Ejemplo n.º 1
0
def plotter(field, resistance, fitted_line):
    fig, ax = MakePlot().create()
    ax.plot(field, 1/resistance)
    if field[0]>0:
        ax.plot(np.linspace(0,14,200),1/np.poly1d(fitted_line)(np.linspace(0,14,200)))
    else:
        ax.plot(np.linspace(-14, 0, 200), 1 / np.poly1d(fitted_line)(np.linspace(-14, 0, 200)))
    ax.ticklabel_format(style='sci', axis='y', scilimits=(0, 0))
    ax.set_ylabel(r'Conductance $(\frac{2 e^2}{h})$', fontsize=12, fontname='arial')
    ax.set_xlabel(r'Magnetic Field (T)', fontsize=12, fontname='arial')
    ax.set_title(r'Checking Fit of Step', fontsize=14, fontname='arial')
    ax.set_xlim()
    ax.set_ylim()
    ax.minorticks_on()
    ax.tick_params('both', which='both', direction='in',
                    bottom=True, top=True, left=True, right=True)
    fig.show()
Ejemplo n.º 2
0
temps_c = ['1.75 K +', '1.75 K -', '2.00 K +', '2.00 K -', '2.25 K +','2.25 K -',
           '2.50 K +', '2.50 K -']
temps_d = ['1.75 K +', '1.75 K -', '2.00 K +', '2.00 K -', '2.25 K +','2.25 K -']
currents = [r'800 $\mu A$', r'900 $\mu A$']


data_sets = [curr_800, curr_900]

sample = 'VT64'


res_up_plus, res_down_plus, res_up_minus, res_down_minus = [], [], [], []
b_up_plus, b_down_plus, b_up_minus, b_down_minus = [], [], [], []

fig, axs = MakePlot(nrows=2,ncols=1,figsize=(9,12)).create()

axes = [axs[0],axs[1]]



for ind, curr_data_name in enumerate(data_sets):

    temps = temps_a
    res_lst, field_lst = [], []
    label_lst = []

    c = 0

    for idx, current_temp_data_name in enumerate(curr_data_name):
        dat = load_matrix(main_path+current_temp_data_name).T
Ejemplo n.º 3
0
yerr_neg_900 = np.std(np.array([dG_900_neg_up, dG_900_neg_down]), axis=0)
B900_neg = np.average(np.array([B_900_neg_up, B_900_neg_down]), axis=0)
xerr_neg_900 = np.std(np.array([B_900_neg_up, B_900_neg_down]), axis=0)

line_pos800 = np.poly1d(np.polyfit(B800_pos, dG800_pos, 1))
line_neg800 = np.poly1d(np.polyfit(B800_neg, dG800_neg, 1))

line_pos900 = np.poly1d(np.polyfit(B900_pos, dG900_pos, 1))
line_neg900 = np.poly1d(np.polyfit(B900_neg, dG900_neg, 1))

linspace_pos = np.linspace(0, 14, 10)
linspace_neg = np.linspace(-14, 0, 10)

# Need to put in xy error bars on the points. STD of the above averages.

fig, ax = MakePlot(figsize=(16, 9)).create()

ax.scatter(B800_pos, dG800_pos, c='r', label=r'800 $\mu$A')
ax.scatter(B800_neg, dG800_neg, c='r')

ax.errorbar(B800_pos,
            dG800_pos,
            xerr=xerr_pos_800,
            yerr=yerr_pos_800,
            fmt='none',
            c='r',
            alpha=0.5)
ax.errorbar(B800_neg,
            dG800_neg,
            xerr=xerr_neg_800,
            yerr=yerr_neg_800,
Ejemplo n.º 4
0
cap_no_outliers = remove_outliers2(capacitance, 2)

cap_interpolated = np.copy(cap_no_outliers)

nans, x = nan_helper(cap_interpolated)
cap_interpolated[nans] = np.interp(x(nans), x(~nans), cap_interpolated[~nans])

cap_interpolated = savgol_filter(cap_interpolated, get_loess_window(field, 2.2), 2)

field = field[15:]
cap_interpolated = cap_interpolated[15:]
R = R[15:]

ref_C0 = cap_interpolated[0]

fig, axs = MakePlot(nrows=1, ncols=2).create()

fig2, ax2 = MakePlot().create()
fig3, ax3 = MakePlot().create()

fig_together, axs_together = MakePlot(nrows=1, ncols=2).create()

