_3,
                                    kernel=[1, 2, 2, 1],
                                    stride=[1, 2, 2, 1],
                                    is_max_pool=True)

            self.conv4_1 = tools.conv('conv4_1',
                                      self.pool3,
                                      512,
                                      kernel_size=[3, 3],
                                      stride=[1, 1, 1, 1],
                                      is_pretrain=self.is_pretrain)
            self.conv4_2 = tools.conv('conv4_2',
                                      self.conv4_1,
                                      512,
                                      kernel_size=[3, 3],
                                      stride=[1, 1, 1, 1],
                                      is_pretrain=self.is_pretrain)
            self.conv4_3 = tools.conv('conv4_3',
                                      self.conv4_2,
                                      512,
                                      kernel_size=[3, 3],
                                      stride=[1, 1, 1, 1],
                                      is_pretrain=self.is_pretrain)
            self.pool4 = tools.pool('pool4',
                                    self.conv4_3,
                                    kernel=[1, 2, 2, 1],
                                    stride=[1, 2, 2, 1],
                                    is_max_pool=True)

            self.conv5_1 = tools.conv('conv5_1',
                                      self.pool4,
                                      512,
                                      kernel_size=[3, 3],
                                      stride=[1, 1, 1, 1],
                                      is_pretrain=self.is_pretrain)
            self.conv5_2 = tools.conv('conv5_2',
                                      self.conv5_1,
                                      512,
                                      kernel_size=[3, 3],
                                      stride=[1, 1, 1, 1],
                                      is_pretrain=self.is_pretrain)
            self.conv5_3 = tools.conv('conv5_3',
                                      self.conv5_2,
                                      512,
                                      kernel_size=[3, 3],
                                      stride=[1, 1, 1, 1],
                                      is_pretrain=self.is_pretrain)
            self.pool5 = tools.pool('pool5',
                                    self.conv5_3,
                                    kernel=[1, 2, 2, 1],
                                    stride=[1, 2, 2, 1],
                                    is_max_pool=True)

            self.fc6 = tools.FC_layer('fc6', self.pool5, out_nodes=4096)
            self.batch_norm1 = tools.batch_norm('batch_norm1', self.fc6)

            self.fc7 = tools.FC_layer('fc7', self.batch_norm1, out_nodes=4096)
            self.batch_norm2 = tools.batch_norm('batch_norm2', self.fc7)

            self.fc8 = tools.FC_layer('fc8',
                                      self.batch_norm2,
                                      out_nodes=self.n_classes)
Ejemplo n.º 29
0
    with tf.name_scope('inputs'):
        x = tf.placeholder(tf.float32, shape=[None, 784])
        y_ = tf.placeholder(tf.float32, shape=[None, 10])
        x_images = tf.reshape(x, [-1, 28, 28, 1])

    with tf.name_scope('conv_net'):
        outputs = tools.conv('conv1_1',
                             x_images,
                             32,
                             kernel_size=[3, 3],
                             stride=[1, 1, 1, 1],
                             is_pretrain=is_pretrain)
        #outputs = tools.conv('conv1_2', outputs, 32, kernel_size=[3, 3], stride=[1, 1, 1, 1], is_pretrain=is_pretrain)
        outputs = tools.pool('pool1',
                             outputs,
                             kernel=[1, 2, 2, 1],
                             stride=[1, 2, 2, 1],
                             is_max_pool=True)

        outputs = tools.conv('conv2_1',
                             outputs,
                             64,
                             kernel_size=[3, 3],
                             stride=[1, 1, 1, 1],
                             is_pretrain=is_pretrain)
        #outputs = tools.conv('conv2_2', outputs, 64, kernel_size=[3, 3], stride=[1, 1, 1, 1], is_pretrain=is_pretrain)
        outputs = tools.pool('pool2',
                             outputs,
                             kernel=[1, 2, 2, 1],
                             stride=[1, 2, 2, 1],
                             is_max_pool=True)
Ejemplo n.º 30
0
    def AlexNet(self):

        with tf.name_scope('AlexNet'):

            self.conv1 = tools.conv('conv1',
                                    self.input,
                                    96,
                                    kernel_size=[11, 11],
                                    stride=[1, 4, 4, 1],
                                    is_pretrain=self.is_pretrain)
            self.pool1 = tools.pool('pool1',
                                    self.conv1,
                                    kernel=[1, 3, 3, 1],
                                    stride=[1, 2, 2, 1],
                                    is_max_pool=True,
                                    is_norm=True)

