def test_q2_printed(q2): """Is this Quotient correctly printed?""" assert q2.printed == wrap_nb('-\\frac{1}{2}\div \\frac{1}{3}')
def test_0_display(v0): """Is the value correctly displayed?""" assert str(v0) == wrap_nb('4')
def test_negv_display(negv): """Is the value correctly displayed?""" assert str(negv) == wrap_nb('-4.2')
def test_1_display(): """Is Item(1) correctly printed?""" assert Item(1).printed == wrap_nb('1')
def test_tup0_crossproduct_eq_AB(tup0, AB): """Check one of the crossproducts equations of this table.""" assert tup0.into_crossproduct_equation(AB).printed == \ wrap_nb('\\frac{2}{3.4}=\\frac{\\text{AB}}{8.5}')
def test_neg2_inside_exp_1plus0_printed(): """Is Item(('+', -2, Sum([1, 0]))) correctly printed?""" assert Item(('+', -2, Sum([1, 0]))).printed == wrap_nb('-2')
def test_neg2_inside_exp_sum_of_sum_of_1plus1_printed(): """Is Item(('+', -2, Sum([Sum([Sum([1, 1])])]))) correctly printed?""" assert Item(('+', -2, Sum([Sum([Sum([1, 1])])]))).printed == \ wrap_nb('(-2)^{1+1}')
def test_eq3_autoresolution(): """Is this Equation correctly auto-resolved?""" eq = Equation((Item(-6), Monomial(('+', 5, 1))), number=1) assert eq.auto_resolution() == wrap_nb('$(\\text{E}_{1}): $' '\[-6=5x\]' '\[x=-\\frac{6}{5}\]')
def test_neg1_printed(): """Is Item(-1) correctly printed?""" assert Item(-1).printed == wrap_nb('-1')
def test_eq40_printed(eq40): """Is this Equation correctly printed?""" assert eq40.printed == wrap_nb('2=2')
def test_eq40_nextstep(eq40): """Is this Equation's next step correct?""" assert eq40.solve_next_step() == \ wrap_nb('Any value of {x} is solution of the equation.' .format(x=eq40.variable_letter))
def test_eq4_autoresolution(): """Is this Equation correctly auto-resolved?""" eq = Equation((Monomial(('+', 8, 1)), Item(1)), number=1) assert eq.auto_resolution() == wrap_nb('$(\\text{E}_{1}): $' '\[8x=1\]' '\[x=\\frac{1}{8}\]')
def test_q2_next_step3(q2): """Is this Quotient's calculation's 3rd next step correct?""" assert q2.calculate_next_step().calculate_next_step()\ .calculate_next_step().printed == \ wrap_nb('-\\frac{3}{2}')
def test_q2_next_step2(q2): """Is this Quotient's calculation's 2d next step correct?""" assert q2.calculate_next_step().calculate_next_step().printed == \ wrap_nb('-\\frac{1\\times 3}{2\\times 1}')
def test_neg3_inside_exp_2plus5_printed(neg3_inside_exp_2plus5): """Is Item(('+', -3, Sum([-2, 5]))) correctly printed?""" assert neg3_inside_exp_2plus5.printed == wrap_nb('(-3)^{-2+5}')
def test_negneg1_printed(negneg1): """Is Item(('-', -1)) correctly printed as -(-1)?""" assert negneg1.printed == wrap_nb('-(-1)')
def test_pos2_exp_sum_neg2_inside_exp4_printed(): """Is Item(('+', 2, Sum([Item(('+', -2, 4))]))) correctly printed?""" assert Item(('+', 2, Sum([Item(('+', -2, 4))]))).printed == \ wrap_nb('2^{(-2)^{4}}')
def test_neg1_exp_negneg1_printed(): """Is Item(('+', -1, Item(('-', -1)))) correctly printed?""" assert Item(('+', -1, Item(('-', -1)))).printed == wrap_nb('-1^{-(-1)}')
def test_neg2_inside_exp_sum_of_product_of_1plus0_printed(): """Is Item(('+', -2, Sum([Product([Sum([1, 0])])]))) correctly printed?""" assert Item(('+', -2, Sum([Product([Sum([1, 0])])]))).printed == \ wrap_nb('-2')
def test_neg1_exp2_printed(): """Is Item(('-', 1, Item(2))) correctly printed?""" assert Item(('-', 1, Item(2))).printed == wrap_nb('-1^{2}')
def test_neg2_inside_exp_sum_of_product_of_sum_of_2_printed(): """Is Item(('+', -2, Sum([Product([Sum([2])])]))) correctly printed?""" assert Item(('+', -2, Sum([Product([Sum([2])])]))).printed == \ wrap_nb('(-2)^{2}')
def test_neg1_inside_exp2_printed(neg1_inside_exp2): """Is Item(('+', -1, Item(2))) correctly printed?""" assert neg1_inside_exp2.printed == wrap_nb('(-1)^{2}')
def test_tup1_crossproduct_eq_GH(tup1, GH): """Check one of the crossproducts equations of this table.""" assert tup1.into_crossproduct_equation(GH).printed == \ wrap_nb('\\frac{2}{2.5}=\\frac{4}{\\text{GH}}')
def test_neg5_inside_exp0_printed(neg5_inside_exp0): """Is (-5)^{0} correctly printed as 1?""" assert neg5_inside_exp0.printed == wrap_nb('1')
def test_tup0_crossproduct_eq_MN(tup0, MN): """Check one of the crossproducts equations of this table.""" assert tup0.into_crossproduct_equation(MN).printed == \ wrap_nb('\\frac{2}{3.4}=\\frac{6}{\\text{MN}}')
def test_neg5_inside_exp0_printed_bis(neg5_inside_exp0): """Is (-5)^{0} correctly printed as (-5)^{0} when explicitely desired?""" assert neg5_inside_exp0.into_str(force_display_exponent_0='OK', force_expression_begins=True) == \ wrap_nb('(-5)^{0}')
def test_1_display(v1): """Is the value correctly displayed?""" assert str(v1) == wrap_nb('4.2')
def test_pos3_exp_2plus6_printed(pos3_exp_2plus6): """Is Item(('+', 3, Sum([-2, 6]))) evaluated to 81?""" assert pos3_exp_2plus6.printed == wrap_nb('3^{-2+6}')
def test_fp0_step3(fp0_step3): """Is this Product's calculation's 3rd step correct?""" assert fp0_step3.printed == wrap_nb('\\frac{5}{4}')
def test_q1_next_step2(q1): """Is this Quotient's calculation's 2d next step correct?""" assert q1.calculate_next_step().calculate_next_step().printed == \ wrap_nb('\\frac{8\\times 2}{9\\times 7}')