for ind, filename_open in enumerate(filenames):

    d = {}

    field, cap_interpolated, R, idx2, raw_cap = process_data(main_path, filename_open)

    if idx2.shape[0] != 0:

        b_sign_change_idx = np.argmin(cap_interpolated)
Ejemplo n.º 5
0
from tools.MakePlot import *
import matplotlib.pyplot as plt
import scipy.interpolate
import scipy.ndimage
import matplotlib.colors as mcolors
from matplotlib.ticker import FormatStrFormatter


main_path = '/Volumes/GoogleDrive/My Drive/Heatmap Cooldowns/'

save_path = '/Volumes/GoogleDrive/My Drive/Thesis Figures/Transport/'


possible_currents1 = np.array([10,20,50,100,200,500,1000,1500])

fig, ax = MakePlot(figsize=(32,18)).create()
# scan is at 1 mA

# VT1

# df = load_matrix(main_path+'RvsT_FeSb2-VT1&26-cooldown.dat')
# df = df[['Temperature (K)', 'Bridge 1 Resistance (Ohms)']]
#
# resistance = scipy.ndimage.median_filter(np.array(df['Bridge 1 Resistance (Ohms)']),size=3)
# temperature = np.array(df['Temperature (K)'])

# VT26
# df = load_matrix(main_path+'RvsT_FeSb2-VT1&26-cooldown.dat')
# df = df[['Temperature (K)', 'Bridge 2 Resistance (Ohms)']]
#
# resistance = scipy.ndimage.median_filter(np.array(df['Bridge 2 Resistance (Ohms)']),size=3)
Ejemplo n.º 6
0
#currents_log = np.logspace(-3,np.log10(1.5),10000)
currents_log = np.linspace(0.01,1.5,10000)

temperoos, cureentoos = [], []

temp_lst = []

xx, yy = np.meshgrid(temps, possible_currents1 / 1000)
data_grid_og = np.array([np.ravel(xx), np.ravel(yy)]).T
temperatures = np.linspace(2, temps[-1], 10000)

grid_x, grid_y = np.meshgrid(temperatures, currents_log)

sample_lst = []

fig, axs = MakePlot(figsize=(32,18),nrows=5, ncols=4).create()

axs = [axs[0,0], axs[0,1], axs[0,2],axs[0,3],
       axs[1,0], axs[1,1], axs[1,2],axs[1,3],
       axs[2,0], axs[2,1], axs[2,2],axs[2,3],
       axs[3,0], axs[3,1], axs[3,2],axs[3,3],
       axs[4,0], axs[4,1], axs[4,2],axs[4,3]]

for i, temp in enumerate(temps):

    temp_path = main_path + 'VT26/' + str(temp) + '/'

    current_lst = []

    ax = axs[i]
Ejemplo n.º 7
0
    for temp in temps:

        temp_path = main_path + sample + '/' + str(temp) + '/'

        resistance_lst, current_lst, field_curr, tempatu_lst = [], [], [], []

        for current in possible_currents1:

            resistance, field = load_r_and_h(temp_path, current)

            #nans, x = nan_helper(resistance)
            #resistance[nans] = np.interp(x(nans), x(~nans), resistance[~nans])

            max_resistance_loc = np.argmax(resistance)

            fig, ax = MakePlot().create()
            plt.axvline(field[max_resistance_loc])
            plt.scatter(x=field, y=resistance)
            plt.title('Temp = ' + str(temp) + 'current' + str(current) +
                      'sample:' + sample)
            plt.show()

            field_curr.append(field[max_resistance_loc])
            tempatu_lst.append(temp)
            current_lst.append(current / 1000)

        fields_lst.append(field_curr)
        temperoos.append(tempatu_lst)
        cureentoos.append(current_lst)

    df = pd.DataFrame({
Ejemplo n.º 8
0
    r_no_hall, r_hall, field = extract_n_remove_hall(dat)
    small_df = pd.DataFrame({
        r"Magnetic Field (T)":
        field,
        r"Transverse Resistance $(\Omega)$":
        r_hall,
        r"Longitudinal Resistance $(\Omega)$":
        r_no_hall,
        r"Rotation Angle (degrees)":
        [filename.split('.')[-3].split('_')[-1]] * len(field)
    })
    dat_lst.append(small_df)

df = pd.concat(dat_lst)

fig, ax = MakePlot(nrows=1, ncols=2).create()