            self.conv2 = tools.conv('conv2',
                                    self.pool1,
                                    256,
                                    kernel_size=[5, 5],
                                    stride=[1, 1, 1, 1],
                                    is_pretrain=self.is_pretrain)
            self.pool2 = tools.pool('pool2',
                                    self.conv2,
                                    kernel=[1, 3, 3, 1],
                                    stride=[1, 2, 2, 1],
                                    is_max_pool=True,
                                    is_norm=True)

            self.conv3 = tools.conv('conv3',
                                    self.pool2,
                                    384,
                                    kernel_size=[3, 3],
                                    stride=[1, 1, 1, 1],
                                    is_pretrain=self.is_pretrain)
            self.conv4 = tools.conv('conv4',
                                    self.conv3,
                                    384,
                                    kernel_size=[3, 3],
                                    stride=[1, 1, 1, 1],
                                    is_pretrain=self.is_pretrain)
            self.conv5 = tools.conv('conv5',
                                    self.conv4,
                                    256,
                                    kernel_size=[3, 3],
                                    stride=[1, 1, 1, 1],
                                    is_pretrain=self.is_pretrain)
            self.pool5 = tools.pool('pool5',
                                    self.conv5,
                                    kernel=[1, 3, 3, 1],
                                    stride=[1, 2, 2, 1],
                                    is_max_pool=True,
                                    is_norm=True)

            self.fc1 = tools.FC_layer('fc6', self.pool5, out_nodes=4096)
            self.norm1 = tools.batch_norm('batch_norm1', self.fc1)

            self.fc2 = tools.FC_layer('fc7', self.norm1, out_nodes=4096)
            self.norm2 = tools.batch_norm('batch_norm2', self.fc2)

            self.fc3 = tools.FC_layer('softmax_linear',
                                      self.norm2,
                                      out_nodes=self.n_classes,
                                      use_relu=False)
Ejemplo n.º 31
0
cat = tf.cast(cat, tf.float32)  #[360, 300, 3]
x = tf.reshape(cat, [1, 360, 300, 3])  #[1, 360, 300, 3]

# First conv
with tf.variable_scope('conv1'):
    w = tools.weight([3, 3, 3, 16], is_uniform=True)
    x_w = tf.nn.conv2d(x, w, strides=[1, 1, 1, 1], padding='SAME')

    b = tools.bias([16])
    x_b = tf.nn.bias_add(x_w, b)

    x_relu = tf.nn.relu(x_b)

    x_pool = tools.pool('test1',
                        x_relu,
                        kernel=[1, 2, 2, 1],
                        stride=[1, 2, 2, 1],
                        is_max_pool=True)

# Second conv
with tf.variable_scope('conv2'):
    w2 = tools.weight([3, 3, 16, 32], is_uniform=True)
    x_w2 = tf.nn.conv2d(x_pool, w2, strides=[1, 1, 1, 1], padding='SAME')

    b2 = tools.bias([32])
    x_b2 = tf.nn.bias_add(x_w2, b2)

    x_relu2 = tf.nn.relu(x_b2)

    x_pool2 = tools.pool('test2',
                         x_relu2,
Ejemplo n.º 32
0
cat = tf.cast(cat, tf.float32) #[360, 300, 3]
x = tf.reshape(cat, [1, 360, 300, 3]) #[1, 360, 300, 3]

#%%

# First conv
with tf.variable_scope('conv1'):
    w = tools.weight([3,3,3,16], is_uniform=True)
    x_w = tf.nn.conv2d(x, w, strides=[1, 1, 1, 1], padding='SAME')
    
    b = tools.bias([16])
    x_b = tf.nn.bias_add(x_w, b)
    
    x_relu = tf.nn.relu(x_b)
    
    x_pool = tools.pool('test1', x_relu, kernel=[1,2,2,1], stride=[1,2,2,1],is_max_pool=True)

# Second conv
with tf.variable_scope('conv2'):
    w2 = tools.weight([3,3,16,32], is_uniform=True)
    x_w2 = tf.nn.conv2d(x_pool, w2, strides=[1, 1, 1, 1], padding='SAME')
    
    b2 = tools.bias([32])
    x_b2 = tf.nn.bias_add(x_w2, b2)
    
    x_relu2 = tf.nn.relu(x_b2)
    
    x_pool2 = tools.pool('test2',x_relu2, kernel=[1,2,2,1],stride=[1,2,2,1], is_max_pool=False)
    
    x_BN = tools.batch_norm(x_pool2)