sns.lineplot(x="Magnetic Field (T)",
             y=r"Longitudinal Resistance $(\Omega)$",
             hue='Rotation Angle (degrees)',
             data=df,
             ax=ax[0],
             legend=False)
sns.lineplot(x="Magnetic Field (T)",
             y=r"Transverse Resistance $(\Omega)$",
             hue='Rotation Angle (degrees)',
             data=df,
             ax=ax[1])
plt.suptitle(
    'VT49 Transverse and Longitudinal Resistance by Field and Angle (1.8 K)')
plt.savefig(main_path + 'resistance_all_same_ax.png', dpi=600)
Ejemplo n.º 9
0
from tools.MakePlot import *
import matplotlib.pyplot as plt
import scipy.interpolate
import scipy.ndimage
import matplotlib.colors as mcolors
from matplotlib.ticker import FormatStrFormatter


main_path = '/Volumes/GoogleDrive/My Drive/Heatmap Cooldowns/'

save_path = '/Volumes/GoogleDrive/My Drive/Thesis Figures/Transport/'


possible_currents1 = np.array([10,20,50,100,200,500,1000,1500])

fig, ax = MakePlot(figsize=(32,18)).create()
# scan is at 1 mA

# VT1

df = load_matrix(main_path+'RvsT_FeSb2-VT1&26-cooldown.dat')
df = df[['Temperature (K)', 'Bridge 1 Resistance (Ohms)']]

resistance_vt1 = scipy.ndimage.median_filter(np.array(df['Bridge 1 Resistance (Ohms)']),size=3)
temperature_vt1 = np.array(df['Temperature (K)'])

# VT26
df = load_matrix(main_path+'RvsT_FeSb2-VT1&26-cooldown.dat')
df = df[['Temperature (K)', 'Bridge 2 Resistance (Ohms)']]

resistance_vt26 = scipy.ndimage.median_filter(np.array(df['Bridge 2 Resistance (Ohms)']),size=3)
Ejemplo n.º 10
0
        temp_lst.append(flatten(resistance_lst))
        fields_lst.append(flatten(field_curr))
        temperoos.append(flatten(tempatu_lst))
        cureentoos.append(flatten(current_lst))

    df = pd.DataFrame({
        'Magnetoresistive Ratio': flatten(temp_lst),
        'Temperature (K)': flatten(temperoos),
        'Current (mA)': flatten(cureentoos),
        'Magnetic Field (T)': flatten(fields_lst)
    })

    groupers = df.groupby('Current (mA)')

    fig, ax = MakePlot(nrows=2, ncols=5).create()
    axs = [
        ax[0, 0], ax[0, 1], ax[0, 2], ax[0, 3], ax[0, 4], ax[1, 0], ax[1, 1],
        ax[1, 2], ax[1, 3], ax[1, 4]
    ]
    for ind, key in enumerate(groupers.groups.keys()):

        if ind != 7:
            sns.scatterplot(x='Magnetic Field (T)',
                            y='Magnetoresistive Ratio',
                            hue='Temperature (K)',
                            data=df[df['Current (mA)'] == key],
                            palette="bright",
                            legend=False,
                            ax=axs[ind])  #style='Temperature (K)',
        if ind == 7:
Ejemplo n.º 11
0
for current in possible_currents1:

    resistance, field = load_r_and_h(load_path, current)
    resistances.append(resistance)
    fields.append(field)
    currents.append([current] * len(resistance))

df = pd.DataFrame({
    r'Resistance $(\Omega)$': flatten(resistances),
    'Current (mA)': flatten(currents),
    'Magnetic Field (T)': flatten(fields)
})

groupers = df.groupby('Current (mA)')

fig, ax = MakePlot(nrows=2, ncols=5).create()
axs = [
    ax[0, 0], ax[0, 1], ax[0, 2], ax[0, 3], ax[0, 4], ax[1, 0], ax[1, 1],
    ax[1, 2], ax[1, 3], ax[1, 4]
]
for ind, key in enumerate(groupers.groups.keys()):

    sns.scatterplot(x='Magnetic Field (T)',
                    y=r'Resistance $(\Omega)$',
                    data=df[df['Current (mA)'] == key],
                    legend=False,
                    ax=axs[ind])  # style='Temperature (K)',

    if ind < 5:
        axs[ind].set_xlabel('')
        if ind != 0:
Ejemplo n.º 12
0
sample = 'VT64'

colours = sns.color_palette('muted')

plot = 'long'

for ind, curr_data_name in enumerate(data_sets):
    if ind <= 5:
        temps = temps_a
    else:
        temps = temps_b
    res_lst, field_lst = [], []
    label_lst = []

    fig_long, ax_long = MakePlot().create()
    fig_trans, ax_trans = MakePlot().create()

    c = 0

    for idx, current_temp_data_name in enumerate(curr_data_name):
        dat = load_matrix(main_path + current_temp_data_name).T
        res_lst.append(dat[0])
        field_lst.append(dat[1])
        label_lst.append([temps[idx]] * len(dat[0]))

        start_loc = 0
        max_loc = np.argmax(dat[1])
        min_loc = np.argmin(dat[1])
        mid_loc = (min_loc - max_loc) / 2
        mid_loc = 1 + max_loc + int(mid_loc.round(0))
Ejemplo n.º 13
0
temps_c = ['1.75 K +', '1.75 K -', '2.00 K +', '2.00 K -', '2.25 K +','2.25 K -',
           '2.50 K +', '2.50 K -']
temps_d = ['1.75 K +', '1.75 K -', '2.00 K +', '2.00 K -', '2.25 K +','2.25 K -']
currents = [r'500 $\mu A$', r'600 $\mu A$',r'700 $\mu A$',r'800 $\mu A$', r'900 $\mu A$', r'1000 $\mu A$', r'1100 $\mu A$', r'1200 $\mu A$', r'1500 $\mu A$']


data_sets = [curr_500, curr_600, curr_700, curr_800, curr_900, curr_1000, curr_1100, curr_1200, curr_1500]

sample = 'VT64'


res_up_plus, res_down_plus, res_up_minus, res_down_minus = [], [], [], []
b_up_plus, b_down_plus, b_up_minus, b_down_minus = [], [], [], []

fig, axs = MakePlot(nrows=3,ncols=3,figsize=(16,9)).create()

axes = [axs[0,0], axs[0,1], axs[0,2], axs[1,0], axs[1,1], axs[1,2], axs[2,0], axs[2,1], axs[2,2]]



for ind, curr_data_name in enumerate(data_sets):
    if ind == 0 or 2<ind<=5:
        temps = temps_a

    elif ind == 1 :
        temps = temps_c
    elif ind == 2:
        temps = temps_d
    else:
        temps = temps_b
Ejemplo n.º 14
0
        diff_down_neg = median_filter(
            np.abs(1 / ffit_down_neg(field_down_neg[small_locs]) /
                   conductance_quantum -
                   1 / resistance_down_neg[small_locs] / conductance_quantum),
            4)
        down_minus.append(diff_down_neg)
        vec_down_minus.append(field_down_neg[small_locs])
        max_down_minus.append(np.max(diff_down_neg))
        max_down_minus_field.append(
            field_down_neg[small_locs][np.argmax(diff_down_neg)])

        sns.set_context('paper')

    sns.set_context('paper')

    fig, ax = MakePlot().create()

    clrs = sns.color_palette('husl', n_colors=10)

    line_up_plus = np.poly1d(np.polyfit(max_up_plus_field, max_up_plus, 1))
    line_down_plus = np.poly1d(
        np.polyfit(max_down_plus_field, max_down_plus, 1))
    line_up_minus = np.poly1d(np.polyfit(max_up_minus_field, max_up_minus, 1))
    line_down_minus = np.poly1d(
        np.polyfit(max_down_minus_field, max_down_minus, 1))

    for i in range(len(up_minus)):
        plt.plot(vec_up_plus[i],
                 up_plus[i],
                 label=temps[i],
                 color=clrs[i],
Ejemplo n.º 15
0
temps2 = (2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0,
          15.0, 16.0, 17.0, 18.0, 19.0, 20.0, 21.0
          )  #,22.0,23.0,24.0,25.0,26.0,27.0,28.0,29.0)

temp_lab1 = [
    2, 5
]  #,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21]#,22,23,24,25,26,27,28,29]#,19,20,21]#,22]
temp_lab2 = [
    2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21
]  #,22,23,24,25,26,27,28,29]#,19,20,21]#,22]

possible_currents1 = np.array([10, 20, 50, 100, 200, 500, 1000, 1500])

possible_currents2 = np.array([50, 1000])

fig, axs = MakePlot(figsize=(32, 18), nrows=2, ncols=2).create()

axs_temp = [axs[0, 0], axs[0, 1]]

axs_curr = [axs[1, 0], axs[1, 1]]

for i, temp in enumerate(temps):

    temp_path = main_path + 'VT1/' + str(temp) + '/'

    ax = axs_temp[i]

    if i == 1:

        possible_currents1 = possible_currents1[:-1]
Ejemplo n.º 16
0
def fit_wo_step2(resistance,
                 field,
                 window_length=5,
                 polyorder=3,
                 deg=3,
                 return_field=False,
                 plot=False,
                 num_pts=6,
                 return_area=False,
                 return_shortened_locs=False):
    resistance_smooth = scipy.signal.savgol_filter(x=resistance,
                                                   window_length=window_length,
                                                   polyorder=polyorder)

    first_diff = np.diff(resistance_smooth)

    B1, B2 = get_B1_and_B2(first_diff)

    step_locs = np.arange(B1, B2)

    # select a region with 6 points before and 6 points after step

    # add in functionality here to ensure num_pts not greater/less than total
    num_left, num_right = num_pts, num_pts

    if B1 - num_left < 0:
        num_left = 0
    if B2 + num_right > field.shape[0]:
        num_right = field.shape[0]

    smaller_region = np.arange(B1 - num_left, B2 + num_right)

    B1 = field[B1]
    B2 = field[B2]

    region_to_fit = np.setdiff1d(smaller_region, step_locs)

    fitted_line = np.polyfit(x=field[region_to_fit],
                             y=resistance[region_to_fit],
                             deg=deg)

    if plot:
        fig, ax = MakePlot().create()
        ax.plot(field, 1 / resistance)
        ax.plot(np.linspace(0, 14, 200),
                1 / np.poly1d(fitted_line)(np.linspace(0, 14, 200)))
        plt.show()
    if return_shortened_locs:
        step_locs = smaller_region
        if return_area:

            area = integrate_the_step(field[smaller_region],
                                      np.poly1d(fitted_line),
                                      resistance[smaller_region])

            if return_field:
                return np.poly1d(fitted_line), B1, B2, area, step_locs
            else:
                return np.poly1d(fitted_line), area, step_locs

        else:

            if return_field:
                return np.poly1d(fitted_line), B1, B2, step_locs
            else:
                return np.poly1d(fitted_line), step_locs
    else:
        if return_area:

            area = integrate_the_step(field[smaller_region],
                                      np.poly1d(fitted_line),
                                      resistance[smaller_region])

            if return_field:
                return np.poly1d(fitted_line), B1, B2, area
            else:
                return np.poly1d(fitted_line), area

        else:

            if return_field:
                return np.poly1d(fitted_line), B1, B2
            else:
                return np.poly1d(fitted_line)
Ejemplo n.º 17
0
currents_c = [
    r'500 $\mu A$', '', '', r'800 $\mu A$', r'900 $\mu A$', r'1000 $\mu A$',
    r'1100 $\mu A$', r'1200 $\mu A$', r'1500 $\mu A$'
]

data_sets = [
    temp_1p75, temp_2p00, temp_2p25, temp_2p5, temp_2p75, temp_3p00, temp_3p25,
    temp_3p5, temp_3p75
]

sample = 'VT64'

res_up_plus, res_down_plus, res_up_minus, res_down_minus = [], [], [], []
b_up_plus, b_down_plus, b_up_minus, b_down_minus = [], [], [], []

fig, axs = MakePlot(nrows=3, ncols=3).create()

axes = [
    axs[0, 0], axs[0, 1], axs[0, 2], axs[1, 0], axs[1, 1], axs[1, 2],
    axs[2, 0], axs[2, 1], axs[2, 2]
]

for ind, curr_data_name in enumerate(data_sets):
    if ind < 3:
        currents = currents_a

    elif ind == 3:
        currents = currents_b
    else:
        currents = currents_c
    res_lst, field_lst = [], []
Ejemplo n.º 18
0
angles = [
    0, 0, 10, 20, 25, 27.5, 30, 30, 32.5, 35, 35, 37.5, 40, 50, 60, 70, 80
]

filenames_2ndsweep = [
    '033.txt', '034.txt', '035.txt', '040.txt', '036.txt', '037.txt',
    '038.txt', '039.txt'
]
angles_2 = [0, 10, 20, 26, 30, 40, 50, 60]

C0_a = find_C0(main_path, '033.txt')
C0_b = C0_a

print(C0_a)

fig, axs = MakePlot(nrows=1, ncols=2).create()

axins = axs[0].inset_axes([0.1, 0.375, 0.25, 0.25])

for ind, filename_open in enumerate(filenames):

    d = {}

    field, cap_interpolated, R, idx2, raw_cap = process_data(main_path,
                                                             filename_open,
                                                             ref_C0=C0_a)

    ax = axs[0]
    ax.scatter(field,
               raw_cap,
               c=plt.cm.jet(ind / len(filenames)),
Ejemplo n.º 19
0
from matplotlib.cm import get_cmap
from tools.DataFile import DataFile
from tools.MakePlot import *
import matplotlib.pyplot as plt
import scipy.interpolate
import scipy.ndimage
import matplotlib.colors as mcolors
from matplotlib.ticker import FormatStrFormatter

main_path = '/Volumes/GoogleDrive/My Drive/Heatmap Cooldowns/'

save_path = '/Volumes/GoogleDrive/My Drive/Thesis Figures/Transport/'

possible_currents1 = np.array([10, 20, 50, 100, 200, 500, 1000, 1500])

fig, ax = MakePlot(figsize=(32, 18)).create()
# scan is at 1 mA
df = load_matrix(main_path + 'RvsT_FeSb2-VT1&26-cooldown.dat')
df = df[['Temperature (K)', 'Bridge 1 Resistance (Ohms)']]

resistance = scipy.ndimage.median_filter(np.array(
    df['Bridge 1 Resistance (Ohms)']),
                                         size=3)
temperature = np.array(df['Temperature (K)'])

ax.plot(temperature, resistance, linewidth=5, c='purple', label='VT1')

df = load_matrix(main_path + 'RvsT_FeSb2-VT1&26-cooldown.dat')
df = df[['Temperature (K)', 'Bridge 2 Resistance (Ohms)']]

resistance = scipy.ndimage.median_filter(np.array(
Ejemplo n.º 20
0
main_path = '/Users/npopiel/Documents/MPhil/Data/'

save_path = '/Volumes/GoogleDrive/My Drive/Thesis Figures/Transport/'

samples = ['VT11']
temps = [
    10.0
]  #,3.0,4.0,5.0,6.0,7.0,8.0,9.0,10.0,11.0,12.0,13.0,14.0,15.0,16.0,17.0,18.0,19.0,20.0,21.0)#,22.0,23.0,24.0,25.0,26.0,27.0,28.0,29.0)

temp_lab1 = [
    2
]  #,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21]#,22,23,24,25,26,27,28,29]#,19,20,21]#,22]

possible_currents1 = np.array([10, 20, 50, 100, 200, 500, 1000, 1500])

fig, axs = MakePlot(figsize=(32, 18), nrows=2, ncols=4).create()

axs = [
    axs[0, 0], axs[0, 1], axs[0, 2], axs[0, 3], axs[1, 0], axs[1, 1],
    axs[1, 2], axs[1, 3]
]

for i, temp in enumerate(temps):

    temp_path = main_path + 'VT1/' + str(temp) + '/'

    for ind, current in enumerate(possible_currents1):
        ax = axs[ind]
        resistance, field = load_r_and_h(temp_path, current)

        lab = str(current) + r' $\mu \mathrm{A}$'
Ejemplo n.º 21
0
import matplotlib.colors as mcolors
from matplotlib.ticker import FormatStrFormatter

main_path = '/Users/npopiel/Documents/MPhil/Data/'

save_path = '/Volumes/GoogleDrive/My Drive/Thesis Figures/Transport/'

data = np.loadtxt(
    '/Volumes/GoogleDrive/My Drive/Thesis Figures/NJM_Nov19_sweep.130.dat',
    delimiter='\t',
    skiprows=10)

field = data[:, 0]
resistance = data[:, 1] * 1e5

fig, ax = MakePlot(figsize=(16, 9), nrows=1, ncols=1).create()

ax.plot(field, resistance, linewidth=1.8, c='k')

ax.ticklabel_format(style='sci', axis='y', scilimits=(0, 0), useMathText=True)
ax.minorticks_on()

ax.tick_params('both',
               which='major',
               direction='in',
               length=6,
               width=2,
               bottom=True,
               top=True,
               left=True,
               right=True)